文档库 最新最全的文档下载
当前位置:文档库 › 【成才之路】2015届高考数学二轮复习 专题4 第3讲 空间向量及其应用素能训练(文、理)

【成才之路】2015届高考数学二轮复习 专题4 第3讲 空间向量及其应用素能训练(文、理)

【成才之路】2015届高考数学二轮复习 专题4 第3讲 空间向量及其应用素能训练(文、理)
【成才之路】2015届高考数学二轮复习 专题4 第3讲 空间向量及其应用素能训练(文、理)

【成才之路】2015届高考数学二轮复习 专题4 第3讲 空间向量及

其应用素能训练(文、理)

一、选择题

1.(2014·北京理,7)在空间直角坐标系O -xyz 中,已知A (2,0,0),B (2,2,0),C (0,2,0),

D (1,1,2),若S 1、S 2、S 3分别是三棱锥D -ABC 在xOy 、yOz 、zOx 坐标平面上的正投影图

形的面积,则( )

A .S 1=S 2=S 3

B .S 2=S 1且S 2≠S 3

C .S 3=S 1且S 3≠S 2

D .S 3=S 2且S 3≠S 1 [答案] D

[解析] D -ABC 在xOy 平面上的投影为△ABC , 故S 1=1

2

AB ·BC =2,

设D 在yOz 和zOx 平面上的投影分别为D 2和D 3,则D -ABC 在yOz 和zOx 平面上的投影分别为△OCD 2和△OAD 3,∵D 2(0,1,2),D 3(1,0,2).

故S 2=12×2×2=2,S 3=1

2×2×2=2,

综上,选项D 正确.

2.(2013·天津和平区模拟)已知正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,E 是AA 1的中点,则异面直线D 1C 与BE 所成角的余弦值为( )

A.1

5 B.310

10

C.1010

D.35

[答案] B

[解析] 以A 为原点,AB 、AD 、AA 1所在直线为x 轴、y 轴、z 轴建立空间直角坐标系,设AB =1,则B (1,0,0),D (0,1,0),C (1,1,0),D 1(0,1,2),

∵AA 1=2AB ,∴E (0,0,1),

∴BE →=(-1,0,1),CD 1→

=(-1,0,2),

∴cos 〈BE →,CD 1→

〉=BE →·CD 1→|BE →|·|CD 1→|=32·5=31010,

故选B.

3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( )

A.1

3 B.23

C.33

D.23

[答案] B

[解析] 如图,设A 1在平面ABC 内的射影为O ,以O 为坐标原点,OA 、OA 1分别为x 轴、

z 轴建立空间直角坐标系如图.设△ABC 边长为1,则

A (

33,0,0),B 1(-32,1

2,6

3

),

∴AB 1→

=(-536,12,63

).

平面ABC 的法向量n =(0,0,1),则AB 1与底面ABC 所成角α的正弦值为

sin α=|cos 〈AB 1→

,n 〉|=

63

7536+14+69

=2

3.

4.(2014·吉林九校联合体二模)如图,在四面体OABC 中,已知AC =BC ,|OA →|=3,|OB →

|=1,则OC →·BA →

( )

A .8

B .6

C .4

D .3

[答案] C

[解析] 如图,取AB 的中点D ,∵AC =BC ,∴AB ⊥DC ,OC →=OD →+DC →,又OD →=12(OA →+OB →

),

∴OC →·BA →=(OD →+DC →)·BA →=OD →·BA →=12(OA →+OB →)·(OA →-OB →)=12(OA →2-OB →2)=1

2

(9-1)=4.

5.如图,四棱锥S -ABCD 的底面为正方形,SD ⊥底面ABCD ,则下

列结论中不正确...

的是( ) A .AC ⊥SB B .AB ∥平面SCD

C .SA 与平面SB

D 所成的角等于SC 与平面SBD 所成的角 D .AB 与SC 所成的角等于DC 与SA 所成的角 [答案] D

[解析] ∵四边形ABCD 是正方形,∴AC ⊥BD . 又∵SD ⊥底面ABCD ,∴SD ⊥AC .

∵SD ∩BD =D ,∴AC ⊥平面SDB ,从而AC ⊥SB .故A 正确.易知B 正确.设AC 与DB 交于

O 点,连接SO .则SA 与平面SBD 所成的角为∠ASO ,SC 与平面SBD 所成的角为∠CSO ,又OA

=OC ,SA =SC ,∴∠ASO =∠CSO .故C 正确.由排除法可知选D.

6.正四面体ABCD 的棱长为1,G 是△ABC 的中心,M 在线段DG 上,且∠AMB =90°,则

GM 的长为( )

A.1

2 B.22 C.

33

D.

66

[答案] D

[解析] 解法一:取AB 的中点N ,由正四面体的对称性可知△AMB 为等腰三角形,∴MN =12AB =12

.

又G 为△ABC 的中心,∴NG =3

6

, 故MG =MN 2

-NG 2

66

. 解法二:设DA →=a ,DB →=b ,DC →

=c , AM →=AD →+λDG →

=-a +λ3(a +b +c )=(λ3-1)a +λ3b +λ3

c , BM →

=BA →+AM →

=(a -b )+(λ

3

-1)a +λ3

b +λ3

c

=λ3a +(λ3-1)b +λ

3

c . 由AM →·BM →

=0,ab =bc =ac =12,可解得λ=12.

|MG →|=12|DG →

|=66.

二、填空题

7.如图,在空间直角坐标系中有棱长为a 的正方体ABCD -A 1B 1C 1D 1,点M 是线段DC 1上

的动点,则点M 到直线AD 1距离的最小值是________.

[答案]

33

a [解析] 设M (0,m ,m )(0≤m ≤a ),AD 1→

=(-a,0,a ),直线AD 1的一个单位方向向量s =(-

22,0,22

),MD 1→

=(0,-m ,a -m ),故点M 到直线AD 1的距离 d =

|MD 1→|2-|MD 1→·s |2

m 2+a -m

2

-1

2

a -m 2

32m 2-am +1

2

a 2,

根式内的二次函数当m =-

-a 2×32

=a 3时取最小值32(a 3)2-a ×a 3+12a 2=13a 2

,故d 的最小值为33

a . 8.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个结论:

①AA 1⊥MN ;②A 1C 1∥MN ; ③MN ∥平面A 1B 1C 1D 1;

④MN 与A 1C 1是异面直线.其中正确命题的序号是________.(注:把你认为正确命题的序号都填上)

[答案] ①③

[解析] 在正方体中,AB 1=BC 1,∵M ∈AB 1,N ∈BC 1,且AM =BN ≠2,∴当M 为AB 1的中点时,N 为BC 1的中点,即B 1C 的中点,此时MN ∥AC ∥A 1C 1,否则MN 与A 1C 1异面,∴②④都错;在BB 1上取点E ,使NE ∥B 1C 1,则

BE BB 1=BN BC 1=AM

AB 1

,∴ME ∥AB ∥A 1B 1,∴平面MNE ∥平面A 1B 1C 1,∴MN ∥平面A 1B 1C 1D 1,又AA 1⊥平面A 1B 1C 1D 1,∴AA 1⊥MN ,故①③正确.

三、解答题

9.如图,已知ABCD -A 1B 1C 1D 1是底面为正方形的长方体,A 1D 1=2,A 1A =23,点P 是AD 1上的动点.

(1)当P 为AD 1的中点时,求异面直线AA 1与B 1P 所成角的余弦值; (2)求PB 1与平面AA 1D 1所成角的正切值的最大值.

[解析] (1)(解法一)过点P 作PE ⊥A 1D 1,垂足为E ,连接B 1E ,则PE ∥AA 1,

∴∠B 1PE 是异面直线AA 1与B 1P 所成的角. 在Rt △AA 1D 1中,

A 1D 1=2,AA 1=23,

∴A 1E =1

2A 1D 1=1,

∴B 1E =B 1A 2

1+A 1E 2

= 5. 又PE =1

2

AA 1=3,

∴在Rt △B 1PE 中,B 1P =5+3=22, cos ∠B 1PE =

PE B 1P =322

=64

.

∴异面直线AA 1与B 1P 所成角的余弦值为

64

. (解法二)以A 1为原点,A 1B 1所在的直线为x 轴,A 1D 1所在直线为y 轴,A 1A 所在直线为z 轴建立空间直角坐标系如图所示,则A 1(0,0,0),A (0,0,23),

B 1(2,0,0),P (0,1,3),

∴A 1A →

=(0,0,23),

B 1P →

=(-2,1,3),

∴cos 〈A 1A →

,B 1P →

〉=

A 1A →·

B 1P

|A 1A →|·|B 1P →|=623×22

=6

4.

∴异面直线AA 1与B 1P 所成角的余弦值为64

. (2)由(1)知,B 1A 1⊥平面AA 1D 1, ∴∠B 1PA 1是PB 1与平面AA 1D 1所成的角, 且tan ∠B 1PA 1=

B 1A 1A 1P =2

A 1P

. 当A 1P 最小时,tan ∠B 1PA 1最大,这时A 1P ⊥AD 1,由A 1P =A 1D 1·A 1A

AD 1

=3,得tan ∠B 1PA 1

=233

即PB 1与平面AA 1D 1所成角的正切值的最大值为23

3

.

10.(2013·北京海淀模拟)如图所示,PA ⊥平面ABC ,点C 在以AB 为直径的⊙O 上,∠

CBA =30°,PA =AB =2,点E 为线段PB 的中点,点M 在AB 上,且OM ∥AC .

(1)求证:平面MOE ∥平面PAC ; (2)求证:平面PAC ⊥平面PCB ;

(3)设二面角M -BP -C 的大小为θ,求cos θ的值.

[解析] (1)因为点E 为线段PB 的中点,点O 为线段AB 的中点, 所以OE ∥PA .

因为PA ?平面PAC ,OE ?平面PAC , 所以OE ∥平面PAC .

因为OM ∥AC ,

又AC ?平面PAC ,OM ?平面PAC , 所以OM ∥平面PAC .

因为OE ?平面MOE ,OM ?平面MOE ,OE ∩OM =O , 所以平面MOE ∥平面PAC .

(2)因为点C 在以AB 为直径的⊙O 上, 所以∠ACB =90°,即BC ⊥AC . 因为PA ⊥平面ABC ,BC ?平面ABC , 所以PA ⊥BC .

因为AC ?平面PAC ,PA ?平面PAC ,PA ∩AC =A , 所以BC ⊥平面PAC .

因为BC ?平面PBC ,所以平面PAC ⊥平面PBC .

(3)如图,以C 为原点,CA 所在的直线为x 轴,CB 所在的直线为y 轴,

建立空间直角坐标系C -xyz .

因为∠CBA =30°,PA =AB =2, 所以CB =2cos30°=3,AC =1. 延长MO 交CB 于点D . 因为OM ∥AC ,

所以MD ⊥CB ,MD =1+12=32,CD =12CB =32

.

所以P (1,0,2),C (0,0,0),B (0,3,0),M (32,3

2,0).

所以CP →=(1,0,2),CB →

=(0,3,0). 设平面PCB 的法向量m =(x ,y ,z ). 因为???

??

m ·CP →=0,

m ·CB →=0.

所以??

?

x ,y ,z

,0,=0,

x ,y ,z

,3,

=0.

即??

?

x +2z =0,3y =0.

令z =1,则x =-2,y =0. 所以m =(-2,0,1).

同理可求平面PMB 的一个法向量n =(1,3,1).

所以cos 〈m ,n 〉=m ·n |m |·|n |=-15.所以cos θ=1

5

.

一、解答题

11.如图,正方形ABCD 和四边形ACEF 所在平面互相垂直,CE ⊥AC ,EF ∥AC ,AB =2,

CE =EF =1.

(1)求证:AF ∥平面BDE ; (2)求证:CF ⊥平面BDE ; (3)求二面角A -BE -D 的大小.

[解析] (1)设AC 与BD 交于点G ,因为EF ∥AG ,且EF =1,

AG =1

2

AC =1,所以四边形AGEF 为平行四边形.所以AF ∥EG .因

为EG ?平面BDE ,AF ?平面BDE ,所以AF ∥平面BDE .

(2)因为正方形ABCD 和四边形ACEF 所在的平面互相垂直,

且CE ⊥AC ,所以CE ⊥平面ABCD .如图以C 为原点,建立空间直角坐标系C -xyz .则C (0,0,0),

A (2,2,0),D (2,0,0),E (0,0,1),

B (0,2,0),F (

22,22,1).所以CF →

=(22

,22

,1),BE →=(0,-2,1),DE →=(-2,0,1).所以CF →·BE →=0-1+1=0,CF →·DE →

=-1+0+1=0.所以CF ⊥BE ,CF ⊥DE ,所以CF ⊥平面BDE .

(3)由(2)知,CF →

=(22,22,1)是平面BDE 的一个法向量,

设平面ABE 的法向量n =(x ,y ,z ),则n ·BA →=0,n ·BE →

=0.

即??

?

x ,y ,z 2,0,=0

x ,y ,z

,-2,

=0

所以x =0,z =2y .令y =1,则z = 2.

所以n =(0,1,2),从而cos 〈n ,CF →

〉=n ·CF →|n ||CF →|=32

因为二面角A -BE -D 为锐角, 所以二面角A -BE -D 为π

6

.

[点评] 综合法更注重推理,方法巧妙,计算量不大,对空间想象能力以及逻辑推理能力要求较高,而向量法更多的是计算而且方法统一,具有格式化,易于掌握.从近几年高考尤其新课标地区的高考题来看主要以向量法的考查为主,较少使用综合法.

12.(2013·桂东一中月考)如图,四棱锥P -ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.

(1)求证:平面AEC ⊥平面PDB ;

(2)当PD =2AB 且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小. [解析] (1)∵四边形ABCD 是正方形,∴AC ⊥BD , ∵PD ⊥底面ABCD ,

∴PD ⊥AC ,∴AC ⊥平面PDB ,

又AC ?平面AEC ,∴平面AEC ⊥平面PDB .

(2)设AC ∩BD =O ,连接OE , 由(1)知AC ⊥平面PDB 于O , ∴∠AEO 为AE 与平面PDB 所成的角, ∴O 、E 分别为DB 、PB 的中点, ∴OE ∥PD ,OE =1

2

PD ,

又∵PD ⊥底面ABCD ,∴OE ⊥底面ABCD ,OE ⊥AO , 在Rt △AOE 中,OE =12PD =2

2

AB =AO ,

∴∠AOE =45°,即AE 与平面PDB 所成的角的大小为45°.

13.(2014·北京理,17)如图,正方形AMDE 的边长为2,B 、C 分别为AM 、MD 的中点.在五棱锥P -ABCDE 中,F 为棱PE 的中点,平面ABF 与棱PD 、PC 分别交于点G 、H .

(1)求证:AB ∥FG ;

(2)若PA ⊥底面ABCDE ,且PA =AE ,求直线BC 与平面ABF 所成角的大小,并求线段PH 的长.

[解析] (1)在正方形AMDE 中,因为B 是AM 的中点,所以AB ∥DE . 又因为AB ?平面PDE ,所以AB ∥平面PDE . 因为AB ?平面ABF ,且平面ABF ∩平面PDE =FG , 所以AB ∥FG .

(2)因为PA ⊥底面ABCDE ,所以PA ⊥AB ,PA ⊥AE .

如图建立空间直角坐标系A -xyz ,则A (0,0,0),B (1,0,0),C (2,1,0),P (0,0,2),

F (0,1,1),BC →

=(1,1,0).

设平面ABF 的法向量为n =(x ,y ,z ),则 ???

??

n ·AB →=0,n ·AF →=0,

即?

??

??

x =0,

y +z =0.

令z =1,则y =-1,所以n =(0,-1,1). 设直线BC 与平面ABF 所成角为α,则 sin α=|cos 〈n ,BC →

〉|=|n ·BC →

|n ||BC →||=12.

因此直线BC 与平面ABF 所成角的大小为π

6

.

设点H 的坐标为(u ,v ,w ).

因为点H 在棱PC 上,所以可设PH →=λPC →

(0<λ<1),

即(u ,v ,w -2)=λ(2,1,-2),所以u =2λ,v =λ,w =2-2λ,

因为n 是平面ABF 的法向量,所以n ·AH →

=0,即(0,-1,1)·(2λ,λ,2-2λ)=0, 解得λ=23,所以点H 的坐标为(43,23,23).

所以PH =

4

3

2

23

2

+-

43

2

=2.

14.如图,在三棱柱ABC -A 1B 1C 1中,H 是正方形AA 1B 1B 的中心,AA 1=22,C 1H ⊥平面

AA 1B 1B ,且C 1H = 5.

(1)求异面直线AC 与A 1B 1所成角的余弦值; (2)求二面角A -A 1C 1-B 1的正弦值;

(3)设N 为棱B 1C 1的中点,点M 在平面AA 1B 1B 内,且MN ⊥平面A 1B 1C 1,求线段BM 的长. [解析] 如图所示 ,建立空间直角坐标系,点B 为坐标原

点.依题意得A (22,0,0),B (0,0,0),C (2,-2,5),

A 1(22,22,0),

B 1(0,22,0),

C 1(2,2,5).

(1)易得AC →=(-2,-2,5),A 1B 1→

=(-22,0,0),于是cos 〈AC →,A 1B 1→

〉=AC →·A 1B 1→|AC →|·|A 1B 1→|=43×22

=23.

所以异面直线AC 与A 1B 1所成角的余弦值为

23

. (2)易知AA 1→=(0,22,0),A 1C 1→

=(-2,-2,5). 设平面AA 1C 1的法向量m =(x ,y ,z ),则 ???

??

m ·A 1C 1→=0,m 、AA 1→=0.

即??

?

-2x -2y +5z =0,

22y =0.

不妨令x =5,可得m =(5,0,2). 同样的,设平面A 1B 1C 1的法向量n =(x ,y ,z ),则

???

??

n ·A 1C 1→=0,n ·A 1B 1→=0.

即??

?

-2x -2y +5z =0,

-22x =0.

不妨令y =5,可得n =(0,5,2).

于是cos 〈m ,n 〉=m ·n |m |·|n |=27·7=2

7

从而sin 〈m ,n 〉=35

7

.

所以二面角A -A 1C 1-B 1的正弦值为35

7.

(3)由N 为棱B 1C 1的中点,得N ?

????22

,32

2,52.

设M (a ,b,0),则MN →=? ????2

2-a ,322-b ,52,

由MN ⊥平面A 1B 1C 1,得???

??

MN →·A 1B 1→=0,

MN →·A 1C 1→=0.

即???

??

? ????

22-a -22=0,? ??

??

22-a -2+?

??

??

322-b -2+

5

2

·5=0.

解得???

??

a =22,

b =24

.故M ?

????22,24,0,因此BM →=? ??

??2

2,24,0, 所以线段BM 的长|BM →

|=104.

高考数学平面向量专题卷(附答案)

高考数学平面向量专题卷(附答案) 一、单选题(共10题;共20分) 1.已知向量,则=() A. B. C. 4 D. 5 2.若向量,,若,则 A. B. 12 C. D. 3 3.已知平面向量,,且,则=() A. B. C. D. 4.已知平面向量、,满足,若,则向量、的夹角为() A. B. C. D. 5.在中,的中点为,的中点为,则() A. B. C. D. 6.已知平面向量不共线,且,,记与的夹角是,则最大时, () A. B. C. D. 7.在中,,AD是BC边上的高,则等于() A. 0 B. C. 2 D. 1 8.已知,则的取值范围是() A. [0,1] B. C. [1,2] D. [0,2] 9.已知向量,的夹角为,且,则的最小值为() A. B. C. 5 D. 10.已知椭圆:上的三点,,,斜率为负数的直线与轴交于,若原点是的重心,且与的面积之比为,则直线的斜率为()

A. B. C. D. 二、填空题(共8题;共8分) 11.在平面直角坐标系xOy中,已知A(0,﹣1),B(﹣3,﹣4)两点,若点C在∠AOB的平分线上,且 ,则点C的坐标是________. 12.已知单位圆上两点满足,点是单位圆上的动点,且,则 的取值范围为________. 13.已知正方形的边长为1,,,,则________. 14.在平面直角坐标系中,设是函数()的图象上任意一点,过点向直线 和轴作垂线,垂足分别是,,则________. 15.已知为锐角三角形,满足,外接圆的圆心为,半径为1,则的取值范围是________. 16.设是边长为的正六边形的边上的任意一点,长度为的线段是该正六边形外接圆的一条动弦,则的取值范围为________. 17.设的外接圆的圆心为,半径为2,且满足,则 的最小值为________. 18.如图,在中,,点,分别为的中点,若,,则 ________. 三、解答题(共6题;共60分) 19.的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求; (Ⅱ)若,求的面积. 20.在平面直角坐标系中,曲线的参数方程为(为参数),已知点,点是曲线上任意一点,点为的中点,以坐标原点为极点,轴正半轴为极轴建立极坐标系.

2020版高考数学二轮复习专题汇编全集

第1讲 三角函数与平面向量 A 组 基础达标 1.若点? ????sin 5π 6,cos 5π6在角α的终边上,则sin α的值为________. 2.已知α∈? ????0,π2,2sin2α=cos2α+1,那么sin α=________. 3.(2019·榆林模拟)若sin ? ????A +π4=7210,A ∈? ?? ??π4,π,则sin A =________. 4.若函数f (x )=2sin ? ????2x +φ-π6(0<φ<π)是偶函数,则φ=________. 5.已知函数y =A sin (ωx +φ)+B (A >0,ω>0,|φ|<π 2)的部分图象如图所示,那 么φ=________. (第5题) 6.已知sin ? ????α+π3=1213,那么cos ? ?? ??π6-α=________. 7.在距离塔底分别为80m ,160m ,240m 的同一水平面上的A ,B ,C 处,依次测得塔顶的仰角分别为α,β,γ.若α+β+γ=90°,则塔高为________m. 8.(2019·湖北百校联考)设α∈? ????0,π3,且6sin α+2cos α= 3. (1) 求cos ? ????α+π6的值; (2) 求cos ? ????2α+π12的值.

B 组 能力提升 1.计算:3cos10°-1 sin170°=________. 2.(2019·衡水模拟改编)设函数f (x )=2cos (ωx +φ)对任意的x ∈R ,都有f ? ????π3-x =f ? ????π3+x ,若函数g (x )=3sin (ωx +φ)+cos (ωx +φ)+2,则g ? ?? ??π3的值是________. 3.已知函数f (x )=sin (ωx +φ)(ω>0)的图象的一个对称中心为? ????π2,0,且f ? ?? ? ?π4=1 2 ,那么ω的最小值为________. 4.已知函数f (x )=sin ? ????ωx +π5(ω>0),f (x )在[0,2π]上有且仅有5个零点,给出以下四个结论: ①f (x )在(0,2π)上有且仅有3个极大值点; ②f (x )在(0,2π)上有且仅有2个极小值点; ③f (x )在? ????0,π10上单调递增; ④ω的取值范围是???? ??125,2910. 其中正确的结论是________.(填序号) 5.(2019·浙江卷)已知函数f (x )=sin x ,x ∈R . (1) 当θ∈[0,2π)时,函数f (x +θ)是偶函数,求θ的值; (2) 求函数y =??????f ? ????x +π122+??????f ? ????x +π42 的值域. 6.(2019·临川一中)已知函数f (x )=M sin (ωx +π 6)(M >0,ω>0)的大致图象如图所示, 其中A (0,1),B ,C 为函数f (x )的图象与x 轴的交点,且BC =π. (1) 求M ,ω的值;

高考平面向量知识点总结

高考平面向量知识点总结 16、向量:既有大小,又有方向的量. 数量:只有大小,没有方向的量. 有向线段的三要素:起点、方向、长度. 零向量:长度为0的向量. 单位向量:长度等于1个单位的向量. 平行向量(共线向量):方向相同或相反的非零向量.零向量与任一向量平行. 相等向量:长度相等且方向相同的向量. 17、向量加法运算: ⑴三角形法则的特点:首尾相连. ⑵平行四边形法则的特点:共起点. ⑶三角形不等式: a b a b a b -≤+≤+. ⑷运算性质:①交换律:a b b a +=+; ②结合律:()() a b c a b c ++=++;③00a a a +=+=. ⑸坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y +=++. 18、向量减法运算: ⑴三角形法则的特点:共起点,连终点,方向指向被减向量. ⑵坐标运算:设()11,a x y =,()22,b x y =,则()1212,a b x x y y -=--. 设A 、B 两点的坐标分别为 () 11,x y , () 22,x y ,则 ()1212,x x y y AB =--. 19、向量数乘运算: ⑴实数λ与向量a 的积是一个向量的运算叫做向量的数乘,记作a λ. ①a a λλ=; ②当0λ>时,a λ的方向与a 的方向相同;当0λ<时,a λ的方向与a 的方向相反;当0λ=时,0a λ=. ⑵运算律:①()()a a λμλμ=;②()a a a λμλμ+=+;③() a b a b λλλ+=+. ⑶坐标运算:设(),a x y =,则()(),,a x y x y λλλλ==. 20、向量共线定理:向量() 0a a ≠与b 共线,当且仅当有唯一一个实数λ ,使b a λ=. 设()11,a x y =,()22,b x y =,其中0b ≠,则当且仅当12210x y x y -=时,向 b a C B A a b C C -=A -AB =B

高三数学精准培优专题练习8:平面向量

培优点八 平面向量 1.代数法 例1:已知向量a ,b 满足=3a ,b 且()⊥+a a b ,则b 在a 方向上的投影为( ) A .3 B .3- C . D 【答案】C 【解析】考虑b 在a 上的投影为 ?a b b ,所以只需求出a ,b 即可. 由()⊥+a a b 可得:()2 0?+=+?=a a b a a b , 所以9?=-a b .进而?==a b b .故选C . 2.几何法 例2:设a ,b 是两个非零向量,且2==+=a b a b ,则=-a b _______. 【答案】【解析】可知a ,b ,+a b 为平行四边形的一组邻边和一条对角线, 由2==+=a b a b 可知满足条件的只能是底角为60o ,边长2a =的菱形, =. 3.建立直角坐标系 例3:在边长为1的正三角形ABC 中,设2BC BD =uu u v uu u v ,3CA CE =uu v uu u v ,则AD BE ?=u u u v u u u v __________. 【答案】14 AD BE ?=-uuu v uu u v 【解析】上周是用合适的基底表示所求向量,从而解决问题,本周仍以此题为例,从另一个角度解题,

观察到本题图形为等边三角形,所以考虑利用建系解决数量积问题, 如图建系: 3 0, A ?? ? ? ?? , 1 ,0 2 B ?? - ? ?? , 1 ,0 2 C ?? ? ?? , 下面求E坐标:令() , E x y,∴ 1 , 2 CE x y ?? =- ? ?? uu u v , 13 2 CA ? =- ?? uu v , 由3 CA CE = uu v uu u v 可得: 111 3 223 3 3 3 x x y y ???? -=-= ? ?? ?? ?? ? ?? ??= = ??? ? 13 3 E ? ?? , ∴ 3 0, AD ? = ?? uuu v , 53 6 BE ? = ?? uu u v ,∴ 1 4 AD BE ?=- uuu v uu u v . 一、单选题 1.已知向量a,b满足1 = a,2 = b,且向量a,b的夹角为 4 π ,若λ - a b与b垂直,则实数λ的值为() A. 1 2 -B. 1 2 C. 2 D 2 【答案】D 【解析】因为12cos2 4 π ?? ?= a b()2 240 λλλ -?=?=?= a b b,故选D.2.已知向量a,b满足1 = a,2 = b,7 += a b?= a b() A.1 B2C3D.2 【答案】A 对点增分集训

高中数学必修4平面向量知识点总结与典型例题归纳

平面向量 【基本概念与公式】 【任何时候写向量时都要带箭头】 1.向量:既有大小又有方向的量。记作:AB 或a 。 2.向量的模:向量的大小(或长度),记作:||AB 或||a 。 3.单位向量:长度为1的向量。若e 是单位向量,则||1e =。 4.零向量:长度为0的向量。记作:0。【0方向是任意的,且与任意向量平行】 5.平行向量(共线向量):方向相同或相反的向量。 6.相等向量:长度和方向都相同的向量。 7.相反向量:长度相等,方向相反的向量。AB BA =-。 8.三角形法则: ) AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数) 9.平行四边形法则: 以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。 10.共线定理://a b a b λ=?。当0λ>时,a b 与同向;当0λ<时,a b 与反向。 11.基底:任意不共线的两个向量称为一组基底。 12.向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+ 13.数量积与夹角公式:||||cos a b a b θ?=?; cos ||||a b a b θ?= ? 14.平行与垂直:1221//a b a b x y x y λ?=?=;121200a b a b x x y y ⊥??=?+= 题型1.基本概念判断正误: (1)共线向量就是在同一条直线上的向量。 ) (2)若两个向量不相等,则它们的终点不可能是同一点。 (3)与已知向量共线的单位向量是唯一的。 (4)四边形ABCD 是平行四边形的条件是AB CD =。

高考数学压轴专题(易错题)备战高考《平面向量》全集汇编附解析

新数学《平面向量》试卷含答案 一、选择题 1.如图,圆O 是等边三角形ABC 的外接圆,点D 为劣弧AC 的中点,则OD =u u u r ( ) A .2133BA AC +u u u r u u u r B .2133BA A C -u u u r u u u r C .1233BA AC +u u u r u u u r D .4233BA AC +u u u r u u u r 【答案】A 【解析】 【分析】 连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E ,列出相应式子得出结论. 【详解】 解:连接BO ,易知B ,O ,D 三点共线,设OD 与AC 的交点为E , 则()() 221121332333 OD BO BE BA BC BA BA AC BA AC ===?+= ++=+u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r . 故选:A. 【点睛】 本题考查向量的表示方法,结合几何特点,考查分析能力,属于中档题. 2.已知正ABC ?的边长为4,点D 为边BC 的中点,点E 满足AE ED u u u r u u u r =,那么EB EC ?u u u r u u u r 的值为( ) A .8 3 - B .1- C .1 D .3 【答案】B 【解析】 【分析】 由二倍角公式得求得tan ∠BED ,即可求得cos ∠BEC ,由平面向量数量积的性质及其运算得直接求得结果即可. 【详解】

由已知可得:7 , 又23 tan BED 3 BD ED ∠= == 所以22 1tan 1 cos 1tan 7 BED BEC BED -∠∠==-+∠ 所以1||cos 7717EB EC EB EC BEC ?? ?=∠=-=- ??? u u u r u u u r u u u r u u u r ‖ 故选B . 【点睛】 本题考查了平面向量数量积的性质及其运算及二倍角公式,属中档题. 3.若向量a b r r ,的夹角为3 π ,|2|||a b a b -=+r r r r ,若()a ta b ⊥+r r r ,则实数t =( ) A .1 2 - B . 12 C 3 D .3 【答案】A 【解析】 【分析】 由|2|||a b a b -=+r r r r 两边平方得22b a b =?r r r ,结合条件可得b a =r r ,又由()a ta b ⊥+r r r ,可得20t a a b ?+?=r r r ,即可得出答案. 【详解】 由|2|||a b a b -=+r r r r 两边平方得2222442a a b b a a b b -?+=+?+r r r r r r r r . 即22b a b =?r r r ,也即22cos 3 b a b π =r r r ,所以b a =r r . 又由()a ta b ⊥+r r r ,得()0a ta b ?+=r r r ,即20t a a b ?+?=r r r . 所以222 1122b a b t a b ?=-=-=-r r r r r 故选:A

53.高考数学专题26 平面向量(知识梳理)(理)(原卷版)

专题26 平面向量(知识梳理) 一、向量的概念及表示 1、向量的概念:具有大小和方向的量称为向量。 (1)数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小; 向量有方向,大小,双重性,不能比较大小。 (2)向量的表示方法: ①具有方向的线段,叫做有向线段,以A 为始点,B 为终点的有向线段记作AB ,AB 的长度记作||AB 。用有向线段AB 表示向量,读作向量AB ; ②用小写字母表示:a 、。 (3)向量与有向线段的区别和联系: ①向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量; ②有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同,也是不同的有向线段; ③向量可以用有向线段表示,但向量不是有向线段。向量是规定了大小和方向的量,有向线段是规定了起点和终点的线段。 2、向量的模:向量AB 的大小――长度称为向量的模,记作||。 3、零向量:长度等于零、方向是任意的向量,记作。 4、单位向量:长度为一个单位长度的向量。与非零向量共线的单位向量0a =。 5、平行向量:(1)若非零向量a 、的方向相同或相反,则b a //,又叫共线向量; (2)规定与任一向量平行。 6、共线向量与平行向量关系:平行向量就是共线向量,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关)。 7、相等向量:若非零向量a 、方向相同且模相等,则向量a 、是相等向量。 (1)相等向量:=?模相等,方向相同; (2)相反向量:b a -=?模相等,方向相反。 二、向量的加法 1、三角形法则

图示 2、平行四边形法则 原理 已知两个不共线向量a 、b ,作a AB =,b BC =,则A 、B 、D 三点不共线,以AB 、AD 为邻边 作平行四边形,则对角线上的向量b a AC +=,这个法则叫做两个向量求和的平行四边形法则。 图示 3、多边形法则 原理 已知n 个向量,依次把这n 个向量首尾相连,以第一个向量的始点为始点,第n 个向量的终点为终点 的向量叫做这n 个向量的和向量,这个法则叫做向量求和的多边形法则。 图示 运算律 交换律 a b b a +=+ 结合律 )()(c b a c b a ++=++ 1、相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量,记作a -。 (1)规定:零向量的相反向量仍是零向量; (2)a a =--)(; (3)0)()(=+-=-+a a a a ; (4)若a 与b 互为相反向量,则b a -=,a b -=,0=+b a 。 2、向量的减法:已知向量a 与b (如图),作a OA =,b OB =,则a BA b =+,向量BA 叫做向量a 与b 的差,并记作b a -,即OB OA b a BA -=-=,由定义可知: (1)如果把两个向量的始点放在一起,则这两个向量的差是以减向量的终点为始点,被减向量的终点为终点的向量; (2)一个向量BA 等于它的终点相对于点O 的位置向量OA 减去它的始点相对于点O 的位置向量OB ,或简记为“终点向量减始点向量”;

2020高考数学二轮专题复习 三角函数

三角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能进行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱导公式; 理解同角的三角函数的基本关系式:sin 2 x+cos 2 x=1, sin tan cos x x x =. 3.能画出y=sinx, y=cosx, y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、 三角函数与向量等其他知识综合及三角函数为背景的实际问题等. 预测明年,考查形式不变,选择、填空题以考查三角函数性质及公式应用为主,解答题将会以向量为载体,考查三角函数的图象与性质或者与函数奇偶性、周期性、最值等相结合,以小型综合题形式出现. 【要点梳理】 1.知识点:弧度制、象限角、终边相同的角、任意角三角函数的定义、同角三角函数基本关系式、诱导公式、三角函数线、三角函数图象和性质;和、差、倍角公式,正、余弦定理及其变形公式. 2.三角函数中常用的转化思想及方法技巧: (1)方程思想:sin cos αα+, sin cos αα-,sin cos αα三者中,知一可求二;

高考数学(理科)二轮复习【专题2】函数的应用(含答案)

第2讲函数的应用 考情解读(1)函数零点所在区间、零点个数及参数的取值范围是高考的常见题型,主要以填空题的形式出现.(2)函数的实际应用以二次函数、分段函数模型为载体,主要考查函数的最值问题. 1.函数的零点与方程的根 (1)函数的零点 对于函数f(x),我们把使f(x)=0的实数x叫做函数f(x)的零点. (2)函数的零点与方程根的关系 函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的根,即函数y=f(x)的图象与函数y=g(x)的图象交点的横坐标. (3)零点存在性定理 如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,且有f(a)·f(b)<0,那么,函数y =f(x)在区间(a,b)内有零点,即存在c∈(a,b)使得f(c)=0,这个c也就是方程f(x)=0的根.注意以下两点: ①满足条件的零点可能不唯一; ②不满足条件时,也可能有零点. (4)二分法求函数零点的近似值,二分法求方程的近似解. 2.函数模型 解决函数模型的实际应用题,首先考虑题目考查的函数模型,并要注意定义域.其解题步骤是(1)阅读理解,审清题意:分析出已知什么,求什么,从中提炼出相应的数学问题;(2)数学建模:弄清题目中的已知条件和数量关系,建立函数关系式;(3)解函数模型:利用数学方法得出函数模型的数学结果;(4)实际问题作答:将数学问题的结果转化成实际问题作出解答. 热点一函数的零点 例1(1)函数f(x)=2x+x3-2在区间(0,1)内的零点个数是________.

(2)(2014·辽宁改编)已知f (x )为偶函数,当x ≥0时,f (x )=??? cos πx ,x ∈[0,1 2 ], 2x -1,x ∈(1 2 ,+∞),则不等式 f (x -1)≤1 2 的解集为________. 思维升华 (1)根据二分法原理,逐个判断;(2)画出函数图象,利用数形结合思想解决. 答案 (1)1 (2)[14,23]∪[43,7 4 ] 解析 (1)先判断函数的单调性,再确定零点. 因为f ′(x )=2x ln 2+3x 2>0, 所以函数f (x )=2x +x 3-2在(0,1)上递增, 且f (0)=1+0-2=-1<0,f (1)=2+1-2=1>0, 所以有1个零点. (2)先画出y 轴右边的图象,如图所示. ∵f (x )是偶函数,∴图象关于y 轴对称,∴可画出y 轴左边的图象,再画直线y =1 2.设与曲线交 于点A ,B ,C ,D ,先分别求出A ,B 两点的横坐标. 令cos πx =12,∵x ∈[0,1 2], ∴πx =π3,∴x =1 3 . 令2x -1=12,∴x =34,∴x A =13,x B =34 . 根据对称性可知直线y =12与曲线另外两个交点的横坐标为x C =-34,x D =-1 3. ∵f (x -1)≤12,则在直线y =1 2上及其下方的图象满足, ∴13≤x -1≤34或-34≤x -1≤-1 3, ∴43≤x ≤74或14≤x ≤23 . 思维升华 函数零点(即方程的根)的确定问题,常见的有①函数零点值大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标或有几个交点的确定.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是方程两端对应的函数类型不同

高考数学-平面向量专题复习

平面向量 【考点例题解析】 考点1.共线定理应用 例一:平面向量→ →b a ,共线的充要条件是( ) A.→ →b a ,方向相同 B. → →b a ,两向量中至少有一个为零向量 C.存在,R ∈λ→ → =a b λ D.存在不全为零的实数0,,2121=+→ → b a λλλλ 变式一:对于非零向量→ →b a ,,“→→ →=+0b a ”是“→ →b a //”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件 变式二:设→ →b a ,是两个非零向量( ) A.若→ → → → =+b a b a _则→→ ⊥b a B. 若→→⊥b a ,则→→→→=+b a b a _ C. 若→ →→→=+b a b a _,则存在实数λ,使得 → → =a b λ D 若存在实数λ,使得→ → =a b λ,则→ → → → =+b a b a _ 例二:设两个非零向量→ → 21e e 与,不共线, (1)如果三点共线;求证:D C A e e CD e e BC e e AB ,,,28,23,212121--=+=-= (2)如果三点共线, 且D C A e k e CD e e BC e e AB ,,,2,32,212121-=-=+=求实数k 的值。

变式一:设→ →21e e 与两个不共线向量,,2,3,2212121e e e e e k e -=+=+=若三点A,B,D 共线,求实数 k 的值。 变式二:已知向量→ →b a ,,且,27,25,2+=+-=+=则一定共线的三点是( ) A.A,B,D B.A,B,C C.B,C,D D.A,C,D 考点2.线段定比分点的向量形式在向量线性表示中的应用 例一:设P 是三角形ABC 所在平面内的一点,,2BA BC BP += 则( ) A. PB PA +=0 B. PA PC +=0 C. PC PB +=0 D. PB PA PC ++=0 变式一:已知O 是三角形ABC 所在平面内一点,D 为BC 边的中点,且OC OB OA ++=20,那么( )A. OD A =0 B. OD A 20= C. OD A 30= D. OD A =02 变式二:在平行四边形ABCD 中a AB =,b AD =,NC AN 3=,M 为BC 的中点,则=MN ( 用b a ,表示) 例二:在三角形ABC 中,c AB =,b AC =,若点D 满足DC BD 2=,则=AD ( ) A. ,3132+ B. ,3235- C. ,3132- D. ,3 2 31+

高考数学二轮专题复习 数学思想方法

高考数学二轮专题复习 数学思想方法 【考纲解读】 1.熟练掌握函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想. 2.能够对所学知识进行分类或归纳,能应用数学思想方法分析和解决问题,系统地把握知识间的内在联系. 【考点预测】 1.函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点,也是高考的一个热点。对函数试题的设计仍然会围绕几个基本初等函数和函数的性质、图象、应用考查函数知识;与方程、不等式、解析几何等内容相结合,考查函数知识的综合应用;在函数知识考查的同时,加强对函数方程、分类讨论、数形结合、等价转化等数学思想方法的考查。 2.预测在今年的高考中,数形结合与分类讨论思想仍是考查的一个热点,数形结合的考查方式常以数学式、数学概念的几何意义、函数图象、解析几何等为载体综合考查,分类讨论思想的考查重点为含有参数的函数性质问题、与等比数列的前n 项和有关的计算推证问题、直线与圆锥曲线的位置关系不定问题等。 3.预测在今年的高考中,运用化归与转化思想解题的途径主要有:借助函数、方程(组)、辅助命题、等价变换、特殊的式与数的结构、几何特征进行转化,其方法有:正反转化、数形转化、语义转化、等与不等、抽象问题与具体问题化归,一般问题与特殊问题化归,正向思维与逆向思维化归。 【要点梳理】 1.函数与方程思想:我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n 项和的公式,都可以看成n 的函数,数列问题也可以用函数方法解决。 2.数形结合的思想:是解答高考数学试题的一种常用方法与技巧,特别是在解选择与填空题时发挥着奇特功效.具体操作时,应注意以下几点:(1)准确画图,注意函数的定义域;(2)用图象法讨论方程的解的个数. 3.与分类讨论有关的知识点有:直线的斜率分为存在和不存在两种情形、等比数列中的公比1q =和1q ≠、由参数的变化引起的分类讨论、由图形的不确定性引起的分类讨论、指对函数的底数a 分为1a >和01a <<两种情形等。分类的原则是:不重复、不遗漏、分层次讨论。分类讨论的一般流程是:明确讨论的对象、选择分类的标准、逐类进行讨论、归纳整合。 4.转化与化归常用的方法有:直接转化法、换元法、数形结合法、构造法、坐标法、类比法、特殊化方法等。 【考点在线】 考点一 函数与方程思想 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f -1 (x)的单调性、 奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐

高中数学平面向量知识点总结[1]

高中数学必修4之平面向量 知识点归纳 一.向量的基本概念与基本运算 1向量的概念: ①向量:既有大小又有方向的量向量一般用c b a ,,……来表示,或用有向线段的起点与终 点的大写字母表示,如:AB 几何表示法 AB ,a ;坐标表示法),(y x yj xi a =+= 向 量的大小即向量的模(长度),记作|AB |即向量的大小,记作|a | 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行零向量a =0 ?| a |= 由于0 的方向是任意的,且规定0 平行于任何向量,故在有关向量平行(共线) 的问题中务必看清楚是否有“非零向量”这个条件.(注意与0的区别) ③单位向量:模为1个单位长度的向量 向量0a 为单位向量?|0a |=1 ④平行向量(共线向量):方向相同或相反的非零向量任意一组平行向量都可以移到同一直 线上方向相同或相反的向量,称为平行向量记作a ∥b (即 自由向量),平行向量总可以平移到同一直线上,故平行向量也称为共线向量 数学中研究的向量是自由向量,只有大小、方向两个要素,起点可以任意选取,现在必 须区分清楚共线向量中的“共线”与几何中的“共线”、的含义,要理解好平行向量中的“平行”与几何中的“平行”是不一样的. ⑤相等向量:长度相等且方向相同的向量相等向量经过平移后总可以重合,记为b a =大 小相等,方向相同 ),(),(2211y x y x =???==?2 12 1y y x x 2向量加法 求两个向量和的运算叫做向量的加法 设,AB a BC b == ,则a +b =AB BC + =A C (1)a a a =+=+00;(2)向量加法满足交换律与结合律; 向量加法有“三角形法则”与“平行四边形法则”: (1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点 当两个向量的起点公共时,用平行四边形法则;当两向量是首尾连接时,用三角形法

高中高考数学专题复习平面向量含试题与详细解答

高中高考数学专题复习平面向量含试题与详细解答 1.平面上有一个△ABC 和一点O ,设OA a =,OB b =,OC c =,又OA 、BC 的中点分别为D 、E ,则向量DE 等于( ) A. () 12a b c ++ B. () 1 2a b c -++ C. ( ) 12a b c -+ D. () 1 2 a b c +- 2.在平行四边形ABCD 中,E 、F 分别是CD 和BC 的中点,若AF AE AC μλ+=,其中R ∈μλ,,则μλ+的值是 A . 34 B .1 C . 32 D. 3 1 3.若四边形ABCD 是正方形,E 是CD 的中点,且AB a =,AD b =,则BE = A.12b a + B.12a b + C.12b a - D.1 2 a b - 4.在平面内,已知31==,0=?OB OA , 30=∠AOC ,设 n m +=, (,R m n ∈),则n m 等于 A . B .3± C .1 3± D .3 ± 5.在等腰Rt ABC △中,90A ∠=,(1,2),(,)(0)AB AC m n n ==>,则BC = ( ) A .(-3,-1) B .(-3,1) C .(3,1)- D .(3,1) 6.已知,,A B C 三点共线,且(3,6)A -,(5,2)B -,若C 点横坐标为6,则C 点 的纵坐标为( ). A .13- B .9 C .9- D .13 7.设a 、b 、c 是非零向量,则下列说法中正确..是 A .()()a b c c b a ??=?? B. a b a b -≤+ C .若a b a c ?=?,则b c = D .若//,//a b a c ,则//b c 8.设四边形ABCD 中,有DC =2 1 ,且||=|BC |,则这个四边形是 A.平行四边形 B.等腰梯形 C. 矩形 D.菱形 9.已知()()0,1,2,3-=-=,向量+λ与2-垂直,则实数λ的值为( ). A.17- B.17 C.1 6 - D.16

2020高考数学第二轮专题复习:专题二

专题二 万能答题模板——助你解题得高分 数学解答题题型解读 数学解答题是高考数学试卷中的一类重要题型,通常是高考的把关题和压轴题,具有较好的区分层次和选拔功能.目前的高考解答题已经由单纯的知识综合型转化为知识、方法和能力的综合型解答题.要求考生具有一定的创新意识和创新能力等特点,解答题综合考查运算能力、逻辑思维能力、空间想象能力和分析问题、解决问题的能力. 针对不少同学答题格式不规范,出现“会而不对,对而不全”的问题,规范每种题型的万能答题模板,按照规范的解题程序和答题格式分步解答,实现答题步骤的最优化. 万能答题模板以数学方法为载体,清晰梳理解题思路,完美展现解题程序,把所有零散的解题方法与技巧整合到不同的模块中,再把所有的题目归纳到不同的答题模板中,真正做到题题有方法,道道有模板,使学生从题海中上岸,知点通面,在高考中处于不败之地,解题得高分. 模板1 三角函数的性质问题 例1 已知函数f (x )=cos 2????x +π12,g (x )=1+1 2 sin 2x . (1)设x =x 0是函数y =f (x )图象的一条对称轴,求g (x 0)的值; (2)求函数h (x )=f (x )+g (x )的单调递增区间. 审题破题 (1)由x =x 0是y =f (x )的对称轴可得g (x 0)取到f (x )的最值;(2)将h (x )化成y =A sin(ωx +φ)的形式. 解 (1)f (x )=12? ???1+cos ????2x +π6, 因为x =x 0是函数y =f (x )图象的一条对称轴, 所以2x 0+π 6=k π (k ∈Z ), 即2x 0=k π-π 6 (k ∈Z ). 所以g (x 0)=1+12sin 2x 0=1+1 2sin ????k π-π6,k ∈Z . 当k 为偶数时,g (x 0)=1+12sin ????-π6=1-14=34. 当k 为奇数时,g (x 0)=1+12sin π6=1+14=5 4. (2)h (x )=f (x )+g (x ) =12[1+cos ????2x +π6]+1+1 2 sin 2x

高考数学二轮专题复习三角函数

高考数学二轮专题复习 三角函数 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

三 角函数 【考纲解读】 1.了解任意角的概念,了解弧度制的概念,能实行弧度与角度的互化;理解任意角的三角函数(正弦、余弦、正切)的定义. 2.能利用单位圆中的三角函数线推导出 2 πα±,πα±的正弦、余弦、正切的诱 导公式;理解同角的三角函数的基本关系式:sin 2x+cos 2x=1, sin tan cos x x x =. 3.能画出y=sinx,y=cosx,y=tanx 的图象,了解三角函数的周期性;2.理解正弦函数,余弦函数在区间[0,2π]上的性质(如单调性,最大值和最小值以及与x 轴的交点等),理解正切函数在区间(- 2π,2 π )内的单调性. 4.了解函数sin()y A x ω?=+的物理意义;能画出sin()y A x ω?=+的图象,了解 ,,A ω?对函数图象变化的影响. 5.会用向量的数量积推导两角差的余弦公式;能利用两角差的余弦公式导出两角和与差的正弦、余弦和正切公式,了解它们的内在联系. 6.能利用两角差的余弦公式导出二倍角的正弦、余弦、正切公式,了解它们的内在联系;能使用上述公式实行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【考点预测】 从近几年高考试题来看,对三角函数的考查:一是以选择填空的形式考查三角函数的性质及公式的应用,一般占两个小题;二是以解答题的形式综合考查三角恒等变换、sin()y A x ω?=+的性质、三角函数与向量等其他知识综合及三角函数为背景的实际问题等.

重点高中数学平面向量知识点总结

重点高中数学平面向量知识点总结

————————————————————————————————作者:————————————————————————————————日期:

平面向量知识点总结 第一部分:向量的概念与加减运算,向量与实数的积的运算。 一.向量的概念: 1. 向量:向量是既有大小又有方向的量叫向量。 2. 向量的表示方法: (1)几何表示法:点—射线 有向线段——具有一定方向的线段 有向线段的三要素:起点、方向、长度 记作(注意起讫) (2)字母表示法:AB 可表示为a 3.模的概念:向量AB 的大小——长度称为向量的模。 记作:|AB | 模是可以比较大小的 4.两个特殊的向量: 1?零向量——长度(模)为0的向量,记作0。0的方向是任意的。 注意0与0的区别 2?单位向量——长度(模)为1个单位长度的向量叫做单位向量。 二.向量间的关系: 1.平行向量:方向相同或相反的非零向量叫做平行向量。 记作:a ∥b ∥c 规定:0与任一向量平行 2. 相等向量:长度相等且方向相同的向量叫做相等向量。 记作:a =b 规定:0=0 任两相等的非零向量都可用一有向线段表示,与起点无关。 3. 共线向量:任一组平行向量都可移到同一条直线上 , 所以平行向量也叫共线向量。 三.向量的加法: 1.定义:求两个向量的和的运算,叫做向量的加法。 注意:;两个向量的和仍旧是向量(简称和向量) 2.三角形法则: 强调: a b c a + A A A B B B C C C a + a + a a b b b a a

1?“向量平移”(自由向量):使前一个向量的终点为后一个向量的起点 2?可以推广到n 个向量连加 3?a a a =+=+00 4?不共线向量都可以采用这种法则——三角形法则 3.加法的交换律和平行四边形法则 1?向量加法的平行四边形法则(三角形法则): 2?向量加法的交换律:a +b =b +a 3?向量加法的结合律:(a +b ) +c =a + (b +c ) 4.向量加法作图:两个向量相加的和向量,箭头是由始向量始端指向终向量末端。 四.向量的减法: 1.用“相反向量”定义向量的减法 1?“相反向量”的定义:与a 长度相同、方向相反的向量。记作 -a 2?规定:零向量的相反向量仍是零向量。-(-a ) = a 任一向量与它的相反向量的和是零向量。a + (-a ) = 0 如果a 、b 互为相反向量,则a = -b , b = -a , a + b = 0 3?向量减法的定义:向量a 加上的b 相反向量,叫做a 与b 的差。 即:a - b = a + (-b ) 求两个向量差的运算叫做向量的减法。 2.用加法的逆运算定义向量的减法: 向量的减法是向量加法的逆运算: 若b + x = a ,则x 叫做a 与b 的差,记作a - b 3.向量减法做图:AB 表示a - b 。强调:差向量“箭头”指向被减数 总结:1?向量的概念:定义、表示法、模、零向量、单位向量、平行向量、 相等向量、共线向量 2?向量的加法与减法:定义、三角形法则、平行四边形法则、运算定律 五:实数与向量的积(强调:“模”与“方向”两点) 1.实数与向量的积 实数λ与向量a ρ的积,记作:λa ρ 定义:实数λ与向量a ρ的积是一个向量,记作:λa ρ 1?|λa ρ|=|λ||a ρ | 2?λ>0时λa ρ与a ρ方向相同;λ<0时λa ρ与a ρ方向相反;λ=0时λa ρ =0 2.运算定律:结合律:λ(μa ρ)=(λμ)a ρ ① 第一分配律:(λ+μ)a ρ=λa ρ+μa ρ ② 第二分配律:λ(a ρ+b ρ)=λa ρ +λb ρ ③ 3.向量共线充要条件:

高二数学向量知识点总结

高二数学向量知识点总结 高二数学向量知识点总结(一) 考点一:向量的概念、向量的基本定理 【内容解读】了解向量的实际背景,掌握向量、零向量、平行向量、共线向量、单位向量、相等向量等概念,理解向量的几何表示,掌握平面向量的基本定理。 注意对向量概念的理解,向量是能够自由移动的,平移后所得向量与原向量相同;两个向量无法比较大小,它们的模可比较大小。 考点二:向量的运算 【内容解读】向量的运算要求掌握向量的加减法运算,会用平行四边形法则、三角形法则实行向量的加减运算;掌握实数与向量的积运算,理解两个向量共线的含义,会判断两个向量的平行关系;掌握向量的数量积的运算,体会平面向量的数量积与向量投影的关系,并理解其几何意义,掌握数量积的坐标表达式,会实行平面向量积的运算,能使用数量积表示两个向量的夹角,会用向量积判断两个平面向量的垂直关系。 【命题规律】命题形式主要以选择、填空题型出现,难度不大,考查重点为模和向量夹角的定义、夹角公式、向量的坐标运算,有时也会与其它内容相结合。 考点三:定比分点 【内容解读】掌握线段的定比分点和中点坐标公式,并能熟练应用,求点分有向线段所成比时,可借助图形来协助理解。 【命题规律】重点考查定义和公式,主要以选择题或填空题型出现,难度一般。因为向量应用的广泛性,经常也会与三角函数,解析

几何一并考查,若出现在解答题中,难度以中档题为主,偶尔也以难 度略高的题目。 考点四:向量与三角函数的综合问题 【内容解读】向量与三角函数的综合问题是高考经常出现的问题,考查了向量的知识,三角函数的知识,达到了高考中试题的覆盖面的 要求。 【命题规律】命题以三角函数作为坐标,以向量的坐标运算或向 量与解三角形的内容相结合,也有向量与三角函数图象平移结合的问题,属中档偏易题。 考点五:平面向量与函数问题的交汇 【内容解读】平面向量与函数交汇的问题,主要是向量与二次函 数结合的问题为主,要注意自变量的取值范围。 【命题规律】命题多以解答题为主,属中档题。 考点六:平面向量在平面几何中的应用 【内容解读】向量的坐标表示实际上就是向量的代数表示.在引入 向量的坐标表示后,使向量之间的运算代数化,这样就能够将“形” 和“数”紧密地结合在一起.所以,很多平面几何问题中较难解决的问题,都能够转化为大家熟悉的代数运算的论证.也就是把平面几何图形 放到适当的坐标系中,赋予几何图形相关点与平面向量具体的坐标, 这样将相关平面几何问题转化为相对应的代数运算和向量运算,从而 使问题得到解决. 【命题规律】命题多以解答题为主,属中等偏难的试题。 高二数学向量知识点总结(二) 平面向量 戴氏航天学校老师总结加法与减法的代数运算:

相关文档
相关文档 最新文档