文档库

最新最全的文档下载
当前位置:文档库 > 【尚择优选】高中排列组合知识点汇总及典型例题(全)

【尚择优选】高中排列组合知识点汇总及典型例题(全)

尚择优选

1 一.基本原理

1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。

2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。

注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。

二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一

.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从

1.公式:1.()()()()!

!121m n n m n n n n A m n -=+---=…

【尚择优选】高中排列组合知识点汇总及典型例题(全)

2.

【尚择优选】高中排列组合知识点汇总及典型例题(全)

规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2)![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!

n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取m 个元素的组合数,记作Cn 。

1.公式:()()()C A A n n n m m n m n m n m n m m m

==--+=-11……!!!

!10=n C 规定:

【尚择优选】高中排列组合知识点汇总及典型例题(全)

组合数性质:.2n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……

,, ①;②;③;④

11112111212211

r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12m m 1212m =m m +m n n n C C ==则或

四.处理排列组合应用题1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。

2.解排列、组合题的基本策略

(1)两种思路:①直接法;

②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用

题时一种常用的解题方法。

(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。

(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。

(4)两种途径:①元素分析法;②位置分析法。

3.排列应用题:

(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来;(2)、特殊元素优先考虑、特殊位

置优先考虑;

(3).相邻问题:捆邦法:

对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。

(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。

(5)、顺序一定,除法处理。先排后除或先定后插

解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总

TOP相关主题