文档库 最新最全的文档下载
当前位置:文档库 › 操作系统实验5_虚拟存储器管理

操作系统实验5_虚拟存储器管理

操作系统实验5_虚拟存储器管理
操作系统实验5_虚拟存储器管理

实验五主虚拟存储器管理

一、实验内容

模拟分页式虚拟存储管理中硬件的地址转换和缺页中断,以及选择页面调度算法处理缺页中断。

二、实验目的

在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验帮助同学理解在分页式存储管理中怎样实现虚拟存储器。

三、实验题目

本实验有三个题,其中第一题必做,第二、第三题中可任选一个。

第一题:模拟分页式存储管理中硬件的地址转换和产生缺页中断。

[提示]:

(1) 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说明哪些页已在主存,哪些页尚未装入主存,页表的格式为:

其中,标志——用来表示对应页是否已经装入主存,标志位=1,则表示该页已经在主存,标志位=0,则表示该页尚未装入主存。

主存块号——用来表示已经装入主存的页所占的块号。

在磁盘上的位置——用来指出作业副本的每一页被存放在磁盘上的位置。

(2) 作业执行时,指令中的逻辑地址指出了参加运算的操作数存放的页号和单元号,硬件的地址转换机构按页号查页表,若该页对应标志为“1”,则表示该页已在主存,这时根据关系式:绝对地址=块号 块长+单元号

计算出欲访问的主存单元地址。如果块长为2的幂次,则可把块号作为高地址部分,把单元号作为低地址部分,两者拼接而成绝对地址。按计算出的绝对地址可以取到操作数,完成一条指令的执行。若访问的页对应标志为“0”,则表示该页不在主存,这时硬件发“缺页中断”信号,由操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后再重新执行这条指令。

(3) 设计一个“地址转换”程序来模拟硬件的地址转换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主存时,则输出“*该页页号”,表示产生了一次缺页中断。该模拟程序的算法如图5-1。

(4) 假定主存的每块长度为128个字节;现有一个共七页的作业,其中第0页至第3页已经装入主存,其余三页尚未装入主存;该作业的页表为:

如果作业依次执行的指令序列为:

运行设计的地址转换程序,显示或打印运行结果。因仅模拟地址转换,并不模拟指令的执行,故可不考虑上述指令序列中的操作。

第二题:用先进先出(FIFO)页面调度算法处理缺页中断。

[提示]:

(1) 在分页式虚拟存储系统中,当硬件发出“缺页中断”后,引出操作系统来处理这个中断事件。如果主存中已经没有空闲块,则可用FIFO页面调度算法把该作业中最先进入主存的一页调出,存放到磁盘上。然后再把当前要访问的页装入该块。调出和装入后都要修改页表中对应页的标志。

(2) FIFO页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时,把开始的m个页面装入主存,则数组的元素可定为m个。例如:P[0],P[1]…,P[m-1]

其中每一个P[i] (I=0, 1, …, m-1) 表示一个在主存中的页面号。它们的初值为:

P[0]:=0, P[1]:=1, …, P[m-1]:=m-1

用一指针K指示当要装入新页时,应淘汰的页在数组中的位置,K的初值为“0”。

当产生缺页中断后,操作系统选择P[k]所指出的页面调出,然后执行:

P[k]:=要装入页的页号

k:= (k+1) mod m

再由装入程序把要访问的一页信息装入到主存中。重新启动刚才那条指令执行。

(3) 编制一个FIFO页面调度程序,为了提高系统效率,如果应淘汰的页在执行中没有修改过,则可不必把该页调出(因在磁盘上已有副本)而直接装入一个新页将其覆盖。因此在页表中增加是否修改过的标志,为“1”表示修改过,为“0”表示未修改过,格式为:

由于是模拟调度算法,所以,不实际地启动调出一页和装入一页的程序,而用输出调出的页号和装入的页号来代替一次调出和装入的过程。

把第一题中程序稍作改动,与本题结合起来,FIFO页面调度模拟算法如图5-2。

(4) 如果一个作业的副本已在磁盘上,在磁盘上的存放地址以及已装入主存的页和作业依次执行的指令序列都同第一题中(4)所示。于是增加了“修改标志”后的初始页表为:

按依次执行的指令序列,运行你所设计的程序,显示或打印每次调出和装入的页号,以及执行了最后一条指令后的数组P的值。

(5) 为了检查程序的正确性,可再任意确定一组指令序列,运行设计的程序,核对执行的结果。

图5-2 FIFO页面调度模拟算法

第三题:用最近最少用(LRU)页面调度算法处理缺页中断。

[提示]:

(1) 在分页式虚拟存储系统中,当硬件发出“缺页中断”后,引出操作系统来处理这个中断事件。如果主存中已经没有空闲块,则可用LRU页面调度算法把该作业中距现在最久没有被访问过的一页调出,存放到磁盘上。然后再把当前要访问的页装入该块。调出和装入后都要修改页表中对应页的标志。

(2) LRU页面调度算法总是淘汰该作业中距现在最久没被访问过的那页,因此可以用一个数组来表示该作业已在主存的页面。数组中的第一个元素总是指出当前刚访问的页号,因此最久没被访问过的页总是由最后一个元素指出。如果主存只有四块空闲块且执行第一题中提示(4)假设的指令序列,采用LRU页

面调度算法,那么在主存中的页面变化情况如下:

当产生缺页中断后,操作系统总是淘汰由最后一个元素所指示的页,再把要访问的页装入淘汰页所占的主存块中,页号登记到数组的第一个元素中,重新启动刚才那条指令执行。

(3) 编制一个LRU页面调度程序,为了提高系统效率,如果淘汰的页在执行中没有修改过,则可不必把该页调出。参看第二题中提示(3)。模拟调度算法不实际地启动调出一页和装入一页的程序而用输出调出的页号和装入的页号来代替。把第一题中程序稍作改动,与本题结合起来,LRU页面调度模拟算法如图

5-3。

图5-3 LRU页面调度模拟算法

(4) 按第一题中提示(4)的要求,建立一张初始页表,页表中为每一页增加“修改标志”位(参考第二题中提示(4))。然后按依次执行的指令序列,运行设计的程序,显示或打印每次调出和装入的页号,以及执行了最后一条指令后数组中的值。

(5) 为了检查程序的正确性,可再任意确定一组指令序列,运行设计的程序,核对执行的结果。

四、实验报告

(1) 实验题目(第二题或第三题)。

(2) 程序中使用的数据结构及符号说明。

(3) 打印一份源程序并附上注释。

(4) 打印初始页表、每次调出(要调出一页时)和装入的页号、执行最后一条指令后在主存中的页面

号(即数组的值)。

五、思考题

如果您有兴趣的话,可把两种页面调度算法都做一下,比较两种调度算法的效率(哪种调度算法使产生缺页中断的次数少);分析在什么情况下采用哪种调度算法更有利。

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

《实用操作系统》实验报告五linux设备管理

《实用操作系统》实验报告 实验报告: 5 实验项目名称:设备管理 班级:学号:姓名: 地点:时间:2013 年11 月13 日 一、实验内容 1、添加硬盘,创建二个主分区、一个扩展分区,二个逻辑分区 注意:ide、scsi 提示:分区、格式化、挂载(fdisk,mkfs,mount) 2、查看常见的设备文件有哪些?(ls /dev ) 常见的设备文件:/dev/hd* IDE接口的硬盘(IDE接口的设备) /dev/sd* SCSI/USB设备/dev/cua* 串口设备/dev/lp* 并口设备/dev/tty* 终端设备/dev/consol 控制台设备/dev/eth* 以太网设备/dev/cdrom IDE光驱/dev/fd* 软驱/dev/audio 音频设备/dev/scd SCSI的光驱/dev/ppp PPP设备/dev/isdn* ISDN设备 3、挂载光盘,查看光盘内容创建挂载点要求:以本人姓名缩写为目录mkdir / 目录/设备挂载mount 空格源设备空格挂载点 4、显示管理System-config-display 5、声卡管理System-config-soundcard 6、打印机管理System-config-printer 7、网卡管理System-config-network 二、实验步骤及结果 1.添加硬盘,创建分区; 在启动虚拟机前,在工具栏中点击“虚拟机”,找到“设置”选项,在左面的硬件中找到硬盘,进行硬盘设备添加,这里有IDE和SCSI两种硬盘类型可供选择添加。完成硬盘添加后即可启动虚拟机进入linux系统。在这我添加了容量相同的硬盘设备类型各一;

四川大学 操作系统上机实验 实验五 Windows虚拟存储器管理

实验报告 实验名称:Windows虚拟存储器管理 实验时间:2013年5月27日 实验人员:____郑笑凡___(姓名)__1143041243__(学号)____2011____(年级) 实验目的:1、了解Windows 2000/XP的内存管理机制,掌握页式虚拟存储技术。 2、理解内存分配原理,特别是以页面为单位的虚拟内存分配方法。 3、学会使用Windows 2000/XP下内存管理的基本API函数 实验环境:windows xp 实验步骤: 1、下载virtumem.cpp; 2、建立工程,将virtumen.cpp加入; 3、编译工程,观察结果,确信六种状态都出现至少一次,必要时可改程 序,方便观察结果; 4、看懂程序,按要求另写一段小程序; 5、编译,执行,观察结果。 6,总结。 实验陈述: 1、基础知识: pagefile.sys文件的位置在:__安装的系统盘根目录下____________________________________此文件的作用:____实现物理内存的扩展__________________________________________________ 改变此文件大小的方法:右击”我的电脑”,依次选择”属性”—“高级”—“性能选项”— “更改”_______________________________________ 虚拟地址空间中的页面分为:提交页面,保留页面,空闲页面 页面的操作可以分为:保留、提交、回收、释放、加锁 2、编程准备. 页面属性是在结构体MEMORY_BASIC_INFORMATION_的字段AllocationProtect 和字段中Protect体现出来的。 简述VirtualFree,VirtualPtotect,VirtualLock,VirtualUnlock,VirtualQuery的作用:_ VirtualFree:__释放虚存___________________________________________________ VirtualPtotect:_保留虚存_________________________________________________ VirtualLock:___加锁虚存_________________________________________________ VirtualUnlock:_解锁虚存________________________________________________ VirtualQuery:____查询虚存_______________________________________________ 3、编程 1)将virtumem.cpp加入工程,编译,执行。 是否能编译成功?是 请描述运行结果:

操作系统实验六_设备管理

操作系统课程报告实验六设备管理 学号 姓名 班级 教师 华侨大学电子工程系

实验目的 1、理解设备管理的概念和任务。 2、掌握独占设备的分配、回收等主要算法的原理并编程实现。 实验内容与基本要求 1、在Windows系统中,编写程序实现对独占设备的分配和回收的模拟, 该程序中包括:建立设备类表和设备表、分配设备和回收设备的函数。实验报告内容 1、独占设备的分配、回收等主要算法的原理。 为了提高操作系统的可适应性和可扩展性,现代操作系统中都毫无例外地实现了设备独立性,又叫做设备无关性。设备独立性的含义是:应用程序独立于具体使用的物理设备。为了实现独占设备的分配,系统设置数据表格的方式也不相同,在实验中只要设计合理即可。这里仅仅是一种方案,采用设备类表和设备表。 (1)数据结构 操作系统设置“设备分配表”,用来记录计算机系统所配置的独占设备类型、台数以及分配情况。设备分配表可由“设备类表”和“设备表”两部分组成,如下图: (2)设备分配 当进程申请某类设备时,系统先查“设备类表”如果该类设备的现存台数可以满足申请要求,则从该类设备的“设备表”始址开始依次查该类设备在设备表中的登记项,找出“未分配”的设备分配给进程。分配后要修改设备类表中的现存台数,把分配给进程的设备标志改为“已分配”且填上占用设备的进程名。然后,

把设备的绝对号与相对号的对应关系通知用户,以便用户在分配到的设备上装上存储介质。 (3)设备回收 当进程执行结束撤离时应归还所占设备,系统根据进程名查设备表,找出进程占用设备的登记栏,把标志修改为“未分配”,清除进程名。同时把回收的设备台数加到设备类表中的现存台数中。

虚拟存储器管理 页面置换算法模拟实验

淮海工学院计算机工程学院实验报告书 课程名:《操作系统原理A 》 题目:虚拟存储器管理 页面置换算法模拟实验 班级:软件*** 学号:20**1228** 姓名:****

一、实验目的与要求 1.目的: 请求页式虚存管理是常用的虚拟存储管理方案之一。通过请求页式虚存管理中对页面置换算法的模拟,有助于理解虚拟存储技术的特点,并加深对请求页式虚存管理的页面调度算法的理解。 2.要求: 本实验要求使用C语言编程模拟一个拥有若干个虚页的进程在给定的若干个实页中运行、并在缺页中断发生时分别使用FIFO和LRU算法进行页面置换的情形。其中虚页的个数可以事先给定(例如10个),对这些虚页访问的页地址流(其长度可以事先给定,例如20次虚页访问)可以由程序随机产生,也可以事先保存在文件中。要求程序运行时屏幕能显示出置换过程中的状态信息并输出访问结束时的页面命中率。程序应允许通过为该进程分配不同的实页数,来比较两种置换算法的稳定性。 二、实验说明 1.设计中虚页和实页的表示 本设计利用C语言的结构体来描述虚页和实页的结构。 在虚页结构中,pn代表虚页号,因为共10个虚页,所以pn的取值范围是0—9。pfn代表实 页号,当一虚页未装入实页时,此项值为-1;当该虚页已装入某一实页时,此项值为所装入的实页 的实页号pfn。time项在FIFO算法中不使用,在LRU中用来存放对该虚页的最近访问时间。 在实页结构中中,pn代表虚页号,表示pn所代表的虚页目前正放在此实页中。pfn代表实页号, 取值范围(0—n-1)由动态指派的实页数n所决定。next是一个指向实页结构体的指针,用于多个实页以链表形式组织起来,关于实页链表的组织详见下面第4点。 2.关于缺页次数的统计 为计算命中率,需要统计在20次的虚页访问中命中的次数。为此,程序应设置一个计数器count,来统计虚页命中发生的次数。每当所访问的虚页的pfn项值不为-1,表示此虚页已被装入某实页内,此虚页被命中,count加1。最终命中率=count/20*100%。 3.LRU算法中“最近最久未用”页面的确定

存储管理实验报告.doc

存储管理实验报告

北方工业大学 《计算机操作系统》实验报告 实验名称存储管理实验序号 2 实验日期2013.11.27实验人 一、实验目的和要求 1.请求页式存储管理是一种常用的虚拟存储管理技术。本实验目的 是通过请求页式存储管理中页面置换算法的模拟设计,了解虚拟存储 技术的特点,掌握请求页式存储管理的页面置换算法。 二、相关背景知识 1.随机数产生办法 关于随机数产生办法, Linux 或 UNIX 系统提供函数 srand() 和 rand() ,分 别进行初始化和产生随机数。 三、实验内容 (1).通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: 1.50% 的指令是顺序执行的; 2.25% 的指令是均匀分布在前地址部分; 3.25% 的指令是均匀分布在后地址部 分;具体的实施方法是: 1.在[0, 319]的指令地址之间随机选取一起点 m; 2.顺序执行一条指令,即执行地址为 m+1 的指令; 3.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4.顺序执行一条指令,其地址为 m’+1; 5.在后地址 [m ’+2, 319]中随机选取一条指令并执行; 6.重复上述步骤 1~5,直到执行 320 次指令。 (2)将指令序列变换成页地址流,设 1.页面大小为 1K ; 2.用户内存容量为 4 页到 32 页; 3.用户虚存容量为 32K 。 在用户虚存中,按每 K 存放 10 条指令排列虚存地址,即 320 条指令在虚存 中存放的方式为: 第 0 条至第 9 条指令为第 0 页(对应虚存地址为 [0, 9]); 第 10 条至第 19 条指令为第 1 页(对应虚存地址为 [10, 19]); 第 310 条至第 319 条指令为第 31 页(对应虚存地址为 [310,319]); 按以上方式,用户指令可以组成 32 页。 (3)计算并输出下述各种算法在不同内存容量下的命中率。

操作系统实验七设备管理实验(广西师大)

操作系统课程实验 年级2012级 专业计算机科学与技术(应用型)姓名 学号 指导教师黄玲 日期2013年12月26日

实验七、设备管理实验 一、关键问题 1、实验目的 观察Linux下U盘的访问;理解设备虚拟分配技术。 2、实验环境 Ubuntu8.0或者以上,Eclipse集成开发环境 3、实验内容 3.1观察Linux下的U盘访问 从键盘获得符号串,写入磁盘文件,然后读取该文件。 3.2设备管理模拟实验要求:设计一个SPOOLing输入模拟系统。提示:输入井设计成结构体数组,每块存放一个输入文件内容。三个用户进程与一个后台输入进程并发执行,后台输入进程接受用户键盘输入的文件到输入井,每个用户进程从输入井获取输入数据。 老师所给的例子为为利用内存SPOOLing输入模拟系统,而问题的关键就是如何参考spoolout()设计spoolin()以及修改用户进程usepro()和输入#进程spoolsever()。 二、设计修改思路 spoolout()进程:键入要输入的用户id,如果用户输入文件未完成则键入文件内容,将文件内容mybuf发到输入井。 spoolsever()输入#进程:登记输入请求块,将缓冲区mybuf的数据送入输入井well。若成功送入,返回TRUE,否则返回FALSE。 usepro()用户进程:遍历输入请求块如找到该用户的输入请求,将输入请求块的数据送入用户缓冲区userbuf,并在屏幕输出userbuf。 三、实现修改的关键代码 #include #define WELLSIZE500//输入井的大小 #define FALSE0 #define TRUE1 //进程控制块 struct { int id;//进程标识数 char status;//进程状态,'e'为执行态,'c'为完成态。 int bufflag;//用户缓冲区userbuf空闲标志:FALSE为无数据,TRUE为有数据。 int filec;//本进程需要输出的文件数(用户指定) }pcb[4];//pcb[0]为SPOOLing进程,pcb[1]、pcb[2]、pcb[3]为3个用户进程

南京中医药大学虚拟存储器管理实验

实验三虚拟存储管理 实验性质:验证 建议学时:3 实验目的: 存储管理的主要功能之一是合理的分配空间。请求页式管理是一种常用的虚拟存储管理技术。本实验的目的是请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换方法。 预习内容: 阅读教材《计算机操作系统》第四章,掌握存储器管理相关概念和原理。 实验内容: (1)通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分。 具体的实施方法是: ①在[0,319]的指令地址之间随机选取一起点m; ②顺序执行一条指令,即执行地址为m+1的指令; ③在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; ④顺序执行一条指令,其地址为m’+1; ⑤在后地址[m’+2,319]中随机选取一条指令并执行; ⑥重复上述步骤,直至执行320次指令。 (2)将指令序列变换成页地址流。 设:①页面大小为1K; ②用户内存容量为10块到32块; ③用户虚存容量为32K; 在用户虚存中,按每页存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页(对应的虚存地址为[0,9]); 第10条~第19条指令为第1页(对应的虚存地址为[10,19]); …… 第310条~第319条指令为第31页(对应的虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下述各种算法在不同的内存容量下的缺页率。 ①先进先出的算法(FIFO); ②最近最少使用算法(LRU); ③最佳淘汰法(OPT):先淘汰最不常用的页地址; ④最少访问页面算法(LFU)。 缺页率=(页面失效次数)/(页地址流长度)= 缺页中断次数/ 320 在本实验中,页地址流的长度为320,页面失效次数为每次访问相应指令时,该指令所对应的页不在内存的次数。

网络存储实验报告

湖北文理学院《网络存储》 实验报告 专业班级:计科1211 姓名:*** 学号:*** 任课教师:李学峰 2014年11月16日

实验01 Windows 2003的磁盘阵列技术 一、实验目的 1.掌握在Windows 2003环境下做磁盘阵列的条件和方法。 2.掌握在Windows 2003环境下实现RAID0的方法。 3. 掌握在Windows 2003环境下实现RAID1的方法。 4. 掌握在Windows 2003环境下实现RAID5的方法。 5. 掌握在Windows 2003环境下实现恢复磁盘阵列数据的方法。 二、实验要求 1.在Windows 2003环境下实现RAID0 2.在Windows 2003环境下实现RAID1 3.在Windows 2003环境下实现RAID5 4.在Windows 2003环境下实现恢复磁盘阵列数据 三、实验原理 (一)磁盘阵列RAID技术的概述 RAID是一种磁盘容错技术,由两块以上的硬盘构成冗余,当某一块硬盘出现物理损坏时,换一块同型号的硬盘即可自行恢复数据。RAID有RAID0、RAID1、RAID5等。RAID 技术是要有硬件来支持的,即常说的RAID卡,如果没RAID卡或RAID芯片,还想做RAID,那就要使用软件RAID技术,微软Windows系统只有服务器版本才支持软件RAID技术,如Windows Server 2003等。 (二)带区卷(RAID0) 带区卷是将多个(2-32个)物理磁盘上的容量相同的空余空间组合成一个卷。需要注意的是,带区卷中的所有成员,其容量必须相同,而且是来自不同的物理磁盘。带区卷是Windows 2003所有磁盘管理功能中,运行速度最快的卷,但带区卷不具有扩展容量的功能。它在保存数据时将所有的数据按照64KB分成一块,这些大小为64KB的数据块被分散存放于组成带区卷的各个硬盘中。 (三)镜像卷(RAID1) 镜像卷是单一卷的两份相同的拷贝,每一份在一个硬盘上。它提供容错能力,又称为RAID1技术。 RAID1的原理是在两个硬盘之间建立完全的镜像,即所有数据会被同时存放到两个物理硬盘上,当一个磁盘出现故障时,系统仍然可以使用另一个磁盘内的数据,因此,它具备容错的功能。但它的磁盘利用率不高,只有50%。 四、实验设备 1.一台装有Windows Server 2003系统的虚拟机。 2.虚拟网卡一块,类型为“网桥模式”。 3.虚拟硬盘五块。 五、实验步骤 (一)组建RAID实验的环境 (二)初始化新添加的硬盘 (三)带区卷(RAID0的实现)

操作系统实验 设备管理汇总

操作系统实验 名称实验六设备管理 姓名 专业 学号 日期 2015年12月01日指导老师

一、实验目的 1.理解设备管理的概念和任务。 2.掌握独占设备的分配、回收等主要算法的原理并编程实现。 二、实验内容与要求 1.在Windows系统中,编写程序实现对独占设备的分配和回收的模拟,该程序中包括:建立设备类表和设备表、分配设备和回收设备的函数。 三、实验原理 1.独占设备的分配、回收等主要算法的原理。 为了提高操作系统的可适应性和可扩展性,现代操作系统中都毫无例外地实现了设备独立性,又叫做设备无关性。设备独立性的含义是:应用程序独立于具体使用的物理设备。 为了实现独占设备的分配,系统设置数据表格的方式也不相同,在实验中只要设计合理即可。这里仅仅是一种方案,采用设备类表和设备表。 (1)数据结构 操作系统设置“设备分配表”,用来记录计算机系统所配置的独占设备类型、台数以及分配情况。设备分配表可由“设备类表”和“设备表”两部分组成,如下 设备类表设备表 控制器表通道表 设备队列队首指针。凡因请求本设备而未得到满足的进程,其PCB都应按照一定的策略排成一个队列,称该队列为设备请求队列或简称设备队列。其队首指针指向队首PCB。在有的系统中还设置了队尾指针。 设备状态。当设备自身正处于使用状态时,应将设备的忙/闲标志置“1”。若与该设备相连接的控制器或通道正忙,也不能启动该设备,此时则应将设备的等待标志置“1”。

与设备连接的控制器表指针。该指针指向该设备所连接的控制器的控制表。在设备到主机之间具有多条通路的情况下,一个设备将与多个控制器相连接。此时,在DCT中还应设置多个控制器表指针。 (2)设备分配 1)当进程申请某类设备时,系统先查“设备类表”。 2)如果该类设备的现存台数可以满足申请要求,则从该类设备的“设备表”始址开始依次查该类设备在设备表中的登记项,找出“未分配”的设备分配给进程。 3)分配后要修改设备类表中的现存台数,把分配给进程的设备标志改为“已分配”且填上占用设备的进程名。 4)然后,把设备的绝对号与相对号的对应关系通知用户,以便用户在分配到的设备上装上存储介质。 (3)设备回收 当进程执行结束撤离时应归还所占设备,系统根据进程名查设备表,找出进程占用设备的登记栏,把标志修改为“未分配”,清除进程名。同时把回收的设备台数加到设备类表中的现存台数中。 设备分配程序的改进 增加设备的独立性:为了获得设备的独立性,进程应使用逻辑设备名I/O。这样,系统首先从SDT中找出第一个该类设备的DCT。若该设备忙,又查找第二个该类设备的DCT,仅当所有该类设备都忙时,才把进程挂在该类设备的等待队列上,而只要有一个该类设备可用,系统便进一歩计算分配该设备的安全性。 四、程序流程图

操作系统实验五虚拟存储器管理

操作系统实验 实验五虚拟存储器管理 学号1115102015 姓名方茹 班级11 电子A 华侨大学电子工程系

实验五虚拟存储器管理 实验目的 1、理解虚拟存储器概念。 2、掌握分页式存储管理地址转换盒缺页中断。 实验内容与基本要求 1、模拟分页式存储管理中硬件的地址转换和产生缺页中断。 分页式虚拟存储系统是把作业信息的副本存放在磁盘上,当作业被选中时,可把作业的开始几页先装入主存且启动执行。为此,在为作业建立页表时,应说 明哪些页已在主存,哪些页尚未装入主存。作业执行 时,指令中的逻辑地址指出了参加运算的操作存放的页号和单元号,硬件的地址转 换机构按页号查页表,若该页对应标志为“ 1”,则表示该页 已在主存,这时根据关系式“绝对地址 =块号×块长 +单元号”计算出欲访问的主 存单元地址。如果块长为 2 的幂次,则可把块号作为高地址部分,把单元号作为低 地址部分,两者拼接而成绝对地址。若访问的页对 应标志为“ 0”,则表示该页不在主存,这时硬件发“缺页中断”信号, 有操作系统按该页在磁盘上的位置,把该页信息从磁盘读出装入主存后 再重新执行这条指令。设计一个“地址转换”程序来模拟硬件的地址转 换工作。当访问的页在主存时,则形成绝对地址,但不去模拟指令的执 行,而用输出转换后的地址来代替一条指令的执行。当访问的页不在主 存时,则输出“ * 该页页号”,表示产生了一次缺页中断。 2、用先进先出页面调度算法处理缺页中断。 FIFO 页面调度算法总是淘汰该作业中最先进入主存的那一页,因此可以用一个数组来表示该作业已在主存的页面。假定作业被选中时, 把开始的 m 个页面装入主存,则数组的元素可定为m 个。 实验报告内容 1、分页式存储管理和先进先出页面调度算法原理。 分页式存储管理的基本思想是把内存空间分成大小相等、位置固定

实验报告实验二存储管理

实验二存储管理 一.实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二.实验内容 (1)通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存页面失效次数 命中率?1?页地址流长度中的次数。,用户内存,用户虚存容量为 32k 在本实验中,假定页面大小为1k 32页。容量为4页到320条指令。produce_addstream通过随机数产生一个指令序列,共(2)指令的地址按下述原则生成:A、 的指令是顺序执行的)150% 的指令是均匀分布在前地址部分2)25% 的指令是均匀分布在后地址部分3)25% 体的实施方法是:、具B ;319]的指令地址之间随机选取一起点m)在[0,1 的指令;顺序执行一条指令,即执行地址为m+1)2 该指令的地址为中随机选取一条指令并执行,,m+1]3)在前地址[0 ;m' 的指令'+1)顺序执行一条指令,地址为m4 319]中随机选取一条指令并执行;[m在后地址'+2,5) 320次指令)~5),直到执行6)重复上述步骤1 将指令序列变换称为页地址流C、 条指令条指令排列虚存地址,即320k存放10在用户虚存中,按每在虚存中的存放方式为:;,9])第9条指令为第0页(对应虚存地址为[0第0条~ ;19])条指令为第1页(对应虚存地址为[10,第10条~第19 。。。。。。;,319])[310条~第319条指令为第31页(对应虚存地址为310第页。按以上方式,用户指令可组成32 计算并输出下属算法在不同内存容量下的命中率。)(3 );)先进先出的算法(FIFO1 ;最近最少使用算法(LRU)2) ;OPT)最佳淘汰算法()3 ;)LFR最少访问页面算法()4. 其中3)和4)为选择内容 三.系统框图

实验10 操作系统设备管理

实验10 操作系统设备管理 一、按课本第139页【实例分析4-7】内容熟悉设备管理器界面。(若课本没带,打开我的电脑-右键-管理-设备管理-查看相应设备。)记录你使用的电脑的处理器、磁盘存储器等的型号分别是什么。二、学习如何在Microsoft Windows XP 中如何使用设备管理器管 理设备。 使用设备管理器管理设备 设备管理器提供一个图形视图,可显示计算机上安装的硬件以及与硬件关联的设备驱动程序和资源。在设备管理器上,可以集中更改配置硬件的方式以及更改硬件与计算机微处理器交互的方式。 使用设备管理器管理设备及其驱动程序需要拥有下列权限,系统管理员被授予了所有这些权限:?加载/卸载驱动程序权限。 ?向system32\drivers 目录复制文件所需的权限。 ?向注册表写入设置所需的权限。 设备管理器具有下列功能: ?确定计算机上的硬件是否工作正常。 ?更改硬件配置设置。 ?标识为每个设备加载的设备驱动程序,并获取每个设备驱动程序的有关信息。 ?更改设备的高级设置和属性。 ?安装更新的设备驱动程序。 ?禁用、启用和卸载设备。 ?重新安装驱动程序的前一版本。 ?找出设备冲突并手动配置资源设置。 ?打印计算机上所安装设备的概要信息。 通常,设备管理器用于检查计算机硬件的状态以及更新计算机上的设备驱动程序。如果您是高级用户并且通晓计算机硬件知识,则可以使用设备管理器的诊断功能来消除设备冲突和更改资源设置。 要访问设备管理器,请使用下列任一方法: ?单击开始,单击运行,然后键入devmgmt.msc。 ?右键单击我的电脑,单击管理,然后单击设备管理器。 ?右键单击我的电脑,单击属性,单击硬件选项卡,然后单击设备管理器。

OS实验指导四——虚拟存储器管理

OS实验指导四——虚拟存储器管理

————————————————————————————————作者:————————————————————————————————日期: 2

《操作系统》实验指导四 开课实验室:A207、A209 2015/11/23 、2015/11/24 实验类型设计 实验项目(四)虚拟存储器管理实验 实验学时 4 一、实验目的 设计一个请求页式存储管理方案,并编写模拟程序实现。 二、设备与环境 1. 硬件设备:PC机一台 2. 软件环境:安装Windows操作系统或者Linux操作系统,并安装相关的程序开发 环境,如C \C++\Java 等编程语言环境。 三、实验要求 1) 上机前认真复习页面置换算法,熟悉FIFO算法和LRU页面分配和置换算法的过程; 2) 上机时独立编程、调试程序; 3) 根据具体实验要求,完成好实验报告(包括实验的目的、内容、要求、源程序、实例运行 结果截图)。 四、实验内容 1、问题描述: 设计程序模拟FIFO和LRU页面置换算法的工作过程。假设内存中分配给每个进程的最小物理块数为m,在进程运行过程中要访问的页面个数为n,页面访问序列为P1, … ,Pn,分别利用不同的页面置换算法调度进程的页面访问序列,给出页面访问序列的置换过程,并计算每种算法缺页次数和缺页率。 2、程序具体要求如下: 编写程序用来模拟虚拟页式存储管理中的页面置换 要求: 1)快表页面固定为4块 2)从键盘输入N个页面号 3)输出每次物理块中的页面号和缺页次数,缺页率 4)实现算法选择

3、程序流程图 3、源程序参考: (1)FIFO 算法部分 #include "stdio.h" #define n 12 #define m 4 void main() { int ym[n],i,j,q,mem[m]={0},table[m][n]; char flag,f[n]; printf("请输入页面访问序列\n "); for(i =0;i

实验操作系统存储管理实验报告

实验四操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1)通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k,用户虚存容量为32k,用户内存容量为4页到32页。 (2)produce_addstream通过随机数产生一个指令序列,共320条指令。 A、指令的地址按下述原则生成: 1)50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3)25%的指令是均匀分布在后地址部分 B、具体的实施方法是: 1)在[0,319]的指令地址之间随机选取一起点m; 2)顺序执行一条指令,即执行地址为m+1的指令; 3)在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4)顺序执行一条指令,地址为m’+1的指令 5)在后地址[m’+2,319]中随机选取一条指令并执行; 6)重复上述步骤1)~5),直到执行320次指令 C、将指令序列变换称为页地址流

在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页<对应虚存地址为[0,9]); 第10条~第19条指令为第1页<对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页<对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法

存储管理实验报告

综合性实验报告 一、实验目的 通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式管理的页面置换算法。 页面置换算法是虚拟存储管理实现的关键,通过本次实验理解内存页面调度的机制,在模拟实现FIFO、LRU、OPT、LFU、NUR几种经典页面置换算法的基础上,比较各种置换算法的效率及优缺点,从而了解虚拟存储实现的过程。 二、总体设计 1、编写函数计算并输出下述各种算法的命中率 ①OPT页面置换算法 OPT所选择被淘汰的页面是已调入内存,且在以后永不使用的,或是在最长时间内不再被访问的页面。因此如何找出这样的页面是该算法 的关键。可为每个页面设置一个步长变量,其初值为一足够大的数,对 于不在内存的页面,将其值重置为零,对于位于内存的页面,其值重置 为当前访问页面与之后首次出现该页面时两者之间的距离,因此该值越 大表示该页是在最长时间内不再被访问的页面,可以选择其作为换出页 面。 ②FIFO页面置换算法 FIFO总是选择最先进入内存的页面予以淘汰,因此可设置一个先进先出的忙页帧队列,新调入内存的页面挂在该队列的尾部,而当无空闲 页帧时,可从该队列首部取下一个页帧作为空闲页帧,进而调入所需页 面。 ③LRU页面置换算法 LRU是根据页面调入内存后的使用情况进行决策的,它利用“最近的过去”作为“最近的将来”的近似,选择最近最久未使用的页面予以 淘汰。该算法主要借助于页面结构中的访问时间time来实现,time记

录了一个页面上次的访问时间,因此,当须淘汰一个页面时,选择处于 内存的页面中其time值最小的页面,即最近最久未使用的页面予以淘 汰。 ④LFU页面置换算法 LFU要求为每个页面配置一个计数器(即页面结构中的counter),一旦某页被访问,则将其计数器的值加1,在需要选择一页置换时,则 将选择其计数器值最小的页面,即内存中访问次数最少的页面进行淘 汰。 ⑤NUR页面置换算法 NUR要求为每个页面设置一位访问位(该访问位仍可使用页面结构中的counter表示),当某页被访问时,其访问位counter置为1。需要 进行页面置换时,置换算法从替换指针开始(初始时指向第一个页面) 顺序检查处于内存中的各个页面,如果其访问位为0,就选择该页换出, 否则替换指针下移继续向下查找。如果内存中的所有页面扫描完毕未找 到访问位为0的页面,则将替换指针重新指向第一个页面,同时将内存 中所有页面的访问位置0,当开始下一轮扫描时,便一定能找到counter 为0的页面。 2、在主函数中生成要求的指令序列,并将其转换成页地址流;在不同 的内存容量下调用上述函数使其计算并输出相应的命中率。 三、实验步骤(包括主要步骤、代码分析等) 主要步骤: 、通过随机数产生一个指令序列,共320条指令。其地址按下述原则生成: ①50%的指令是顺序执行的; ②25%的指令是均匀分布在前地址部分; ③25%的指令是均匀分布在后地址部分; 具体的实施方法是: A.在[0,319]的指令地址之间随机选区一起点M; B.顺序执行一条指令,即执行地址为M+1的指令; C.在前地址[0,M+1]中随机选取一条指令并执行,该指令的地址为M’; D.顺序执行一条指令,其地址为M’+1; E.在后地址[M’+2,319]中随机选取一条指令并执行;

JAVAEE课程设计 之实验室设备管理系统

软件学院 课程设计报告书 课程名称 Java高级框架应用开发 设计题目实验室设备管理系统 专业班级软件工程10-6班 学号1020010627 姓名萧翎 指导教师郭鹏飞 2013 年 1 月

目录 1 设计时间.............................................................. 错误!未定义书签。 2 设计目的.............................................................. 错误!未定义书签。3设计任务............................................................... 错误!未定义书签。 4 设计内容.............................................................. 错误!未定义书签。 4.1需求分析............................................................ 错误!未定义书签。 4.1.1总体目标 ...................................................... 错误!未定义书签。 4.1.2具体目标 ...................................................... 错误!未定义书签。 4.1.3系统数据建模 .............................................. 错误!未定义书签。 4.1.4系统功能建模 .............................................. 错误!未定义书签。 4.1.5数据字典 ...................................................... 错误!未定义书签。 4.2总体设计............................................................ 错误!未定义书签。 4.3详细设计........................................................... 错误!未定义书签。 4.4运行与测试 ...................................................... 错误!未定义书签。 5 总结与展望.......................................................... 错误!未定义书签。附:系统程序主要代码 ......................................... 错误!未定义书签。参考文献.................................................................. 错误!未定义书签。成绩评定.................................................................. 错误!未定义书签。

实验四 虚拟存储器管理

实验四虚拟存储器管理 一、实验目的 1、为了更好的配合《操作系统》有关虚拟存储器管理章节的教学。 2、加深和巩固学生对于请求页式存储管理的了解和掌握。 3、提高学生的上机和编程过程中处理具体问题的能力。 二、实验内容 请求页式存储管理是一种常用的虚拟存储管理技术。本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 1.通过随机数产生一个指令序列,共320条指令。 指令的地址按下述原则生成: a.50%的指令是顺序执行的。 b.25%的指令是均匀分布在前地址部分。 c.25%的指令是均匀分布在后地址部分。 具体的实施方法是: a.在[0,319]指令地址之间随机选取一起点; b.顺序执行一条指令,即执行地址为m+1的指令; c.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; d.顺序执行一条指令,其地址为m’; e.在后地址[m’+2,319]中随机选取一条指令并执行; f.重复上述步骤a~e,直到执行320次指令。 2.将指令序列变换成为页地址流 设: a.页面大小为1K; b.用户内存容量为4到32页; c.用户虚存容量为32K。 在用户虚存中,按每K存放10条指令排列虚存地址,即320条指令在虚存中的存放方式为: 第0条~第9条指令为第0页,对应虚存地址为[0,9];

第10条~第19条指令为第1页,对应虚存地址为[10,19] . . 第310条~第319条指令为第31页,对应虚存地址为[310,319]。 按以上方式,用户指令可组成32页。 3、输出下述各种算法在不同内存容量下的命中率。 a.先进先出的算法; b.最近最少访问算法; c.最近最不经常使用算法。 其中:命中率=1-页面失效次数/页地址流长度 页地址流长度为320,页面失效次数为每次访问相同指令时,该指令所对应的页不在内存的次数。 三、实验要求 实验课时4学时。要求画出利用各种算法置换时的置换图,并可以分析说明。编程可分 为几个部分完成:指令的分页,算法的选择,算法的实现,命中率的输出。编写程序前可先 阅读Linux源代码页面换入: static int do_swap_page(struct mm_struct * mm, struct vm_area_struct * vma,unsigned long address, pte_t * page_table,swp_entry_t entry,int write_access) { struct page *page = lookup_swap_cache(entry); pte-t pte; if (!pgae){ lock_kernel( ); swapin_readahead(entry); page = read_swap_cache(entry); unlock_kernel( ); if (!page) return -1;

操作系统实验六设备管理

操作系统课程报告 实验六设备管理 学号 姓名 班级 教师 华侨大学电子工程系

实验目的 1、理解设备管理的概念和任务。 2、掌握独占设备的分配、回收等主要算法的原理并编程实现。 实验内容与基本要求 1、在Windows系统中,编写程序实现对独占设备的分配和回收的模拟,该程序中包括: 建立设备类表和设备表、分配设备和回收设备的函数。 实验报告内容 1、独占设备的分配、回收等主要算法的原理。 为了提高操作系统的可适应性和可扩展性,现代操作系统中都毫无例外地实现了设备独立性,又叫做设备无关性。设备独立性的含义是:应用程序独立于具体使用的物理设备。为了实现独占设备的分配,系统设置数据表格的方式也不相同,在实验中只要设计合理即可。这里仅仅是一种方案,采用设备类表和设备表。 (1)数据结构 操作系统设置“设备分配表”,用来记录计算机系统所配置的独占设备类型、台数以及分配情况。设备分配表可由“设备类表”和“设备表”两部分组成,如下图:(2)设备分配 当进程申请某类设备时,系统先查“设备类表”如果该类设备的现存台数可以满足申请要求,则从该类设备的“设备表”始址开始依次查该类设备在设备表中的登记项,找出“未

分配”的设备分配给进程。分配后要修改设备类表中的现存台数,把分配给进程的设备标志改为“已分配”且填上占用设备的进程名。然后,把设备的绝对号与相对号的对应关系通知用户,以便用户在分配到的设备上装上存储介质。 (3)设备回收 当进程执行结束撤离时应归还所占设备,系统根据进程名查设备表,找出进程占用设备的登记栏,把标志修改为“未分配”,清除进程名。同时把回收的设备台数加到设备类表中的现存台数中。 2、程序流程图。 主程序流程图: 设备分配: 设备回收: 3、程序及注释。 #include #include #include #define false 0 #define true 1

相关文档