文档库 最新最全的文档下载
当前位置:文档库 › 基于PLC速恒压供水系统的设计

基于PLC速恒压供水系统的设计

基于PLC速恒压供水系统的设计
基于PLC速恒压供水系统的设计

摘要

随社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高,再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然趋势。

本设计是针对居民生活用水/消防用水而设计的。由变频器、PLC及PID调节器组成控制系统,调节水泵的输出流量。电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组之间的切换及速度,使系统运行在最合理的状态,保证按需供水。

本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。在经过PID运算,通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳定,结构简单,工作可靠等优点。

关键词:变频调速;恒压供水;PID调节;PLC

Constant Pressure Water Supply System

Instructor:Wang xin

Tutor:Zhou hongfa With the rapid development of social economy, it demands the better of water supply' s quality and reliability of water supply system. Meanwhile energy resources are seriously lack. So it is inevitable tendency to design water supply system which has high function and saves on energy well, with help of advanced technique of automation, control and communication. At the same time this system can adapt different water supply fields.

It is very important of the Water Supply System in Constant Pressure for the water supply in industrial and citizen existence. It is consist of the variable frequency and speed regulation, PLC, PID control system for the control system. It controls the outcome of the pumps. The generator pumps are consist of parallel three pumps, and the power come from variable frequency and speed regulation or power grid. According to the water supply of constant pressure’s outcome water press and flux, the control system control the variable frequency and speed regulation, parallel pumps’ speed and cut over, cause the system move in the best rational situation, assure according to wants supply water. This design has many merits such as save energy.

In this paper, the control principle of VVVF providing-water system is introduced, PLC is used to carry on logic control and invertered to modulate pressure.Through PID control principle. We realize Closed-loop control in VVVF Providing-water System. The result indicates that the system has the stable pressure, simple structure, and reliable work.

Keywords:variable frequency and speed regulation;water supply of constant pressure;PID control system;PLC

目录

1 绪论 (1)

1.1变频恒压供水产生的背景和意义 (1)

1.2变频恒压供水系统的国内研究现状 (2)

1.3课题来源及本文的主要研究内容 (4)

2 恒压供水系统的基本构成 (5)

3变频器和压力传感器 (7)

3.1 变频器的基本结构 (7)

3.2 变频器的分类及工作原理 (9)

3.3 变频器的操作方式及使用 (9)

3.4 变频器硬件选择 (10)

3.5 压力传感器 (11)

4PLC选择及应用 (13)

4.1P L C在恒压供水泵站中的主要任务……………….…….…………………………...1 3 4.2P L C模拟量扩展单元的配置及应用……………………..…………………………...1 3

4.2.1 模拟量输入模块的功能及与PLC系统的连接 (13)

4.2.2 模拟量输入模块缓冲存储器(BFM)的分配…….….………………………...

1 4

4.2.3模拟量输出模块的功能及P L C系统连接 (15)

4.2.4 模拟量输出模块的偏置、增益及分配 (16)

5 系统的设计 (18)

5.1 系统要求 (18)

5.2控制系统的I/O及地址分配 (18)

5.3 PLC系统选型 (18)

5.4 电气控制系统原理图 (19)

5.4.1 主电路图 (20)

5.4.2 控制电路图 (21)

5.5 系统程序设计 (21)

5.5.1由“恒压”要求出发的工作泵组数量管理……………………………......…...…2 1

5.5.2 多泵组泵站泵组管理规范 (21)

5.5.3 系统流程图设计 (23)

5.5.4 程序的结构及程序功能的实现 (24)

5.5.5 系统的运行分析 (24)

致谢 (27)

参考文献 (28)

附录 (29)

1 绪论

随着社会经济的迅速发展,水对人民生活与工业生产的影响日益加强,人民对供水的质量和供水系统可靠性的要求不断提高。把先进的自动化技术、控制技术、通讯及网络技术等应用到供水领域,成为对供水系统的新要求。

变频恒压供水系统集变频技术、电气技术、现代控制技术于一体。采用该系统进行供水可以提高供水系统的稳定性和可靠性,方便地实现供水系统的集中管理与监控;同时系统具有良好的节能效果,这在能量日益紧缺的今天尤为重要,所以研究设计该系统,对于提高企业效率以及人民的生活水平、降低能耗等方面具有重要的现实意义。

1.1变频恒压供水产生的背景和意义

众所周知,水是生产生活中不可缺少的重要组成部分,在节水节能已成为时代特征的现实条件下,我们这个水资源和电能短缺的国家,长期以来在市政供水、高层建筑供水、工业生产循环供水等方面技术一直比较落后,自动化程度低。主要表现在用水高峰期,水的供给量常常低于需求量,出现水压降低供不应求的现象,而在用水低峰期,水的供给量常常高于需求量,出现水压升高供过于求的情况,此时将会造成能量的浪费,同时有可能使水管爆破和用水设备的损坏。在恒压供水技术出现以前,出现过许多供水方式。以下就逐一分析。

1、一台恒速泵直接供水系统

这种供水方式,水泵从蓄水池中抽水加压直接送往用户,有的甚至连蓄水池也没有,直接从城市公用水网中抽水,严重影响城市公用管网压力的稳定。这种供水方式,水泵整日不停运转,有的可能在夜间用水低谷时段停止运行。这种系统形式简单、造价最低,但耗电、耗水严重,水压不稳,供水质量极差。

2、恒速泵加水塔的供水方式

这种方式是水泵先向水塔供水,再由水塔向用户供水。水塔的合理高度是要求水塔最低水位略高于供水系统所需要压力。水塔注满后水泵停止,水塔水位低于某一位置时再启动水泵。水泵处于断续工作状态中。这种供水方式,水泵工作在额定流量额定扬程的条件下,水泵处于高效区。这种方式显然比前一种节电,其节电率与水塔容量、水泵额定流量、用水不均匀系数、水泵的开、停时间比、开、停频率等有关。供水压力比较

稳定。但这种供水方式基建设备投资最大,占地面积也最大;水压不可调,不能兼顾近期与远期的需要;而且系统水压不能随系统所需流量和系统所需要压力下降而下降,故还存在一些能量损失和二次污染问题。而且在使用过程中,如果该系统水塔的水位监控装置损坏的话,水泵不能进行自动的开、停,这样水泵的开、停,将完全由人操作,这时将会出现能量的严重浪费和供水质量的严重下降。

3、恒速泵加高位水箱的供水方式

这种方式原理与水塔是相同的,只是水箱设在建筑物的顶层。高层建筑还可分层设立水箱。占地面积与设备投资都有所减少,但这对建筑物的造价与设计都有影响,同时水箱受建筑物的限制,容积不能过大,所以供水范围较小。一些动物甚至人都可能进入水箱污染水质。水箱的水位监控装置也容易损坏,这样系统的开、停,将完全由人操作,使系统的供水质量下降能耗增加。

4、恒速泵加气压罐供水方式

这种方式是利用封闭的气压罐代替高位水箱蓄水,通过监测罐内压力来控制泵的开、停。罐的占地面积与水塔水箱供水方式相比较小,而且可以放在地上,设备的成本比水塔要低得多。而且气压罐是密封的,所以大大减少了水质因异物进入而被污染的可能性。但气压罐供水方式也存在着许多缺点。气压罐方式依靠压力罐中的压缩空气送水,气压罐配套水泵运行时,水泵在额定转速、额定流量的条件下工作。当系统所需水量下降时,供水压力将超出系统所需要的压力从而造成能量的浪费。同时水泵是工频率启动,且启动频繁,又会造成一定的能耗。频繁启动会造成系统的不稳定性。

5、变频调速供水方式

这种系统的原理是通过安装在系统中的压力传感器将系统压力信号与设定压力值作比较,再通过控制器调节变频器的输出,无级调节水泵转速。使系统水压无论流量如何变化始终稳定在一定的范围内。

变频调速式供水系统具有节约能源、节省钢材、节省占地、节省投资、调节能力大、运行稳定可靠的优势,具有广阔的应用前景和明显的经济效益与社会效益。

1.2变频恒压供水系统的国内研究现状

变频恒压供水是在变频调速技术的发展之后逐渐发展起来的。在早期,由于国外生产的变频器的功能主要限定在频率控制、升降速控制、正反转控制、起制动控制、压频

比控制及各种保护功能。应用在变频恒压供水系统中,变频器仅作为执行机构,为了满足供水量大小需求不同时,保证管网压力恒定,需在变频器外部提供压力控制器和压力传感器,对压力进行闭环控制。

从查阅的资料的情况来看,国外的恒压供水工程在设计时都采用一台变频器只带一台水泵机组的方式,几乎没有用一台变频器拖动多台水泵机组运行的情况,因而投资成本高。随着变频技术的发展和变频恒压供水系统的稳定性、可靠性以及自动化程度高等方面的优点以及显著的节能效果被大家发现和认可后,国外许多生产变频器的厂家开始重视并推出具有恒压供水功能的变频器,像日本Samc 公司,就推出了恒压供水基板,备有“变频泵固定方式”,“变频泵循环方式”两种模式。它将PID调节器和PLC可编程控制器等硬件集成在变频器控制基板上,通过设置指令代码实现PLC和PID等电控系统的功能,只要搭载配套的恒压供水单元,便可直接控制多个内置的电磁接触器工作,可构成最多7台电机(泵)的供水系统。这类设备虽微化了电路结构,降低了设备成本,但其输出接口的扩展功能缺乏灵活性,系统的动态性能和稳定性不高,与别的监控系统(如BA系统)和组态软件难以实现数据通信,并且限制了带负载的容量,因此在实际使用时其范围将会受到限制。

目前国内有不少公司在做变频恒压供水的工程,大多采用国外的变频器控制水泵的转速,水管管网压力的闭环调节及多台水泵的循环控制,有的采用可编程控制器(PLC)及相应的软件予以实现;有的采用单片机及相应的软件予以实现。但在系统的动态性能、稳定性能、抗扰性能以及开放性等多方面的综合技术指标来说,还远远没能达到所有用户的要求。艾默生电气公司和成都希望集团(森兰变频器)也推出恒压供水专用变频器(5.5kW-22kW),无需外接PLC和PID调节器,可完成最多4台水泵的循环切换、定时起、停和定时循环。该变频器将压力闭环调节与循环逻辑控制功能集成在变频器内部实现,但其输出接口限制了带负载容量,同时操作不方便且不具有数据通信功能,因此只适用于小容量,控制要求不高的供水场所。

可以看出,目前在国内外变频调速恒压供水控制系统的研究设计中,对于能适应不同的用水场合,结合现代控制技术、网络和通讯技术同时兼顾系统的电磁兼容性(EMC),的变频恒压供水系统的研究还不够。因此,有待于进一步研究改善变频恒压供水系统的性能,使其能被更好的应用于生活、生产实践。

1.3课题来源及本文的主要研究内容

1、课题来源

本课题来源于生产、生活供水的实际应用。

2、研究的主要内容

本系统是三泵生活/消防双恒压供水系统,变频恒压供水系统主要由变频器、可编程控制器、压力传感器组成。本文研究的目标是对恒压控制技术给予提升,使系统的稳定性和节能效果进一步提高,操作更加简捷,故障报警及时迅速,同时具有开放的数据传输。该系统可以生活供水和消防供水的双用供水系统。

根据系统要求,设计出满足要求的恒压供水系统,对PLC、变频器、压力传感器进行选型,根据系统要求设计出能满足控制要求的控制电路和控制程序。本文包括以下几个部分:

(1) 恒压供水系统的基本构成

(2) 分析变频恒压供水系统的组成

(3) 研究PID控制器的设计原理及方法。

(4) 设计变频恒压供水系统的硬件和软件。

2 恒压供水系统的基本构成

恒压供水泵站一般需设多台水泵电机,这比设单台水泵及电机节能而可靠。配单台电机及水泵时,它们的功率必须足够的大,在用水量少时开一台大电机肯定是浪费的。电机选小了用水量大时供水会不足。而且水泵与电机都有维修的时候,备用泵是必要的。恒压供水的主要目标是保持管网水压的恒定,水泵电机的转速要跟随用水量的变化而变化,这就要用变频器为水泵电机供电。这也有两种配置方案,一是为每台水泵电机配一台变频器,这当然方便,电机与变频器间不须切换,但购买变频器的费用较高。另一种方案是数台电机配一台变频器,变频器与电机间可以切换,供水运行时,一台水泵变频运行。其余水泵工频运行,以满足不同用水量的需求。

图2-1为恒压供水系统构成示意图。图中压力传感器用于检测管网中的水压,常装设在泵站的出水口。当用水量大时,水压降低,用水量小时,水压升高。水压传感器将水压转变为电流或电压的送给调节器。

图2-1 恒压供水系统示意图

调节器是一种电子装置,在系统中完成以下几种功能:

(1) 设定水管压力的给定值。恒压供水水压的高低依需要设定。供水距离越远,用水地点越高,系统所需供水压力越大。给定值即是系统正常工作时的恒压值。另外有些供水系统可能有多种用水目的,如将生活用水与消防用水共用一个泵站,水压的设定值可能不止一个,一般消防用水的水压要高一些。大部分调节器用数字量进行设定,也有的调节器以模拟量方式设定。

(2) 接收传感器送来的管网水压的实测值。管网实测水压回送到泵站控制装置成为反P L C 送水 消防 生活 变频器 工频/变频切换电路 1号泵 2号泵 3号泵 压力罐

压力传感器 调节器

馈,调节器是反馈的接收点。

(3) 根据结定值与实测值的综合,依一定的调节规律发出系统调节信号。调节器接收了水压的实测反馈信号后,将它与结定值比较,得到给定值与实测值之差。如给定位大于实际值,说明系统水压低于理想水压,要加大水泵电机的转速.如水压高于理想水压,要降低水泵电机的转速。这些都由调节器的输出信号控制。为了实现调节的快速性与系统的稳定性,调节器工作中还有个调节规律问题,传统调节器的调节规律多是比例-积分-微分调节,俗称PID调节器。调节器的调节参数,如P、I、D参数均是可以由使用者设定的。PID调节过程视调节器的内部构成有数字式调节及模拟量调节两类,以微计算机为核心的调节器多为数字式调节。

调节器的输出信号一船是模拟信号,4~20mA变化的电流信号或0~10V间变化的电压信号。信号的量值与前边提到的差值成比例,用于驱动执行设备工作。在变频恒压供水系统中,执行设备就是变频器。

3 变频器和压力传感器

众所周知,从发电厂送出的交流电的频率是恒定不变的,在我国是50Hz 。而交流电动机的同步转速。

P

f N 1160= 式中1N ---同步转速,r/min ;

1f ---定子频率,Hz ;

P ---电机的磁极对数。

而异步电动机转速:

)1(60)1(11s P

f s N N -=-= 式中s ---异步电机转差率,

11/)(N N N s -=,一般小于3%。

均与送入电机的电流频率与电机的转速成正比例或接近于正比例。因而,改变频率可以方便地改变电机的运行速度。

3.1 变频器的基本结构

变频器分为交-交和交-直-交两种形式。交-交变频器可将工频交流电直接变换成频率、电压均可控制的交流电,称为直接式变频器。而交-直-交变频器则是先把工频交流电通过整流变成直流电。然后再把直流电变换成频率、电压均可控制的交流电.又称间接式变频器。市售通用变频器多是交-直-交变频器,其基本结构图如图3-1所示,

由主回路,包括整流器、中间直流环节、逆变器和控制回路组成,现将各部分的功能分述如下:

(1) 整流器。电网侧的变流器是整流器,它的作用是把三相(也可以是单相)交流整

控制指令 中间直流环节 AC

控制指令 控制指令 网侧变流器

整流器

逆变器 AC M 运行指令 流成直流。

图3-1 交-直-交变频器的基本结构

(2) 直流中间电路。直流中间电路的作用是对整流电路的输出进行平滑,以保证逆变电路及控制电源得到质量较高的直流电源。由于逆变器的负载多为异步电动机,属于感性负载。

(3) 逆变器。负载侧的变流器为逆变器。逆变器的主要作用是在控制电路的控制下将直流平滑输出电路的直流电源转换为频率及电压都可以任意调节的交流电源。

(4) 控制电路。变频器的控制电路包括主控制电路、信号检测电路、门极驱动电路、外部接口电路及保护电路等几个部分。其主要任务是完成对逆变器的开关控制,对整流器的电压控制及完成各种保护功能。

电源 M~ 电动机 平 滑 电 容 + - M~ 电动机 平滑电感 电源 (a ) (b )

图3-2 电压型变频器和电流型变频器主电路基本结构

3.2 变频器的分类及工作原理

变频器的较详细的工作原理还与变频器的工作方式有关,通用变频器按工作方式分类如下:

U控制

(1)f

U控制即电压与频率成比例变化控制。由于通用变频器的负载主要是电动机,f

U控制由于忽略出于电动机磁场恒定的考虑,在变频的同时都要伴随着电压的调节。f

E控制。了电动机漏阻抗的作用,在低频段工作特性不理想。因而实际变频器中采用f U控制方式的变频器通常被称为普通功能变频器。

采用f

(2)转差频率控制

E控制基础上增加转差控制的一种控制方式。从电动机的转速转差频率控制是在f

角度看,这是一种以电动机的实际运行速度加上该速度下电动机的转差频率确定变频器

E=常数的条件下,通过对转差率的控制,的输出频率的控制方式。更重要的是,在f

可以实现对电机转矩的控制。采用转差频率控制的变频器通常属于多功能型变频器。(3)矢量控制

矢量控制是受调速性能优良的直流电动机的励磁电流和转矩电流可分别控制所启发而设计的一种控制方式。矢量控制将交流电动机的定子电流采用矢量分解的方法,计算出定子电流的磁场分量及转矩分量,并分别控制,从而大大提高了变频器对电动机转速及力矩控制的精度及性能。采用矢量控制的变频器通常称为高功能变频器。

通用变频器按工作方式分类的主要工程意义在于各类变频器对负载的适应性。普通功能型变频器适用于泵类负载及要求不高的反抗性负载,而高功能变频器可适用于位能性负载。

3.3 变频器的操作方式及使用

和PLC一样,变频器是一种可编程的电气设备。在变频器接入电路工作前,要根据通用变频器的实际应用修定变频器的功能码。功能码一般有数十甚至上百条,涉及

调速操作端口指定、频率变化范围、力矩控制、系统保护等各个方面。功能码在出厂时已按默认值存储。修订是为了使变频器的性能与实际工作任务更加匹配。

变频器与外界交换信息的接口很多,除了主电路的输入与输出接线端外,控制电路还设有许多输入输出端子,另有通信接口及一个操作面板,功能码的修订一般就通过操作面板完成。

变频器的输出频率控制有以下几种方式:

(1)操作面板控制方式。这是通过操作面板上的按钮手动设置输出频率的一种操作方式。

(2)外输入端子数字量频率选择操作方式。变频器常设有多段频率选择功能。各段频率值通过功能码设定,频率段的选择通过外部端子选择。变频器通常在控制端子中设置一些控制端,通常变频器都有三个端子X1、X2、X3,他们的7种组合课选定7种工作频率值。这些端子的接通组合可通过机外设备,如PLC控制实现。

(3)输入端子模拟量频率选择操作方式。为了方便与输出量为模拟电流或电压的调节器、控制器的连接,变频器还设有模拟量输入中的端,当接在这些端口上的电流或电压量在一定范围内平滑变化时,变频器的输出频率在一定范围内平滑变化。

3.4 变频器硬件选择

根据设计要求,变频器选用日本安川变频器CIMR-P5A45P5产品。下图3-3为日本安川变频器CIMR-P5A45P5在电路中的接线图。

R S T

S1 U

S2 V

S3 W

VVVF

FI

FC

M1 M2 M3 M4

接PLC

接PLC 接指示灯接电机

~380V

7

8

图3-3 日本安川变频器CIMR-P5A45P5在电路中的接线图该产品可以和三菱PLC工作协调。变频器选用日本安川变频器CIMR-P5A45P5产品,适配电机15 kW,该变频器基本配置中带有PID功能。通过变频器面板设定一个给定频率作为压力给定值,压力传感器反馈来的压力信号(0~10 V)接至变频器的辅助输入端FI、FC,作为压力反馈,变频器根据压力给定和实测压力,调节输出频率,改变水泵转速,控制管网压力保持在给定压力值上。M1、M2为变频器的极限输出频率的检测输出信号端,该信号进PLC,作为泵变频与工频切换的控制信息之一,变频器的极限输出频率通过面板可以设定。MA、MC为变频器发生故障的输出信号,该两端连接信号灯,以显示变频器故障,变频器面板上有故障复位按键,轻故障用复位按键复位,可重新启动变频器。S1和S2短接,并与S3连接到PLC的输出点上,由PLC控制变频器的运行与关断;U、V、W输出端并联三个接触器分别接M1、M2、M3水泵电机,变频器可分别驱动三台泵,另外这三台泵电机还通过另外三个接触器并联到工频电源上,这6个接触器线包连接到PLC的四个输出点上,由PLC控制其工频、变频切换工作,变频控制系统主回路如图6-2所示。。

通过变频器面板设定一个给定频率作为压力给定值(14端),压力传感器反馈来的压力信号(0~10V)接至变频器端子的7端、8端,作为压力反馈,变频器根据压力给定和实测压力,调节输出频率,改变水泵转速。变频器端子的19端和20端是传感器压力设定的上、下限值,该信号进PLC,作为工频切换的控制信息,由PLC控制水泵的工频或变频运行。

变频器有2个作用,一是作为电机的软起动装置,限制电动机的启动电流;二是改变异步电动机的转速,实现恒压供水。

3.5 压力传感器

在自动控制系统中检测环节是非常重要的一部分,它将检测到的控制量反馈回输入端,才能实现自动调节,本系统所用的检测的是水压,采用压力传感器,它通常安装在出水管网上,其功能是把出口压力信号变成4~20mA变化的电流信号或0~10V间变化的电压信号的标准信号送入PLC的端口进行PID调节,经运算与给定压力参数进行比较,得出一个调节参数,送给变频器,由变频器控制水泵的转速,调节系统供水量,使供水系统管网中的压力保持在给定压力上;当用水量超过一台泵的供水量时,通过PLC 控制切换器进行加减泵。根据用水量的大小由PLC控制工作泵数量的增减及变频器对

水泵的调速,实现恒压供水。当供水负载变化时,输入电机的电压和频率也随之变化,这样就构成了以设定压力为基准的闭环控制系统。此外,系统还设有多种保护功能,尤其是硬件/软件备用水泵功能,充分保证了水泵的及时维修和系统的正常供水。

供水系统的压强是gh ρ=P ,下面单位都是估计标准单位310=ρ,g=9.8,一般情况下,h<60米,所以本系统供水系统输出压力一般小于或等于0.6Mpa ,系统选用YTZ-150型带电接点式的压力传感器,其水压检测范围为0~1MPa ,检测精度为土0.01MPa ,该传感器将0~1MPa 范围的压力对应转换成0~10V 的电信号。该传感器还具有体积小,重量轻、结构简单、工作可靠等特点。

4 PLC选择及应用

4.1 PLC在恒压供水泵站中的主要任务

(1) 代替调节器实现水压给定值与反馈值的综合与调节工作,实现数字式PID调节一只传统调节器往往只能实现一路PID设置,用PLC作调节器可同时实现多路PID设置在多功能供水泵站的各类情况中PID参数可能不一样,使用PLC作数字式调节器就十分方便。

(2) 控制水泵的运行与切换。在多泵组恒压供水泵站中,为了使设备均匀地磨损,水泵及电机是轮换工作的。在设单一变频器的多泵组泵站中,如规定和变频器相连接的泵为主泵,主泵也是轮流担任的。主泵在运行时达到最高频率时。增加一台工频泵投入运行PLC则是泵组管理的执行设备。

(3) 变频器的驱动控制。恒压供水泵站中变频器常常采用模拟量控制方式,这需采PLC的模拟量控制模块,该模块的模拟量输入端接收传感器送来的模拟信号。输出端送出经给定值与反馈值比较并经PID处理后得出的模拟量控制信号,并依此信号的变化改变变频器的输出频率。

(4) 泵站的其他逻辑控制。除了泵组的运行管理工作外,泵站还有许多逻辑控制工作,如手动、自动操作转换,泵站的工作状态指示,泵站工作异常的报警,系统的自检等,这些都可以在PLC的控制程序中安排。

4.2 PLC模拟量扩展单元的配置及应用

PLC的普通输入输出端口均为开关量处理端口,为了使PLC能完成模拟量的处理,常见的方法是为整体式PLC加配模拟量扩展单元。模拟量扩展单元可将外部模拟量转换为PLC可处理的数字量及将PLC内部运算结果转换为机外所需的模拟量。模拟量扩展单元有单独用于模/数转换的,单独用于数/模转换的,也有兼具模/数及数/模两种功能的。

以下介绍三菱FX

N

2系列PLC的模拟量模块以及,它们分别具有FX

N

2

-4AD及FX

N

2

-2DA,

它们分别具有4路模拟量输入及2路模拟量输出,可以用于恒压供水控制中。

4.2.1 模拟量输入模块的功能及与PLC系统的连接

输入信号可以是-10~+10V的电压信号(分辨率为5Mv),也可以4~20mV(分辨

率为16μA)或-20~+20mA(分辨20μA)的电流信号。模拟量信号可通过双绞屏蔽电缆接入FX

N

2

-4AD 4模拟量输入模块具有4个通道同时接受处理4路模拟量输入信号,最大分辨率,连接及方法如图4-1所示,当使用电流输入时,需将V+及I+端接。

图4-1 FX

N

2

-4AD模块的连接方法

FX

N

2-4AD的宽及高与FX

N

2

相同,在安装时装在FX

N

2

基本单元的右边,将总线连

接器接入左侧单元的总线插孔中。FX系列可编程控制器中,与PLC连接的特殊功能扩展模块位置从左至右依次编号(扩展单元不占编号),如图4-2所示FX

N

2

-4AD将消耗基本单元或电源扩展单元的+5VDC电源(内部电源)30mA电流,+24VDC电源(外部电源)55mA电流。其通常转换速度为15ms/ 通道,高速转换速度为6/ms通道。

4.2.2 模拟量输入模块缓冲存储器(BFM)的分配

为了能适用于多种规格的输入、输出量,模拟量处理模块都设成可编程的。

FX

N

2-4AD模块利用缓冲存储器(简称模BFM)的设置完成编辑工作。FX

N

2

-4AD拟量量输

入模块共有32个缓冲存储器,但目前只使用了以下21个BFM:

FX

N

2-32MR A/D FX

N

2

-8EX A/D D/A FX

N

2

-8EYR

图4-2 特殊功能模块

24+ 地24- FG VI- I+ V+ FG VI- I+ V+

24VDC 电流输入4~20mA电压输入-10~+10V

(1)BFM#0。0号BFM用于通道的选择。4个通道的模拟输入信号范围用4位16进制数表示。具体地讲,16进制数字“0~3”分别表示“-10~+10V、4~20mA、-20~+20 mA 、通道关闭”。

(2)BFM#1~#4。1~4通道的采样次数(设定范围为1~4096),默认值为8。

(3)BFM#5~#8。1~4通道的采样平均值。

(4)BFM#9~#12。1~4通道的采样当前值。

(5)BFM#15。选择A/D转换的速度。若设为0,则为正常转换速度,即15ms/通道;若设为1,则为告诉转换速度,即6ms/通道。

(6)BFM#20。若将BFM#20设为1,则模块的所有设置都将复位成默认值。用它可以快速消除不希望的增益和偏置值。BFM#20的默认值为0。

(7)BFM#21。若BFM#21的b1、b0分别置为(1,0),则禁止调整增益和偏置;若BFM#21的b1、b0分别置为(0,1)(此为默认值),则可以改变增益和偏置的意义课可由图3-3说明,图中偏置为横轴上的截距,表示数字量输出为0是的模拟量输入值。增益为输出曲线的斜率,为数字输出+1000时的模拟量输入值。

(8)BFM#22。BFM#22为增益与偏置调整的指定单元。BFM#22的b0~b7由低到高两两为一组。通道的偏置及增益可分别调整。

( 9)BFM#23 BFM#24。BFM#23为偏置值与增益值存储单元,单位为mV,或μA。BFM#23(偏置)的,默认值为0,BFM#24(增益)的默认值5000。当BFM#22指定单元中的某些位置1时,偏置值及增益值会送入相应通道的增益和偏置寄存器中。

图4-3 FX

N

2-4AD 的偏置和增益

数字输出

+1000

0 4 20 模拟输入(mA)

(偏置值)(增益值)

(10)BFM#29中各位的状态是FX N 2-4AD 错误状态信息。其中,b0为,表示有错误;当b1为ON 时,表示存在偏置及增益错误;b2为ON 时表示存在电源故障;b3为ON 时,表示存在硬件错误等。

(11)BFM#30中存在的模块的识别码K2010。

4.2.3 模拟量输出模块的功能及PLC 系统连接

FX N 2-2DA 模块用来将12位数字信号转换成模拟电压或电流输出。它具有2个模拟量输出通道。这两个通道都可以输出0~10VDC(分辨率 2.5mV)、0~5DVC (分辨率

1.25mV )的电压信号,或4~20Ma(分辨率为4μA )的电流信号。模拟量输出可通过双绞屏蔽电缆与驱动负载相连,连接方法如所图4-4所示:

图4-4 FX N 2方法-2DA 模块的连接

图4-5模拟量输入模块FX N 2-4AD 的编程 FROM(78) K0 K30 D14 K1 CMP(10) K2010 D10 M10 M8002 TOP(79) K0 K0 H3311 K1

TOP(79) K0 K1 K6 K2 FROM(79) K0 K29 K4M20 K2 FROM(78) K0 K5 D0 K2 COM IOUT VOUT COM IOUT VOUT

元 FX N 2-2DA 记录仪器 电流输出 变频器等 电压输出

PLC控制的双恒压供水水泵站要点

课程设计说明书写作要求 1 引言(主要写课题设计的目的、设计内容及要实现的目标) 2 系统总体方案设计 2.1 系统硬件配置及组成原理(要有系统组成图) 2.2 系统变量定义及分配表 2.3 系统接线图设计 3 控制系统程序设计 3.1 控制程序流程图设计 3.2 控制系统的设计思路、程序设计等 3.3 创新设计内容 4 控制系统的上位机设计 4.1 人机界面选择 4.2 人机界面设计(通讯连接,变量设置,画面组态等) 5 系统调试及结果分析 5.1 PLC程序调试及解决的问题 5.2 PLC与上位机联调 5.3 结果分析 结束语(主要写取得的效果、创新点及设计意义) 参考文献 附录:带功能注释的源程序及一些主电路图和PLC的外部接线图。

基于PLC控制恒压供水的设计 ——水泵控制 学生:XXX指导教师:XXX 内容摘要:生活都离不开水。但如果水源离用水场所较远,就需要管路的输送。而将水送到较远或较高的地方,管路中是需要一定的水压的,水压高了,才能将水送到远的或较高的楼层。 产生水压的设备是水泵,水泵转动的越快,产生的水压越高。传统的维持管路的水压是建造水塔,水泵开的时候将水打到水塔中,水泵休息时,借助水塔继续供水。水塔中的水位变化相对水塔的高度来说很小,也就是说水塔能维持的供水管路中水压的基本恒定。 但是,建造水塔需要发费财力,水塔还会造成水的二次污染。那么,可不可以不借助水塔来实现恒压供水呢?当然可以,但是要解决水压随用水量的大小变化的问题。通常的办法是:用量大时,增加水泵的数量或提高水泵的转动速度以保持管网中的水压不变,用水量小时又需做出相反的调节。这就是恒压供水的基本思路。这在电机速度调节技术不发达的年代是不可设想的,但今天办到这一点已变得很容易了,交流变频器的诞生为水泵转速平滑联系调节提供了方便。交流变频器是改变交流电源频率的电力电子设备,输入三相工频交流点后,可以输出频率平滑变化的三相交流电。 鉴于社会的需求,设计一个由三台水泵组构成的生活、消防双恒压无塔供水泵站系统。 如图所示(一),市网自来水用高低水位控制器EQ来控制注水阀YV1,自动把水注满储水水池,只要水位低于高水位,则自动往水池注水,但是当水池的水位高于高水位上限时,延时一段时间后,由PLC发出信号,关闭注水阀YV1,等到水位低于高水位上限时,过一段时间后,再打开注水阀YV1继续注水(这种情况在处于消防状态时被关闭)。水池的高、低水位信号也直接送给PLC,作为高、低水位的报警。为了保证供水的连续性,水位上下限传感器高低距离较小。生活用水和消防用水共用三台水泵,平时电磁阀YV2处于关闭状态,生活管网处于接通状态,电磁阀YV3处于失电状态,关闭消防管网,三台水泵根据生活用水的多少,按一定的控制逻辑运行,维持生活用水低恒压。当有火灾发生时,电磁阀YV3得电,消防用水管路打开,并同时打开三台水泵供水,管路中的水压为消防用水的高恒压,生活用水管路没有关闭,生活用水的水压由减压阀控制。但是当管路中的水压低于消防用水的高恒压或水池水位已经达到水池低水位下限时,给电磁阀YV2通电,关闭生活用水的管路。火灾结束后,三台水泵改为为生活用水供水。

PLC控制恒压供水系统.docx

PLC 控制恒压供水系统 国家职业资格全省统一鉴定 维修电工技师 (国家职业资格二级) 所在省市:江苏省常州市 摘要:本设计是针对居民生活用水 /消防用水而设计的。由变 频器、 PLC 控制系统,调节水泵的输出流量。电动机泵组由三 台水泵并联而成,由变频器或工频电网供电,根据供水 系统出口水压和流量来控制变频器电动机泵组之间的切换 及速度,使系统运行在最合理的状态,保证按需供水。采用 PLC 控制的变频调速供水系统,由PLC 进行逻辑控制,由 变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳 定,结构简单,工作可靠操作方便等优点。

关 第一章概 述??????????????????????(1)1-1常的供水方式及恒 的??????????(1) 二、水的一般性原 ????????????????(1) 1-2PLC 、器控制的恒供水系方 案?????????(3) 二、方案特 点??????????????????????(3)四、型及目 的???????????????????(4) 硬件 ??????????????????????(6)二、器介 ?????????????????????(7)二、方 式??????????????????????(7)机速方案的比 ????????????????(9) 二、模供水系的

定?????????????????(10 ) 一、路介 ??????????????????????(11 )三、入出元件与 PLC 地址照 表????????????( 15) 程序????????????????????(17)???????????????????????? ?( 20) 致 ???????????????????????? ?( 21) 参考文 献???????????????????????( 22 )第一章概述 供水的一种典型方式是恒供水。恒供水使用器的速 功能通供水的水的速,以持供水始端力,使之保持相 的恒定,故又称恒供水。在供水以逐步渗透到各种行,品 种也从一的恒供水向多功能和高的、供水及能化控 制的方向展。 基于触摸屏和PLC 作控制器作速的恒供

恒压供水系统PLC控制系统的编程设计.

摘要 恒压供水系统设计内容包含了硬件接线图的设计、可编程控制器S7-300的程序编写和WinCC与S7-300的通讯等。 S7-300程序完成了模拟量处理等功能,即把传感器输入的4-20mA的模拟信号转换成0-27648,再根据量程转换到实际工程中水位的实际量程值,系统实现了水箱水位的高低来控制水箱进水阀的开关以及水泵开关状态的控制。系统还实现了两个水泵定时交替运行,运行时间可以更改。 WinCC编辑完成了系统流程图,报警图的绘画,变量实时曲线的记录以及报表记录功能。在画面中可以实现电机的启动,而且当启动时电机会有闪烁效果;还可以更改系统内部参数,比如电压量程,电流量程,水位量程等。水箱水位,管道压力,泵电压,泵电流等关键值会显示在工艺流程画面中;水位增加时,画面能直接显示水位的变动。以上这些功能使操作人员能更加直观的观察到系统的工作状态,便于操作管理。 关键词:恒压供水;可编程控制器;WINCC;S7_300

Abstract This design is targeted by PLC on constant pressure water supply system design, design content includes the wiring diagram of the hardware modifications, S7-300 programming, WinCC and S7-300 communication. S7-300 program completed the analog processing and other functions, namely the sensor input4-20mA analog signal is converted into0-27648, then according to the range conversion to the actual project level actual range values, system realizes the water tank water level control of water tank inlet valve switch and a water pump switch state control. The system also achieved a two pump timing alternating operation, operation time can change. WinCC editing completed the system flow chart, alarm figure painting, variable real-time curve record and report function. In the picture can achieve the motor starting, and when activated motor will have a flashing effect; can also change the system internal parameters, such as voltage range, the range of current water level range, etc.. The water level of the water tank, pipeline pressure, pump pump voltage, current and other key values are shown in the process of the picture; water levels increase, the picture can directly display the water level change. These functions enable the operator to more intuitive to observe the working state of a system, convenient for operation and management. Keywords: constant pressure water supply; Programmable controller; WINCC; S7_300

恒压供水PLC控制系统设计

1.1恒压供水PLC控制系统 一、实验目的 1.学习西门子PLC的使用; 2.掌握闭环调速原理; 3.掌握变频器的使用方法; 4.了解PLC控制变频恒压供水原理。 二、实验容 1.变频器参数设置 端子号参数的设定值缺省的操作V/F曲线选择/ C003=‘1’ 最高电压设定/ C004=‘380’ 基准频率设定/ C005=‘50’ 最大频率设定/ C010=‘50’ 运行控制选择/ C012=‘1’ 2.控制要求 1)单泵控制恒压供水,当需水量不是很大,用一个泵通过PID控制进行恒压供水; 2)双泵控制恒压供水,当需水量大时,当一个泵满足不了用水需求时,进行双泵切 换恒压供水; 3)PLC模拟量控制变频开环控制; 4)分时控制,定时轮换,可以有效地防止水泵长期不用而发生的锈死现象,提高了 设备的综合利用率,降低了维护费用。 三、实验步骤 1.单泵控制恒压供水 1)按照接线图接好线路,确保接线无误,以免损坏变频器和PLC的各个模块。 2)接好总电源,打开漏电保护器,此时电压表显示电压。按下启动按钮,电压指示灯亮起。 3)把模式选择开关打到手动位置,此时手动状态指示灯亮起。检查各水泵的运行情况,确定水泵能能正常运行。 4)把模式选择开关打到自动位置。 5)打开S7-200软件把程序写到PLC中,关闭软件。 6)把PLC的开关达到RUN位置。 7)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择“闭环控制”打开闭环控制画面。

8)在闭环控制模式下单击单泵运行,并单击PID设定,设定给定压力SP,进行PID参数整定。

9)单击实时曲线可观察各参数的变化。 2.双泵控制恒压供水 1)打开组态王软件,运行变频恒压供水监控程序。在主画面中选择闭环控制打开闭环控制画面。

恒压供水plc程序

恒压供水plc程序 恒压供水plc程序的主要功能 1、恒压供水plc程序全自动完成多台水泵机组软启动,变频到工频运行以及停止的全部操作过程 2、恒压供水plc程序根据用水量的变化,变成多台泵组的启动和停止。 3、恒压供水plc程序有压力设定值和实际压力值的LED显示功能。 4、恒压供水plc程序有LED频率指示,变频异常指示,电机故障工况显示。 5、恒压供水plc程序保护功能:具有欠压保护、过压保护、过载保护、短路保护、失速防止、烧损防止等功能。 恒压供水plc程序可增设远程语音报警功能,当设备控制系统出现故障时,系统触发报警拨号系统拨打预先设置好的固定电话或者手机号码,语音通知管理人员设备有故障需要及时检修,以免影响正常用户用水。此控制功能需要占用一条线以便拨号。 多段压力供水模式 恒压供水plc程序随着社会经济技术的发展进步,市政供水系统水质标准逐步提高,供水能力不断增强。为适应社会发展要求,自动给水设备必然朝着一定的目标发展,这个目标就是高效节能、无水源污染、低噪音、操作方便、运行可靠。

恒压供水plc程序系统特点 1、恒压供水plc程序节电:优化的节能控制软件,使水泵实现最大限度地节能运行; 2、恒压供水plc程序节水:根据实际用水情况设定管网压力,自动控制水泵出水量,减少了水的跑、漏现象; 3、恒压供水plc程序运行可靠:由变频器实现泵的软起动,使水泵实现由工频到变频的无冲击切换,防止管网冲击、避免管网压力超限,管道破裂。 4、恒压供水plc程序联网功能:采用全中文工控组态软件,实时监控各个站点,如电机的电压、电流、工作频率、管网压力及流量等。并且能够累积每个站点的用电量,累积每台泵的出水量,同时提供各种形式的打印报表,以便分析统计。 恒压供水plc程序具有保护特性: 恒压供水plc程序具有过流保护、I2t、过压保护、欠压保护、过热保护、短路保护、接地保护、欠压缓冲、电机欠/过载保护、堵转保护、串行通讯故障保护、AI信号丢失保护等。 恒压供水plc程序外型结构紧凑,恒压供水plc程序安装方便。恒压供水plc程序经过多种电气安全规范认证,符合GE、UL及质量认证体系ISO9001和ISO4001等。 恒压供水plc程序具有变频器独特的直接转矩控制(DTC)主要功能是目前最佳的电机控制方式,恒压供水plc程序可以对所有交流电机的核心变量进行直接控制,无需速度反馈就可以实现电机速度和转

用三菱PLC-FX2N与F940PD控制恒压供水

一.控制的要求: (1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100H轮换一次,手动时不切换; (2)两台水泵分别由M1、M2电动机拖动,电动机同步转速为3000转/min,由KM1、KM2控制; (3)切换后起动和停电后起动须5s报警,运行异常可自动切换到备用泵,并报警; (4)采用PLC的PID调节指令 (5)变频器(使用三菱FR-A540)采用PLC的特殊功能单元FX0N-3A的模拟输出,调节电动机的转速; (6)水压在0~10kg可调,通过触摸屏(使用三菱F940)输入调节; (7)触摸屏可以显示设定水压、实际水压、水泵的运行时间、转速、报警信号等; (8)变频器的其余参数自行设定。 二.软件的设计: 1.I/O分配 (1)触摸屏输入,M500:自动起动;M100:手动1号泵;M101:手动2号泵;M102:停止;M103:运行时间复位;M104:清除报警;D300:水压设定。 (2)触摸屏输出,Y0:1号泵运行指示;Y1:2号泵运行指示,T20:1号泵故障;T21:2号泵故障;D101:当前水压;D502:泵累计运行的时间;D102:电动机的转速。 (3)PLC输入,X1:1号泵水流开关;X2:2号泵水流开关;X3:过压保护。 (4)PLC输出,Y1:KM1;Y2:KM2;Y4:报警器;10:变频器STF。 2.触摸屏画面设: 根据控制要求及I/O分配,按下图1-1制作触摸屏画面。

(三菱F940触摸屏的画面制作图1-1)3.PLC的程序: (1).根据控制要求,PLC程序如下图2-1,3-1所示。

(PLCFX2N-48MR的程序梯形图图2-1)

自动恒压供水的控制系统(plc)

一、绪论 (一) 课题的意义及应用背景 近十年来,变频技术的应用在我国有很大的发展,并取得了良好的效果。采用变频器和可编程控制器等现代控制设备和技术实现恒定水压供水,是供水领域技术革新的必然趋势,以往采用的水塔供水既不卫生又不经济,更重要的是浪费了大量的能源,本文介绍的变频调速恒压供水系统以其有效的实用性,彻底解决了上述问题,是一项颇有实用价值的调速系统,为已有的供水系统技术改造提供了切实可行的途径。 变频控制技术的进步不仅仅是异步电动机结构简单、坚固、易于维护等优点,更主要的是采用变频调速技术的异步电动机的机械特性达到了直流电动机调压调速的特性。由于计算机技术的介入,使得变频器具有丰富的功能和方便好用的特点,因此人们才有可能按照实际要求,自行构成一个适用和可靠的调速系统。 变频调速恒压供水设备以其节能、安全、高品质的供水质量等优点,恒压供水调速系统实现水泵电机无级调速,依据用水量的变化自动调节系统的运行参数,在用水量发生变化时保持水压恒定以满足用水要求,充分利用变频器内置的各种功能对合理设计变频调速恒压供水设备,降低成本,保证产品质量等方面有着非常重要的意义。 变频恒压供水控制系统主要有: (1)带PID回路调节器和/或可编程序控制器(PLC)的控制系统 在该系统中,变频器的作用是为电动机提供可变频率的电源,实现电动机的无级调速,从而使管网水压可控。传感器的任务是检测管网水压;压力设定单元为系统提供满足用户需要的水压期望值;压力设定信号和压力反馈信号输入可编程控制器后,经可编程控制器内部PID控制程序的计算,输给变频器一个转速控制信号。还有一种办法是将压力设定信号和压力反馈信号送入PID回路调节器,由后者进行运算后,输给变频器一个转速控制信号。 由于变频器的转速控制信号是由可编程控制器或PID回路调节器给出的,所

基于PLC和组态技术的变频恒压供水系统

《PLC应用实验》 课程报告 班级:控制[专研]-17 学号: 2017309030114 姓名:董广亮 日期:2017.11.20

1 设计概述 本系统是以10层高楼小区供水管网为被控对象,使用变频调速技术,通过闭环控制设计一套高层楼房的恒压供水系统,并使用组态技术对系统实施监控,保证系统安全可靠的运行,使供水设备保持在最佳工况,有问题可以迅速解决。 本系统是由可编程控制器(PLC)、水泵机组、变频器、压力变送器和投入式液位变送器等组成一个闭环控制的调节系统。变频器通过变频循环的方式来控制水泵机组中的三个水泵电机,即通常说的变频器一拖三的概念。当1#水泵工作,随着供水官网的压力变小,1#水泵运行到50Hz时,供水量依旧不够,需要增加水泵,系统就让1#水泵脱离变频器进入工频状态,变频器去拖动2#水泵。为了使供水官网的压力保持恒定状态,变频器需要自动在各个水泵之间切换,水泵之间遵循“先启先停”和“先停先启”的要求。 2 系统的设计分析及方案确定 2.2 系统的组成及原理 基于PLC的变频恒压供水是由可编程控制器(PLC)、水泵机组、变频器、压力变送器和投入式液位变送器等组成的,采用的是闭环调节控制方式,该系统的泵站图如图2-1。 图2-1 变频恒压供水系统泵站图 由供水系统的泵站图,可导出供水系统的工作流程图,如图2-2所示。 管网压力信号 图2-2 变频恒压供水系统工作流程图 系统主要分为三大机构:执行机构、检测机构、控制机构,这三个机构的功能如下:

(1)执行机构:它的作用是接收控制器给出的调节信号,调节被控介质。在这里是由水泵机组构成的,它接受控制机构送来的信号调节电机转速来改变供水官网的压力。而这里的水泵机组是由三个变频泵组成的,变频泵通过变频器控制,根据供水官网的压力变化来改变电机的转速。 (2)检测机构:检测分为两个部分,一供水管网的水压,另一个是蓄水池的液位。水压通过压力变送器检测出来的,压力是一种模拟信号,储存在PLC的寄存器中,需要 A/D转换。为了使系统安全可靠,使用电接点压力检测仪表对供水压力的上下限进行检测,其结果可以直接作为数字量输入给PLC进行储存和应用。此外,蓄水池的液位是通过投入式液位变送器检测的,防止水泵空抽而损坏设备。 (3)控制机构:此系统设计的控制机构是由PLC、变频器和电控设备组成的。控制机构是是整个供水系统的核心。在这个系统中,控制器直接接收到变送器输送到寄存器中的压力和液位信号,分析通讯接口的数据并进行运算,得出现场的控制方案,通过执行机构的变频器对水泵机组发出控制指令,直到控制器得到的反馈信号与设定值之间的稳定误差在可允许误差内为止,完成变频恒压供水的任务。 本系统的执行机构是水泵机组,它是由变频器拖动运行的,是先将1#水泵作为调速泵,当这台水泵工作到50Hz时,用户的供水量依旧没有达到要求,那就需要增加第二台水泵,即2#水泵。在2#水泵投入工作前,必须先把变频器从1#水泵中脱出来并且将1#水泵转入工频模式中,才能让变频器继续控制2#水泵变频工作,3#水泵投入工作也是这样。 变频恒压供水是将供水管网作为被控对象,水压作为被控变量,在控制上满足实际水压跟随设定水压。变频恒压供水系统的的结构框图如图2-3。 图2-3 变频恒压供水系统框图 根据系统框图可以知道,系统通过管道上的压力变送器采集实时的供水官网压力,并转换成4~20mA的电信号。因为PLC无法直接识别电信号,因此必须通过PLC内部的 A/D模块将电信号转变成数字量再进行PID运算,运算结束后,再利用D/A模块转换成电信号输送到变频器,从而实现变频恒压的控制。

用三菱PLCFXN与F得PID控制恒压供水

一.控制得要求: (1)有两台水泵,按设计要求一台运行,一台备用,自动运行时泵运行累计100H轮换一次,手动时不切换; (2)两台水泵分别由M1、M2电动机拖动,电动机同步转速为3000转/min,由KM1、KM2控制; (3)切换后起动与停电后起动须5s报警,运行异常可自动切换到备用泵,并报警; (4)采用PLC得PID调节指令 (5)变频器(使用三菱FR-A540)采用PLC得特殊功能单元FX0N-3A得模拟输出,调节电动机得转速; (6)水压在0~10kg可调,通过触摸屏(使用三菱F940)输入调节; (7)触摸屏可以显示设定水压、实际水压、水泵得运行时间、转速、报警信号等; (8)变频器得其余参数自行设定。 二、软件得设计: 1.I/O分配 (1)触摸屏输入,M500:自动起动;M100:手动1号泵;M101:手动2号泵;M102:停止;M103:运行时间复位;M104:清除报警;D300:水压设定。 (2)触摸屏输出,Y0:1号泵运行指示;Y1:2号泵运行指示,T20:1号泵故障;T21:2号泵故 障;D101:当前水压;D502:泵累计运行得时间;D102:电动机得转速。 (3)PLC输入,X1:1号泵水流开关;X2:2号泵水流开关;X3:过压保护。 (4)PLC输出,Y1:KM1;Y2:KM2;Y4:报警器;10:变频器STF。 2.触摸屏画面设: 根据控制要求及I/O分配,按下图1-1制作触摸屏画面。

(三菱F940触摸屏得画面制作图1-1) 3.PLC得程序: (1)、根据控制要求,PLC程序如下图2-1,3-1所示。

(PLCFX2N-48MR得程序梯形图图2-1)

PLC控制恒压供水系统方案

高级技师职业资格鉴定论文 文章题目:PLC在控制恒压供水系统的应用 姓名:刘恩龙 所在省市:山东省济宁市兖州区 所在单位:山东省济宁兖州通力轮胎有限公司职业(工种):维修电工

摘要:本设计是针对居民生活用水/消防用水而设计的。由变频器、PLC控制系统,调节水泵的输出流量。电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组之间的切换及速度,使系统运行在最合理的状态,保证按需供水。采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳定,结构简单,工作可靠操作方便等优点。 关键词:供水系统变频器 PLC

目录 第一章概述 (1) 1-1 常见的供水方式及变频恒压调节的 (1) 一、原理 (1) 二、水泵选择的一般性原则 (1) 1-2 PLC、变频器控制的恒压供水系统方案 (3) 一、恒压供水系统组成及主要自控设备的作用 (3) 二、方案特点 (3) 三、变频-工频双回路恒压供水方案优点 (3) 四、设备选型及目的 (4) 第二章硬件部分设计 (6) 2-1硬件选择 (6) 一、PLC介绍 (6) 二、变频器介绍 (7) 2-2变频驱动方式和传感变频器的使用 (7) 一、驱动方式 (7) 二、调节方式 (7) 三、关于压力传感变频器的使用 (8) 2-3 电动机调速方案的比较 (9) 一、电动机的选择 (9) 二、模拟供水系统的拟定 (10) 第三章主电路设计 (11) 3-1 硬件电路 (11) 一、电路介绍 (11) 二、控制流程图 (14) 三、输入输出元件与PLC地址对照表 (15) 第四章软件系统设计 (17) 4-1 PLC程序设计 (17) 总结 (20) 致谢 (21) 参考文献 (22)

恒压供水系统PLC控制

恒压供水系统的PLC控制【毕业设计】 中文摘要 本文介绍了恒压供水的基本原理以及系统构成的基础,说明了可编程控制器 in the water -supply system of constant voltage. Since the whole design plan of the system and actual demand are analysed, the need of close life of intergrating with practice, make every effort to make sure to make the system run steadily, easy and simple to handle, solve and hit the problem actually, guarantee to supply water of the security, swift , reliable. Constant voltage has supplied water and guaranteed to support the water quality amount, the control system taking PLC as host computer has enriched the systematic control function, have improved systematic dependability Keywords: PLC (programmable controller > Constant voltage supplies water Frequency converter 目录

恒压供水PLC程序

恒压供水PLC程序 恒压供水PLC程序工作原理 恒压供水PLC程序以管网水压(或用户用水流量)为设定参数,通过控制变频器的输出频率从而自动调节水泵电机的转速,实现管网水压的闭环调节(PID),使供水系统自动保持于设定的压力值;即用水量增加时,频率升高,水泵转速加快,供水量相应增大;用水量减少时,频率降低,水泵转速减慢,供水量亦相应减小,这样就保证了供水效率用户对水压和水量的要求,同时达到了提高供水品质和供水效率的目的。 电接点压力表广泛应用于石油、化工、冶金、电站、机械等工业部门或机电设备配套中测量无爆炸危险的各种流体介质压力。通常,仪表经与相应的电气器件(如继电器及变频器等)配套使用,即可对被测(控)压力的各种气体与液体介质经仪表实现自动控制和发信(报警)的目的。那么在恒压供水PLC程序中是否可以电接点压力表呢?首先我们要了解恒压供水PLC程序和电接点压力表的工作原理。 恒压供水PLC程序的控制原理 通过安装在总出水管网上的压力变送器,把出口压力信号变成4~20mA 标准信号送入变频器内置的PID调节器,经PID运算与给定压力参数进行比较,得到4~20mA参数,4~20mA信号送至变频器。控制系统由变频器控制水泵的转速以调节供水量,根据用水量的不同,变频器调节水泵的转速不同、工作频率也就不同,在变频器设置中设定一个上限频率和下限频率检测,当用水量大时,变频器迅速上升到上限频率,此时,变频器输出一个开关信号给PLC;当用水处于低峰时,变频器输出达到下限频率,变频器也输出一个开关信号给PLC;两个信号不会同时产生。当产生任何一个信号时,信号即反馈给PLC,PLC通过设定的内部程序驱动I/O 端口开关量的输出来实现切换交流接触器组,以此协调投入工作的水泵电机台数,并完成电机的启停、变频与工频的切换。通过调整投入工作的电机台数和控制电机组中一台电机的变频转速,使系统管网的工作压力始终稳定,进而达到恒压供水的目的。 恒压供水PLC程序无负压、全封闭、稳流功能试验 1.无负压功能试验设备运行正常后,逐渐关小进水口闸阀,在进水量小于用水量时,观察设备进水口负压表的指示情况,其结果应具有无负压功能。 2.全封闭试验用肉眼查看、手试等方法,在设备储水和向用户补水的不同运行状态下,检查设备各部件、各连接处等的密封情况,结果整套设备全封闭无污染,并且设备在全封闭的基础上,稳流补偿器中的储备水在来水量小于用水量时应能及时补充到用户。 3.稳流补偿功能试验在以上无负压、全封闭试验的基础上,继续进行稳流补偿功能试验。设备运行正常后,同时记录下进水口和出水口流量计的累积流量起始数据,逐渐关小进水口闸阀,用进水口和出水口流量计在线测量设备来水和用水的瞬时流量值,使来水量小于用水量,此时设备应能正常工作,设备运行一段时间,直至稳流补偿器中无水停机后,通过流量计读数计算出设备的总来水量和总用水量,将总用水量减去总来水量,此差为正数。 小流量停机保压功能试

恒压供水PLC

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:电气传动自动控制系统 设计题目:变频给水设备的恒压给水控制系统院系:电气工程及其自动化 班级: 设计者: 学号: 指导教师: 设计时间:2016年1月11日- 2016年1月16日 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

一、控制系统总体设计方案 该设计题目要求利用西门子S7 200 PLC和G120变频器,以及刨台运动模拟器,设计一个变频给水设备的恒压给水系统,并通过实验调试实现该系统的各种设计功能。 1.1变频给水系统的结构和工作原理 变频给水设备由变频控制柜、稳流罐、水泵机组、仪表、阀门及管路、基座等组成,适用于一切需要增高水压,恒定流量的供水系统。其简化结构图如图1所示:从市政管网来的低压水源,经过水泵增压后,为用户提供稳定的供水。 图1变频给水系统简化结构 变频给水能自动24小时维持恒定压力,并根据压力信号自动启动备用泵,无级调整压力,供水质量好。在工业和民用中应用十分广泛。变频给水系统采用一个电位器设定压力(也可采用面板设定压力),采用一个压力传感器检测管网中压力,压力传感器将信号送入变频器PID 回路,PID 回路处理之后,送出一个水量增加或减少信号,控制水泵马达的转速。为了节约成本同时提高水泵效率,系统中一般配有多台水泵。只有一个泵由变频器供电,工作于变频调速状态,其他泵或不运行,或直接连接到电网上运行于工频状态。 当用水量较小时,只有一个泵工作于变频状态,在PID 控制下自动调节给水压力,如在一定延时时间内,压力还是不足,则对该泵进行变频/工频切换(即将该泵与变频器脱开,直接连接到电网上运行),然后利用变频器启动另一台水泵,提高供水量使实际管网压力与设定压力相一致。随着用水量的减少,变频器自动减少输出频率或切除某一个工频运行的水泵,减少供水量,使实际管网压力仍然与设定压力相一致。 1.2恒压给水控制系统的组成 为了实现无人值守自动供水,可采用PLC(CPU224 XP)和变频器(G120),组成恒压给水自动控制系统,其结构如图2所示。工作时,变频器内部的PID调节器根据由电位器设定的压力给定,以及从用户管路中检测的实际压力,经运算后调节变频器输出频率,从而自动调节水泵的供水量,使实际压力与给定压力一致。PLC的作用是:根据操作面板上的发令元件(如启动按钮)启动变频器,并根据变频器计算的压力超限指示信号,结合合理的控制逻辑发出控制指令到泵站,决定哪台泵启动,是工频运行还是通过变频器变频运行。

基于PLC恒压供水系统的设计

摘要 随社会经济的迅速发展,人们对供水质量和供水系统可靠性的要求不断提高;再加上目前能源紧缺,利用先进的自动化技术、控制技术以及通讯技术,设计高性能、高节能、能适应不同领域的恒压供水系统成为必然趋势。 本设计是针对居民生活用水而设计的。由变频器、PLC、PID调节器和组成控制系统,调节水泵的输出流量。电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组的速度和切换,使系统运行在最合理状态,保证按需供水。 本文介绍了采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力凋节。在经过PID运算,通过PLC控制变频与工频切换,实现闭环自动调节恒压变量供水。运行结果表明,该系统具有压力稳定,结构简单,工作可靠等特点。 关键词:变频调速;恒压供水;PID调节;PLC

目录 摘要 (1) 1 绪论 (1) 1.1变频恒压供水产生的背景和意义 (1) 1.2变频恒压供水系统的国内研究现状 (3) 1.3课题来源及本文的主要研究内容 (5) 1.4本论文中所做的工作 (5) 2 恒压供水系统的基本构成 (6) 3 变频器和压力传感器 (8) 3.1 变频器的基本结构 (8) 3.2 变频器的分类及工作原理 (11) 3.3 变频器的操作方式及使用 (12) 3.4 变频器硬件选择 (13) 3.5 压力传感器 (14) 4 PLC选择及应用 (16) 4.1 PLC在恒压供水泵站中的主要任务 (16) 4.2 PLC模拟量扩展单元的配置及应用 (16) 4.2.1 模拟量输入模块的功能及与PLC系统的连 接 (17) 4.2.2 模拟量输入模块缓冲存储器(BFM)的分配 (18) 4.2.3 模拟量输出模块的功能及PLC系统连接 (20)

PLC控制恒压供水系统设计方案

高级技师职业资格鉴定论文文章题目:PLC在控制恒压供水系统的应用 姓名:恩龙 所在省市:省市兖州区 所在单位:省兖州通力轮胎有限公司 职业(工种):维修电工

摘要:本设计是针对居民生活用水/消防用水而设计的。由变频器、PLC控制系统,调节水泵的输出流量。电动机泵组由三台水泵并联而成,由变频器或工频电网供电,根据供水系统出口水压和流量来控制变频器电动机泵组之间的切换及速度,使系统运行在最合理的状态,保证按需供水。采用PLC控制的变频调速供水系统,由PLC进行逻辑控制,由变频器进行压力调节。通过PLC控制变频与工频切换,实现闭环自动调节恒压供水。运行结果表明,该系统具有压力稳定,结构简单,工作可靠操作便等优点。 关键词:供水系统变频器PLC

目录 第一章概述 (1) 1-1 常见的供水式及变频恒压调节的 (1) 一、原理 (1) 二、水泵选择的一般性原则 (1) 1-2 PLC、变频器控制的恒压供水系统案 (3) 一、恒压供水系统组成及主要自控设备的作用 (3) 二、案特点 (3) 三、变频-工频双回路恒压供水案优点 (3) 四、设备选型及目的 (4) 第二章硬件部分设计 (6) 2-1硬件选择 (6) 一、PLC介绍 (6) 二、变频器介绍 (7) 2-2变频驱动式和传感变频器的使用 (7) 一、驱动式 (7) 二、调节式 (7) 三、关于压力传感变频器的使用 (8) 2-3 电动机调速案的比较 (9) 一、电动机的选择 (9) 二、模拟供水系统的拟定 (10) 第三章主电路设计 (11) 3-1 硬件电路 (11) 一、电路介绍 (11) 二、控制流程图 (14) 三、输入输出元件与PLC地址对照表 (15) 第四章软件系统设计 (17) 4-1 PLC程序设计 (17) 总结 (20)

变频恒压供水一拖二PLC程序解析

变频恒压供水一拖二PLC程序解析 变频恒压供水一拖二PLC程序解析 此系统是2000年前后,由上海博源自动化有限公司制作的(很想念他们, 多年未联系了)。主电路结构为变频一拖二形式。控制原理简述如下: 系统由变频器、PLC和两台水泵构成。利用了变频器控制电路的PID等相关功能,和PLC配合实施变频一拖二自动恒压力供水。具有自动/手动切换功能。变频故障时,可切换到手动控制水泵运行。 控制过程:水路管网压力低时,变频器启动1#泵,至全速运行一段时间后,由远传压力表来的压力信号仍未到达设定值时,PLC控制1#泵由变频切换到工运行,然后变频启动2#泵运行,据管网压力情况随机调整2#泵的转速,来达到恒压供水的目的。当用水量变小,管网压力变高时,2#泵降为零速时,管网压力仍高,则PLC控制停掉1#工频泵,由2#泵实施恒压供水。至管网压力又低时,将2#泵由变频切为工频运行,变频器启动1#泵,调整1#泵的转速,维修恒压供水。如此循环不已。 需要说明一下的是:变频器必须设置好PID运行的相关参数,和配合PLC控制的相关工作状态触点输出。详细调整,参见东元M7200的说明书。在本例中,须大致调整以下几个参数。

1、设置变频器启/停控制为外部端子运行; 2、设置为自由停车方式,以避免变频/工频切换时造成对变频器输出端的冲击; 3、设置PID运行方式,压力设定值由AUX端子进入。反馈信号由VIN端子进入; 4、对变频器控制端子——输出端子的设置。设定RA、RC为变频故障时,触点动作输出;定R2A、R2C为变频零速时,触点动作输出;设定DO1、DOG为 变频器全速(频率到达)时,触点动作输出。 上图为PLC控制接线图。水泵和变频器的故障信号未经PLC处理,而是汇总给继电器KA2。其手动/自动的切换控制继电器KA1来切换。变频/工频的运行由接触器触点来互锁,以提运行安全性。可以看出,R2A和DO1是PLC的两个关键输入信号。在PLC的控制动作输出中,对变频到工频的切换是通过DO1(变频器零速信号)来进行的;对工频到变频的切换是通过R2A(变频器频率到达信号)来进行的。 二、PLC的步进程序图: 因为一拖二形式,控制上相对比较简单。实际上经S20到S23四个步骤,就完成了一个循环。变频切换工频和工频切换变频的时间是可调的,由FX1S型的PLC外附两只电位器D8030,D8031来调节的。两只电位器的值是直接放入 上述两只寄存器的。这样方便了对切换时间的调整。另外,对变频器的启/停控制,是将输出端连接的交流接触器是先接通,然后再给出变频器运转命令;须变频切换工频,变频器需停机时,是先给出变频器停止命令,变频器停掉后,再断开接触器的。其中有0.5s 的时间间隙,较好地避免了对变频器的冲击。 程序是用步进指令配合着置位、复位指令来做的。步进控制实际上只有两个指令的。STL,步控制开始。所有的步进控制都结束后,用一个返回指令RET,返回到开始步S0,再往下循环。从一个STL开始,到下一个STL之间,是一个“步”;SET是置位指令,将线圈置1状态——“得电吸合”,RST为复位指令,将线圈复位为0状态——“失电释放”;ZRST是批次复位指令,如将Y0—Y5等五个输出线圈一下子全部复位;M8002是一个特殊继电器,其触

基于plc的恒压供水系统的设计

基于plc的恒压供水系统的设计 (恒压供水系统的原理及电气控制要求。Plc在机电系统中的应用和工作原理。西门子变频器的工作原理MM440。Plc编程原理及程序设计方法。电器原理图,接线图。) 一.恒压供水系统的原理 1.系统介绍 生产生活中的用水量常随时间而变化,季节、昼夜相差很大。用水和供水的不平衡集中体砚在水压上,用水多而供水少则水压低,用水少而供水多则水压高。以前大多采用传统的水塔、高位水箱或气压罐式增压设备容易造成二次污染,同时也增大了水泵的轴功率和能量损耗。随着电力电子技术的发展变频调速技术广泛应用于送水泵站、加压站、工业给水、小区和高楼供水等供水等领域。相对于传统的技术而言,它具有节能效益明显、保护功能完善、控制灵活方便等优点。 恒压供水控制系统的基本控制策略是:采用电动机调速装置与可编程控制器(PLC)构成控制系统,进行优化控制泵组的调速运行,并自动调整泵组的运行台数,完成供水压力的闭环控制,在管网流量变化时达到稳定供水压力和节约电能的目的。系统的控制目标是总管的出水压力及系统设定的给水压力值与反馈的总管压力实际值进行比较,其差值输入CPU运算处理后,发出控制指令,控制泵电动机的投运台数和运行变量泵电动机的转速,从而达到给水总管压力稳定在设定的压力值上。 恒压供水系统由PLC控制器,变频器,触摸屏显示器,压力变送器,水位变送器,软启动器,水泵电机组,电机保护装置以及其他电控设备等构成,如图1所示。 图1 恒压供水系统示意图 2.系统构成 系统采用了S7-200型PLC (14个输人点,10个输出点)、MM440型变频器、压力传感

器及其他控制设备。系统构成如图2所示。 图2 系统构成图 压力传感器将用户管网水压信号变成电信号(4一20mA),送给变频器内部PID控制器,PID控制器根据压力设定值与实际检测值进行PID运算,并给出信号控制水泵电动机的电压和频率。当用水量较少时,1#泵在变频器控制下变频运行。如需水量加大,压力传感器在管网端测的水压偏小,则变频器输出频率上升,直到50Hz。这时1#泵由变频切换为工频运行状态。同时系统对2#泵进行变频起动和调节。如果两台泵供水仍不能满足供水要求,则系统将2#泵投人工频进行,将3#泵投人变频运行。供水量增大,加泵情况依次类推。如用水量减少,变频器的频率会下降。当变频器频率下降至下限值时,PLC将最先工频运行的水泵停掉如果频率下限值仍持续出现,PLC再停止第2台工频运行的水泵。系统按先开起的泵先切除的顺序逐台切换泵,以维持管网水压恒定。 3.系统原理 系统控制原理结构如图3:压力传感器从供水管网反馈电压信号,电压信号经过滤波放大后送到s7-200的模拟输入口,与给定的供水压力信号比较形成压力偏差信号,经过PLC (s7-200)PID模块PI调节后发出控制电压信号,送到变频器MM440的模拟电压信号与连接到变频器MM440的三相交流电的频率一一对应,调节控制电压信号就可以调节三相交流电的频率。系统是以供水管网的供水压力为控制对象而构成的闭环控制系统,其设计是按照三个电机就可以完全满足供水要求。 图3系统闭环控制原理框图 系统中采用了数字PID控制技术,使PID的参数整定和调整实现在线控制,通过对系统压力的检测,根据水压的大小使系统分时操作。实现系统了快速、稳定的输出。将管网的实际压力经反馈后送到比较器的愉人端与给定压力进行比较,当管网压力不足时,通过对参

相关文档
相关文档 最新文档