文档库 最新最全的文档下载
当前位置:文档库 › 蒙特卡洛仿真

蒙特卡洛仿真

蒙特卡洛仿真
蒙特卡洛仿真

实验12 检测性能的蒙特卡洛仿真

1、实验目的

了解蒙特卡洛仿真的基本概念,掌握蒙特卡洛仿真方法在分析检测性能方面的应用,通过蒙特卡洛仿真,对检测性能作出评估,通过和理论比较。

2、实验原理

正如(8.1.16)式所指出的那样,最佳检验总可以化简为

10()

H T H >γ

0(|)F T P f t H dt ∞γ=

∫ (2) 1(|)D T P f t H dt ∞γ

=∫ (3) 要确定检测器的性能,需要确定检验统计量T(z )的概率密度。如果检验统计比较简单,这是比较容易的;但如果检验统计量T(z )比较复杂,要确定它的概率密度是很难的,在这种情况下可以采用蒙特卡洛仿真方法来分析判决的性能。

蒙特卡洛方法也称为统计试验方法,它是采用统计的抽样理论来近似求解数学问题或物理问题,它即可以求解概率问题,也可以求解非概率问题,蒙特卡洛方法是系统模拟的重要方法。下面举例说明蒙特卡洛方法的基本思想。

假定要计算下面的积分:

1

0()I f x dx =∫ 其中2

()0.5(0.5)f x x =??,直接积分得到的结果为I=0.417。

下面采用蒙特卡洛方法来求积分I ,设有两个相互独立的随机变量(X,Y),X 和Y 都在(0,1)区间上服从均匀分布。将(X,Y)的样本点(x,y)投放到x-y 平面上,如下页图所示,那么(X,Y)落在区域G 的概率为区域G 的面积与正方形的面积之比(正方形面积为1),即 1

0{(,)}()P X Y G f x dx ∈=∫

可见积分的数值计算问题就转化成了一个概率的计算问题,而概率可以用相对频数来近似,相对频数可通过统计试验的方法求得。具体方法是将M 个随机点(X,Y)均匀地投放到x-y 平面上的正方形区域内,如果有N 个点落在区域G 内,那么相对频数为N/M ,因此,

?N I M

= (4) (8.3.8)式是对积分I 的一个估计,很显然,估计的精度取决于试验次数M ,M 也称为蒙特卡洛仿真次数。下面给出了用蒙特卡洛方法计算积分I 的MATLAB 程序。

syms x;

y1=int(0.5-(0.5-x).^2,0,1);

zhenshizhi=eval(y1)

N=0;

x1=unifrnd(0,1,1,M);

y1=unifrnd(0,1,1,M);

for i=1:M

if y1(i)<=(0.5-(0.5-x1(i)).^2)

N=N+1;

end

end

fangzhenzhi=N/M

从以上的例子可以看出应用蒙特卡洛仿真的一般步骤:

1 建立合适的概率模型;

2 进行多次重复试验;

3 对重复试验结果进行统计分析(估计相对频数、均值等)、分析精度。

利用蒙特卡洛仿真方法,可以仿真检测器的性能。假定判决表达式如(1)式所示,(3)式给出了检测概率的表达式,如果用蒙特卡洛仿真方法估计检测概率,则

11?(()M i i P U T M ==?γ∑z

(5)

其中z i 表示第i 次仿真试验所用到的观测矢量。由于

{}[]1111?[][()]()M M i i D i i E P E U T P T P M M ===?γ=>γ=∑∑z z

可见,?P

是无偏的,估计的方差为 {}[]{}[]{}{}

21

2221

21?()[()]1()()1)1()M i i M

i i i D D D D VAR P VAR U T M E U T E U T M P P P P M M ===?γ=?γ??γ?=?=∑∑z z z ( 如果定义估计的相对误差δ为估计的标准差与检测概率之比,那么,相对误差为

δ==例如,假定P D =0.8,要求相对误差小于5%,那么M ≥100。但需要注意的是,如果是仿真数值较低的虚警概率,那么仿真次数可能会非常大,例如,P F =10-4,δ<5%,那么要求仿真次数M>4×106。这个仿真次数是惊人的,不仅仿真时间很长,而且需要的随机数也相当多,仿真中使用如此多的随机数,要保证这些随机数都有很好的品质也是很困难的。如果虚警概率更低,问题将更加严重,在这种情况下可以采用重要抽样技术,利用重要抽样技术可以用较少的仿真次数仿真很低的虚警概率,有关重要抽样技术在本书不作深入的阐述,读者可以参考相关的文献。

3、实验内容

4、 用Matlab 的imwrite 函数产生如图一所示的四个灰度等级的图像;

5、 在步骤1中产生的图像中加入高斯白噪声;

6、 利用最大似然准则判断被污染象素点原来的灰度值,恢复整幅图像的面貌。

4、实验要求

4、

实验内容由Matlab 语言实现,要求加入噪声,计算灰度距离等功能要由可移植,

交互性好的子函数实现;

5、 窗口大小,噪声强度可以更改,并比较二者对图像恢复效果的影响;

建议编写该实验的Matlab GUI 程序。

蒙特卡洛(Monte Carlo)模拟法

当科学家们使用计算机来试图预测复杂的趋势和事件时, 他们通常应用一类需要长串的随机数的复杂计算。设计这种用来预测复杂趋势和事件的数字模型越来越依赖于一种称为蒙特卡罗模似的统计手段, 而这种模拟进一步又要取决于可靠的无穷尽的随机数目来源。 蒙特卡罗模拟因摩纳哥著名的赌场而得名。它能够帮助人们从数学上表述物理、化学、工程、经济学以及环境动力学中一些非常复杂的相互作用。数学家们称这种表述为“模式”, 而当一种模式足够精确时, 他能产生与实际操作中对同一条件相同的反应。但蒙特卡罗模拟有一个危险的缺陷: 如果必须输入一个模式中的随机数并不像设想的那样是随机数, 而却构成一些微妙的非随机模式, 那么整个的模拟(及其预测结果)都可能是错的。 最近, 由美国佐治亚大学的费伦博格博士作出的一分报告证明了最普遍用以产生随机数串 的计算机程序中有5个在用于一个简单的模拟磁性晶体中原子行为的数学模型时出现错误。科学家们发现, 出现这些错误的根源在于这5个程序产生的数串其实并不随机, 它们实际上隐藏了一些相互关系和样式, 这一点只是在这种微小的非随机性歪曲了晶体模型的已知特 性时才表露出来。贝尔实验室的里德博士告诫人们记住伟大的诺伊曼的忠告:“任何人如果相信计算机能够产生出真正的随机的数序组都是疯子。” 蒙特卡罗方法(MC) 蒙特卡罗(Monte Carlo)方法: 蒙特卡罗(Monte Carlo)方法,又称随机抽样或统计试验方法,属于计算数学的一个分支,它是在本世纪四十年代中期为了适应当时原子能事业的发展而发展起来的。传统的经验方法由于不能逼近真实的物理过程,很难得到满意的结果,而蒙特卡罗方法由于能够真实地模拟实际物理过程,故解决问题与实际非常符合,可以得到很圆满的结果。这也是我们采用该方法的原因。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。可以把蒙特卡罗解题归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗解题三个主要步骤: 构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样

蒙特卡罗仿真原理

蒙特卡罗仿真原理 蒙特卡罗(MonteCarlo)方法,又称随机抽样或统计模拟方法,泛指所有基于统计采样进行数值计算的方法。在第二次世界大战期间,美国参与“曼哈顿计划’’的几位科学家Stanislaw Ulam,John Von Neumann 和N.Metropolis等首先将这种方法用于解决原子弹研制中的一个关键问题。后来N.Metropolis用驰名世界的赌城---摩纳哥的MonteCarlo一来命名这种方法,为它蒙上了一层神秘色彩。随着现代计算机技术的飞速发展,蒙特卡罗方法已经在统计物理、经济学、社会学甚至气象学等方面的科学研究中发挥了极其重要的作用,将蒙特卡罗方法用于仿真即为蒙特卡罗仿真。蒙特卡罗方法适用于两类问题,第一类是本身就具有随机性的问题,第二类是能够转化为概率模型进行求解的确定性问题。 ※蒙特卡罗方法求解问题的一般步骤 用蒙特卡罗方法求解问题一般包括构造或描述概率过程、从已知概率分布抽样和建立估计量三个步骤。 构造或描述概率过程实际上就是建立随机试验模型,构造概率过程是对确定性问题而言的,描述概率过程是对随机性问题而言的,不同的问题所需要建立的随机试验模型各不相同。 所谓的从已知概率分布抽样指的是随机试验过程,随机模型中必要包含某些已知概率分布的随机变量或随机过程作为输入,进行随机试验的过程就是对这些随机变量的样本或随机过程的样本函数作为输入产生相应输出的过程,因此通常被称为对已知概率分布的抽样。如何产生已知分布的随机变量或随机过程是蒙特卡罗方法中的一个关键问题。 最后一个步骤是获得估计量,蒙特卡罗方法所得到的问题的解总是对真实解的一个估计,本身也是一个随机变量,这个随机变量是由随机试验模型输出通过统计处理得到的。

基于蒙特卡罗法2FSK系统抗噪声性能仿真2

通信原理 课程设计报告 题目:基于蒙特卡罗法2FSK系统抗噪声性能仿真院系: 专业: 班级: 姓名: 指导教师: 2010年12月27日-2010年12月31日

编写MA TLAB的M文件,用该文件的采用相干解调法的2FSK系统的抗噪性能进行1000个符号的蒙特卡罗法仿真,画出误码率与信噪比之间的关系曲线,其中信噪比的取值为r=0dB、2dB、4dB、6dB…10dB,同时画出误码率与信噪比的理论曲线,其中信噪比的取值为r=0dB、0.1dB、0.2dB…10dB。 分步实施: 1)熟悉2FSK系统调制解调,熟悉蒙特卡洛法;熟悉误码率计算; 2)编写主要程序; 3)画出系统仿真误码率曲线的系统理论误码率曲线。

1、蒙特卡罗思想概述 蒙特卡罗方法也称为随机模拟方法,有时也称为随机抽样技术或统计实验方法。它的基本思想是:为了求解数学、物理、工程技术以及生产管理等方面的问题,首先建立一个概率模型或随机过程,使它的参数等于问题的解;然后通过对模型或过程的观察或抽样试验来计算所求参数的统计特征,最后给出所求解的近似值。而解得精确度可用估计值的标准误差来表示。 蒙特卡罗方法可以解决各种类型的问题,但总的来说,视其是否涉及随机过程的性态和结果,该方法处理的问题可以分为两类:第一类是确定性的数学问题,首先建立一个与所求解有关的概率模型,使所求的解就是我们所建立模型的概率分布或数学期望;然后对其进行随机抽样观察,即产生随机变量;最后用其算术平均值作为所求解的近似估计值。第二类是随机性问题,被考察的元素更多的受到随机性的影响,一般情况下采用直接模拟方法,即根据实际物理情况的概率法则,用电子计算机进行抽样试验。 在应用蒙特卡罗方法解决实际问题的过程中,大体有如下几个内容: (1)对求解的问题建立简单而又便于实现的概率统计模型,使所求的解恰好是所建立模型的概率分布或数学期望。 (2)根据概率统计模型的特点和计算实践的需要,尽量改进模型,以便减小方差和费用,提高计算效率。 (3)建立对随机变量的抽样方法,其中包括建立产生伪随机数的方法和建立对所遇到的分布产生随机变量的随机抽样方法。 (4)给出获得所求解的统计估计值及其方差或标准误差的方法。 2、2FSK 系统调制解调原理 频移键控是利用载波的频率变化来传递数字信息。在2FSK 中,载波的频率随二进制基带信号在f1和f2两个频率间变化。用f1和f2分别表示二进制“1”和“0”。因此,2FSK 信号的时域表达式为 )cos()()cos()()(212n n s n n n s n FSK t nT t g a t nT t g a t e θωφω+?? ? ???-++??????-=∑∑∞-∞→∞ -∞ →

蒙特卡洛方法

蒙特卡洛方法 1、蒙特卡洛方法的由来 蒙特卡罗分析法(Monte Carlo method),又称为统计模拟法,是一种采用随机抽样(Random Sampling)统计来估算结果的计算方法。由于计算结果的精确度很大程度上取决于抽取样本的数量,一般需要大量的样本数据,因此在没有计算机的时代并没有受到重视。 第二次世界大战时期,美国曼哈顿原子弹计划的主要科学家之一,匈牙利美藉数学家约翰·冯·诺伊曼(现代电子计算机创始人之一)在研究物质裂变时中子扩散的实验中采用了随机抽样统计的手法,因为当时随机数的想法来自掷色子及轮盘等赌博用具,因此他采用摩洛哥著名赌城蒙特卡罗来命名这种计算方法,为这种算法增加了一层神秘色彩。 蒙特卡罗方法提出的初衷是用于物理数值模拟问题, 后来随着计算机的快速发展, 这一方法很快在函数值极小化、计算几何、组合计数等方面得到应用, 于是它作为一种独立的方法被提出来, 并发展成为一门新兴的计算科学, 属于计算数学的一个分支。如今MC方法已是求解科学、工程和科学技术领域大量应用问题的常用数值方法。 2、蒙特卡洛方法的核心—随机数 蒙特卡洛方法的基本理论就是通过对大量的随机数样本进行统计分析,从而得到我们所需要的变量。因此蒙特卡洛方法的核心就是随机数,只有样本中的随机数具有随机性,所得到的变量值才具有可信性和科学性。

在连续型随机变量的分布中, 最基本的分布是[0, 1]区间上的均匀分布, 也称单位均匀分布。由该分布抽取的简单子样ξ1,ξ2ξ3……称为随机数序列, 其中每一个体称为随机数, 有时称为标准随机数或真随机数, 独立性和均匀性是其必备的两个特点。真随机数是数学上的抽象, 真随机数序列是不可预计的, 因而也不可能重复产生两个相同的真随机数序列。真随机数只能用某些随机物理过程来产生, 如放射性衰变、电子设备的热噪音、宇宙射线的触发时间等。 实际使用的随机数通常都是采用某些数学公式产生的,称为伪随机数。真随机数只是一种数学的理想化概念,实际中我们所接触到的和使用的都是伪随机数。要把伪随机数当成真随机数来使用, 必须要通过随机数的一系列的统计检验。 无论伪随机数用什么方法产生,它的局限性都在于这些随机数总是一个有限长的循环集合, 而且序列偏差的上确界达到最大值。所以若能产生低偏差的确定性序列是很有用的,产生的序列应该具有这样的性质, 即任意长的子序列都能均匀地填充函数空间。 人们已经产生了若干种满足这个要求的序列,如Halton序列、Faure序列、Sobol序列和Niederreiter序列等。称这些序列为拟随机数序列。伪随机序列是为了模拟随机性, 而拟随机序列更致力于均匀性。 3、蒙特卡洛方法的原理 当问题可以抽象为某个确定的数学问题时,应当首先建立一个恰当的概率模型,即确定某个随机事件A或随机变量X,使得待求的解等

蒙特卡罗方法简介

第三章蒙特卡罗方法简介 3.1 Monte Carlo方法简介 Monte Carlo方法是诺斯阿拉莫斯实验室在总结其二战期间工作(曼哈顿计划)的基础上提出来的。Monte Carlo的发明,主要归功于Enrico Fermi、Von Neumann和Stanislaw Ulam等。自二战以来,Monte Carlo方法由于其在解决粒子输运问题上特有的优势而得到了迅速发展,并在核物理、辐射物理、数学、电子学等方面得到了广泛的应用。Monte Carlo的基本思想就是基于随机数选择的统计抽样,这和赌博中掷色子很类似,故取名Monte Carlo。 Monte Carlo方法非常适于解决复杂的三维问题,对于不能用确定性方法解决的问题尤其有用,可以用来模拟核子与物质的相互作用。在粒子输运中,Monte Carlo技术就是跟踪来自源的每个粒子,从粒子产生开始,直到其消亡(吸收或逃逸等)。在跟踪过程中,利用有关传输数据经随机抽样来决定粒子每一步的结果[6]。 3.2 Monte Carlo发展历程 MCNP程序全名为Monte Carlo Neutron and Photon Transport Code (蒙特卡罗中子-光子输运程序)。Monte Carlo模拟程序是在1940年美国实施“发展核武器计划”时,由洛斯阿拉莫斯实验室(LANL)提出的,为其所投入的研究、发展、程序编写及参数制作超过了500人年。1950年Monte Carlo方法的机器语言出现, 1963年通用性的Monte Carlo方法语言推出,在此基础上,20世纪70年代中期由中子程序和光子程序合并,形成了最初的MCNP程序。自那时起,每2—3年MCNP更新一次, 版本不断发展,功能不断增加,适应面也越来越广。已知的MCNP程序研制版本的更新时间表如下:MCNP-3:1983年写成,为标准的FORTRAN-77版本,截面采用ENDF /B2III。 MCNP-3A:1986年写成,加进了多种标准源,截面采用ENDF /B2I V[20]。

MATLAB的蒙特卡洛仿真

实验十五: MATLAB 的蒙特卡洛仿真 一、实验目的 1. 了解蒙特卡洛仿真的基本概念。 2. 了解蒙特卡洛仿真的某些应用 二.实验内容与步骤 1. 蒙特卡洛(Monte Carlo )仿真的简介 随机模拟方法,也称为Monte Carlo 方法,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进行的研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo 来命名这种方法,为它蒙上了一层神秘色彩。冯·诺伊曼是公理化方法和计算机体系的领袖人物,Monte Carlo 方法也是他的功劳。 事实上,Monte Carlo 方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。18世纪下半叶的法国学者Buffon 提出用投点试验的方法来确定圆周率π的值。这个著名的Buffon 试验是Monte Carlo 方法的最早的尝试! 历史上曾有几位学者相继做过这样的试验。不过他们的试验是费时费力的,同时精度不够高,实施起来也很困难。然而,随着计算机技术的飞速发展,人们不需要具体实施这些试验,而只要在计算机上进行大量的、快速的模拟试验就可以了。Monte Carlo 方法是现代计算技术的最为杰出的成果之一,它在工程领域的作用是不可比拟的。 蒙特卡洛(Monte Carlo)模拟是一种通过设定随机过程,反复生成时间序列,计算参数估计量和统计量,进而研究其分布特征的方法。具体的,当系统中各个单元的可靠性特征量已知,但系统的可靠性过于复杂,难以建立可靠性预计的精确数学模型或模型太复杂而不便应用时,可用随机模拟法近似计算出系统可靠性的预计值;随着模拟次数的增多,其预计精度也逐渐增高。由于涉及到时间序列的反复生成,蒙特卡洛模拟法是以高容量和高速度的计算机为前提条件的,因此只是在近些年才得到广泛推广。 2. MC 的原理 针对实际问题建立一个简单且便于实现的概率统计模型,使问题的解对应于该模型中随机变量的概率分布或其某些数字特征,比如,均值和方差等。所构造的模型在主要特征参量方面要与实际问题或系统相一致的。 根据模型中各个随机变量的分布,在计算机上产生随机数,实现一次模拟过程所需的足够数量的随机数。通常先产生均匀分布的随机数,然后生成服从某一分布的随机数,再进行随机模拟试验。 收敛性: 由大数定律, Monte-Carlo 模拟的收敛是以概率而言的. 误差: 用频率估计概率时误差的估计,可由中心极限定理,给定置信水平 的条件下,有: ? ? 模拟次数:由误差公式得 3. 定积分的MC 计算原理 N U σεα2 /1||-≤))((X g Var =σ2 2/1)(εσα-≥U N

基于蒙特卡罗模拟的VAR估计

:t s 表示t 时刻期货的价格 :i t s +表示t+i 时刻期货的价格 :u 表示期货日收益率的均值 :δ表示期货日收益率的标准差 :ε表示服从标准正态分布的随机变量 ①基于蒙特卡罗模拟的VaR 对香港恒生指数期货的实证研究 禾祺夫,董立娟 文章编号:1007-6921(2010)01-0013-03 ②应用蒙特卡罗模拟法计算VaR 的实证分析 摘要 模型三采用了蒙特拉罗模拟法来计算VAR ,选用了几何布朗运动作为反应上的随机模型,预测出明年这个时候的期货的单位价格,并且计算出相对应期货的该时间段的95%置信水平下的日VAR 。选取的对象是作为商品期货和金融期货代表的铜、玉米和五年期国债。 模型三 基于蒙特卡罗模拟的VAR 估计 3.1 名词解释 蒙特卡罗模拟法(Monte Carlo Simulation ,简称MC)是一种随机模拟方法,它用根据市场数据估计的历史波动参数产生市场因子未来波动的大量可能路径(而历史模拟法只能根据市场因子的特定历史产生路径产生有限的未来波动情景)。与历史模拟法相比,它所需要的历史数据更少,而且计算精度和可靠性更高。另外,它是一种全值估计方法,无须假定市场因子服从正态分布,有效地解决了分析方法在处理非线性、非正态问题中遇到的困难,近年来,在国外的研究中已被广泛应用。但缺陷是计算复杂,因为多次重复可以提高衡量值的准确性,但也就使计算量增大。由于计算机技术的广泛应用,能够有效解决计算问题,故我们将采用基于蒙特卡罗模拟的VaR 方法对多种期货进行分析。 3.2 VAR 简介 在一本关于VaR 的开山之作中,菲利普·乔瑞(PhilippeJorion )是这样定义VaR 的:“给定置信区间的一个持有期内的最坏的预期损失”。例如,在给定持有期为一个星期,给定的置信水平为99%,某投资组合的VaR 为1000 万人民币,就意味着在下一个星期有99%的概率该投资组合的最大损失不会超过1000 万人民币,或者说有1%的可能性该投资组合的损失将超过1000 万元人民币。根据Jorion 的定义,VaR 实际上是要估测“正常”情况下风险资产或风险资产组合的预期价值与在一定置信区间下的最低价值之差,即Jorion 所定义的可能最坏的预期损失。 用公式表示为: * )(1var)(W W E VAR c p P -=-=>?② 其中:E(W)为资产组合的预期价值

蒙特卡洛模拟方法作业及答案(附程序)

蒙特卡洛习题 1.利用蒙特卡洛计算数值积分 () ()() 1280ln 1tan x x x xe dx +++? clear all ;clc;close all ; n=1000; count=0; x=0:0.01:1; y=log((1+x).^2+(tan(x).^8)+x.*exp(x)); plot(x,y,'linewidth',2) hold on for i=1:n x1=rand; y1=rand*y(end); plot(x1,y1,'g*') pause(0.01) if y1

2.分别用理论计算和计算机模拟计算,求连续掷两颗骰子,点数之和大于6且第一次掷出的点数大于第二次掷出点数的概率。 clear all;clc;close all; count=0; n=100000; for i=1:n x=floor(rand*6+1); y=ceil(rand*6); if x+y>6&&x>y count=count+1; end end P=count/n 3.

clear all;clc;close all; count=0; n=2000; ezplot('x^2/9+y^2/36=1'); hold on ezplot('x^2/36+y^2=1'); hold on ezplot('(x-2)^2+(y+1)^2=9') for i=1:n x=rand*12-6; y=rand*12-6; plot(x,y,'gh','linewidth',2) pause(0.01) if x^2/9+y^2/36<1&&x^2/36+y^2<1&&(x-2)^2+(y+1)^2<9

蒙特卡洛模拟原理及步骤

二、蒙特卡洛模拟原理及步骤 (一)蒙特卡洛模拟原理:经济生活中存在大量的不确定与风险问题,很多确定性问题实际上是不确定与风险型问题的特例与简化,财务管理、管理会计中同样也存在大量的不确定与风险型问题,由于该问题比较复杂,一般教材对此问题涉及较少,但利用蒙特卡洛模拟可以揭示不确定与风险型问题的统计规律,还原一个真实的经济与管理客观面貌。 与常用确定性的数值计算方法不同,蒙特卡洛模拟是用来解决工程和经济中的非确定性问题,通过成千上万次的模拟,涵盖相应的可能概率分布空间,从而获得一定概率下的不同数据和频度分布,通过对大量样本值的统计分析,得到满足一定精度的结果,因此蒙特卡洛模拟是进行不确定与风险型问题的有力武器。 1、由于蒙特卡洛模拟是以实验为基础的,因此可以成为财务人员进行风险分析的“实验库”,获得大量有关财务风险等方面的信息,弥补确定型分析手段的不足,避免对不确定与风险决策问题的误导; 2、财务管理、管理会计中存在大量的不确定与风险型问题,目前大多数教材很少涉及这类问题,通过蒙特卡洛模拟,可以对其进行有效分析,解决常用决策方法所无法解决的难题,更加全面深入地分析不确定与风险型问题。 (二)蒙特卡洛模拟步骤以概率型量本利分析为例,蒙特卡洛模拟的分析步骤如下: 1、分析评价参数的特征,如企业经营中的销售数量、销售价格、产品生产的变动成本以及固定成本等,并根据历史资料或专家意见,确定随机变量的某些统计参数; 2、按照一定的参数分布规律,在计算机上产生随机数,如利用EXCEL提供的RAND函数,模拟量本利分析的概率分布,并利用VLOOKUP寻找对应概率分布下的销售数量、销售价格、产品生产的变动成本以及固定成本等参数; 3、建立管理会计的数学模型,对于概率型量本利分析有如下关系式,产品利润=产品销售数量×(产品单位销售价格-单位变动成本)-固定成本,这里需要说明的是以上分析参数不是确定型的,是依据某些概率分布存在的; 4、通过足够数量的计算机仿真,如文章利用RAND、VLOOKUP等函数进行30000次的模拟,得到30000组不同概率分布的各参数的排列与组合,由于模拟的数量比较大,所取得的实验数据具有一定的规律性; 5、根据计算机仿真的参数样本值,利用函数MAX、MIN、A VERAGE等,求出概率型量本利分析评价需要的指标值,通过对大量的评价指标值的样本分析,得到量本利分析中的利润点可能的概率分布,从而掌握企业经营与财务中的风险,为财务决策提供重要的参考。三、概率型量本利分析与比较 (一)期望值分析方法假设某企业为生产与销售单一产品的企业,经过全面分析与研究,预计未来年度的单位销售价格、销售数量、单位变动成本和固定成本的估计值及相应的概率如表1,其中销售数量单位为件,其余反映价值的指标单位为元,试计算该企业的生产利润。表1概率型量本利分析参数 项目概率数值 单位销售价格0.3 40 0.4 43 0.3 45 单位变动成本0.4 16 0.2 18 0.4 20 固定成本0.6 28000 0.4 30000

蒙特卡罗也称统计模拟方法

蒙特卡罗也称统计模拟方法,是二十世纪四十年代中期由于科学技术的发展和电子计算机的发明,而被提出的一种以概率统计理论为指导的一类非常重要的数值计算方法。是指使用随机数(或更常见的伪随机数)来解决很多计算问题的方法。蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特·罗方法正是以概率为基础的方法。与它对应的是确定性算法。 蒙特卡罗方法在金融工程学,宏观经济学,计算物理学(如粒子输运计算、量子热力学计算、空气动力学计算)等领域应用广泛。 基本思想 当所求解问题是某种随机事件出现的概率,或者是某个随机变量的期望值时,通过某种“实验”的方法,以这种事件出现的频率估计这一随机事件的概率,或者得到这个随机变量的某些数字特征,并将其作为问题的解。有一个例子可以使你比较直观地了解蒙特卡罗方法:假设我们要计算一个不规则图形的面积,那么图形的不规则程度和分析性计算(比如,积分)的复杂程度是成正比的。蒙特卡罗方法是怎么计算的呢?假想你有一袋豆子,把豆子均匀地朝这个图形上撒,然后数这个图形之中有多少颗豆子,这个豆子的数目就是图形的面积。当你的豆子越小,撒的越多的时候,结果就越精确。在这里我们要假定豆子都在一个平面上,相互之间没有重叠。 工作过程 在解决实际问题的时候应用蒙特卡罗方法主要有两部分工作: 用蒙特卡罗方法模拟某一过程时,需要产生各种概率分布的随机变量。 用统计方法把模型的数字特征估计出来,从而得到实际问题的数值解。 计算步骤 使用蒙特卡罗方法进行分子模拟计算是按照以下步骤进行的: ① 使用随机数发生器产生一个随机的分子构型。 ②对此分子构型的其中粒子坐标做无规则的改变,产生一个新的分子构型。 ③计算新的分子构型的能量。 ④比较新的分子构型于改变前的分子构型的能量变化,判断是否接受该构型。 若新的分子构型能量低于原分子构型的能量,则接受新的构型,使用这个构型重复再做下一次迭代。 若新的分子构型能量高于原分子构型的能量,则计算玻尔兹曼常数,同时产生一个随机数。

蒙特卡罗方法的解题过程可以归结为三个主要步骤

蒙特卡罗方法的解题过程可以归结为三个主要步骤:构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 蒙特卡罗方法解题过程的三个主要步骤: (1)构造或描述概率过程 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 (2)实现从已知概率分布抽样 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的一个概率分布是(0,1)上的均匀分布(或称矩形分布)。随机数就是具有这种均匀分布的随机变量。随机数序列就是具有这种分布的总体的一个简单子样,也就是一个具有这种分布的相互独立的随机变数序列。产生随机数的问题,就是从这个分布的抽样问题。在计算机上,可以用物理方法产生随机数,但价格昂贵,不能重复,使用不便。另一种方法是用数学递推公式产生。这样产生的序列,与真正的随机数序列不同,所以称为伪随机数,或伪随机数序列。不过,经过多种统计检验表明,它与真正的随机数,或随机数序列具有相近的性质,因此可把它作为真正的随机数来使用。由已知分布随机抽样有各种方法,与从(0,1)上均匀分布抽样不同,这些方法都是借助于随机序列来实现的,也就是说,都是以产生随机数为前提的。由此可见,随机数是我们实现蒙特卡罗模拟的基本工具。 (3)建立各种估计量 一般说来,构造了概率模型并能从中抽样后,即实现模拟实验后,我们就要确定一个随机变量,作为所要求的问题的解,我们称它为无偏估计。建立各种估计量,相当于对模拟实验的结果进行考察和登记,从中得到问题的解。 蒙特卡洛法模拟蒲丰(Buffon)投针实验-使用Matlab 2010年03月31日星期三8:47 蒲丰投针实验是一个著名的概率实验,其原理请参见此页: https://www.wendangku.net/doc/3b15619778.html,/reese/buffon/buffon.html 现在我们利用Matlab来做模拟,顺便说一下,这种随机模拟方法便是传说中的“蒙特-

运用蒙特卡罗模拟进行风险分析

运用蒙特卡罗模拟进行风险分析 蒙特卡罗模拟由著名的摩纳哥赌城而得名,他是一种非常强有力的方法学。对专业人员来说,这种模拟为方便的解决困难而复杂的实际问题开启了一扇大门。估计蒙特卡罗模拟最著名的早期使用是诺贝尔奖物理学家Enrico Fermi(有时也说是原子弹之父)在1930年的应用,那时他用一种随机方法来计算刚发现的中子的性质。蒙特卡罗模拟是曼哈顿计划所用到的模拟的核心部分,在20世纪50年代蒙特卡罗模拟就用在Los Alamos国家实验室发展氢弹的早期工作中,并流行于物理学和运筹学研究领域。兰德公司和美国空军是这个时期主要的两个负责资助和传播蒙特卡罗方法的组织,今天蒙特卡罗模拟也被广泛应用于不同的领域,包括工程,物理学,研发,商业和金融。 简而言之,蒙特卡罗模拟创造了一种假设的未来,它是通过产生数以千计甚至成千上万的样本结果并分析他们的共性实现的。在实践中,蒙特卡罗模拟法用于风险分析,风险鉴定,敏感度分析和预测。模拟的一个替代方法是极其复杂的随机闭合数学模型。对一个公司的分析,使用研究生层次的高等数学和统计学显然不合逻辑和实际。一个出色的分析家会使用所有他或她可得的工具以最简单和最实际的方式去得到相同的结果。任何情况下,建模正确时,蒙特卡罗模拟可以提供与更完美的数学方法相似的答案。此外,有许多实际生活应用中不存在闭合模型并且唯一的途径就是应用模拟法。那么,到底什么是蒙特卡罗模拟以及它是怎么工作的? 什么是蒙特卡罗模拟? 今天,高速计算机使许多过去看来棘手的复杂计算成为可能。对科学家,工程师,统计学家,管理者,商业分析家和其他人来说,计算机使创建一个模拟现实的模型成为可能,这有助于做出预测,其中一种方法应用于模拟真实系统,它通过调查数以百计甚至数以千计的可能情况来解释随机性和未来不确定性。结果通过编译后用于决策。这就是蒙特卡罗模拟的全部内容。 形式最简单的蒙特卡罗模拟是一个随机数字生成器,它对预测,估计和风险分析都很有用。一个模拟计算模型的许多情况,这通过反复地从预先定义的特定变量概率分布中采集数据并将之应用于模型来实现。因为所有的情况都产生相应的结果,每种情况都可以蕴含一种预测。预测的是你定义为重要模型结果的事项(通常含有公式或函数)。 将蒙特卡罗模拟法想象为从一个大篮子里可放回的反复拿出高尔夫球。拦在的大小和形

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介

蒙特卡罗(Monte Carlo)方法简介 蒙特卡罗(Monte Carlo)方法,也称为计算机随机模拟方法,是一种基于"随机数"的计算方法。 一起源 这一方法源于美国在第二次世界大战进研制原子弹的"曼哈顿计划"。Monte Carlo方法创始人主要是这四位:Stanislaw Marcin Ulam, Enrico Fermi, John von Neumann(学计算机的肯定都认识这个牛人吧)和Nicholas Metropolis。 Stanislaw Marcin Ulam是波兰裔美籍数学家,早年是研究拓扑的,后因参与曼哈顿工程,兴趣遂转向应用数学,他首先提出用Monte Carlo方法解决计算数学中的一些问题,然后又将其应用到解决链式反应的理论中去,可以说是MC方法的奠基人;Enrico Fermi是个物理大牛,理论和实验同时都是大牛,这在物理界很少见,在“物理大牛的八卦”那篇文章里提到这个人很多次,对于这么牛的人只能是英年早逝了(别说我嘴损啊,上帝都嫉妒!);John von Neumann可以说是计算机界的牛顿吧,太牛了,结果和Fermi一样,被上帝嫉妒了;Nicholas Metropolis,希腊裔美籍数学家,物理学家,计算机科学家,这个人对Monte Carlo方法做的贡献相当大,正式由于他提出的一种什么算法(名字忘了),才使得Monte Carlo方法能够得到如此广泛的应用,这人现在还活着,与前几位牛人不同,Metropolis很专一,他一生主要的贡献就是Monte Carlo方法。 蒙特卡罗方法的名字来源于摩纳哥的一个城市蒙地卡罗,该城市以赌博业闻名,而蒙特?罗方法正是以概率为基础的方法。与它对应的是确定性算法。 二解决问题的基本思路 Monte Carlo方法的基本思想很早以前就被人们所发现和利用。早在17世纪,人们就知道用事件发生的"频率"来决定事件的"概率"。19世纪人们用投针试验的方法来决定圆周率π。本世纪40年代电子计算机的出现,特

蒙特卡洛仿真

实验12 检测性能的蒙特卡洛仿真 1、实验目的 了解蒙特卡洛仿真的基本概念,掌握蒙特卡洛仿真方法在分析检测性能方面的应用,通过蒙特卡洛仿真,对检测性能作出评估,通过和理论比较。 2、实验原理 正如(8.1.16)式所指出的那样,最佳检验总可以化简为 10() H T H >γ

可见积分的数值计算问题就转化成了一个概率的计算问题,而概率可以用相对频数来近似,相对频数可通过统计试验的方法求得。具体方法是将M 个随机点(X,Y)均匀地投放到x-y 平面上的正方形区域内,如果有N 个点落在区域G 内,那么相对频数为N/M ,因此, ?N I M = (4) (8.3.8)式是对积分I 的一个估计,很显然,估计的精度取决于试验次数M ,M 也称为蒙特卡洛仿真次数。下面给出了用蒙特卡洛方法计算积分I 的MATLAB 程序。 syms x; y1=int(0.5-(0.5-x).^2,0,1); zhenshizhi=eval(y1) N=0; x1=unifrnd(0,1,1,M); y1=unifrnd(0,1,1,M); for i=1:M if y1(i)<=(0.5-(0.5-x1(i)).^2) N=N+1; end end fangzhenzhi=N/M 从以上的例子可以看出应用蒙特卡洛仿真的一般步骤: 1 建立合适的概率模型; 2 进行多次重复试验; 3 对重复试验结果进行统计分析(估计相对频数、均值等)、分析精度。 利用蒙特卡洛仿真方法,可以仿真检测器的性能。假定判决表达式如(1)式所示,(3)式给出了检测概率的表达式,如果用蒙特卡洛仿真方法估计检测概率,则 11?(()M i i P U T M ==?γ∑z (5) 其中z i 表示第i 次仿真试验所用到的观测矢量。由于

蒙特卡罗法方法的应用 【开题报告】

开题报告 信息与计算科学 蒙特卡罗法方法的应用  一、综述本课题国内外研究动态, 说明选题的依据和意义 1773年法国G.-L.L.von布丰曾通过随机投针试验来确定圆周率的近似值, 这就是应用这个方法的最早例子. 蒙特卡罗是摩纳哥著名赌城, 1945年J.von诺伊曼等人用它来命名此法, 沿用至今. 数字计算机的发展为大规模的随机试验提供了有效工具, 遂使蒙特卡罗法得到广泛应用. 在连续系统和离散事件系统的仿真中, 通常构造一个和系统特性相近似的概率模型, 并对它进行随机试验, 因此蒙特卡罗法也是系统仿真方法之一. 随着现代计算机技术的发展,蒙特卡罗方法已经在自然科学研究中发挥了重要的作用. 鉴于的重要性, 使得蒙特卡罗方法不仅在传统的应用领域如核物理、统计物理、分子动力学等领域得到广泛的应用, 而且还在诸如经济学、人口学、医学等领域得到了推广和发展. 统计物理学中蒙特卡罗方法是用随机抽样的计算机模拟来研究平衡或非平衡热动力学系统的模型. 蒙特卡罗的抽样有两种: 简单抽样和重要性抽样. Metropolis方法就是最早的一种重要性抽样方法. 后来人们对此方法进行了一系列的改进, 衍生出诸如Swenden-Wang方法、Wolff方法等团簇算法, 随着人们对蒙特卡罗方法认识的进一步加深,新的更有效的方法必将越来越多的出现. 以蒙特卡罗法模拟晶粒生长过程的研究进展为例, 自20世纪40年代中期, 由于科学技术的发展和电子计算机的发明, 23法作为一种独立的方法被提出来, 并且在核武器的研制中首先得到了应用. 直到80年代初由美国EXXON研究组开发出二维算法后, 很快引起重视并应用于再结晶、多晶材料的晶粒长大、有序-无序畴转变等多种金属学和物理学仿真过程. 1983年, Anderson提出一个新型的MC程序, 将其应用于二维的晶粒长大动力学模拟, 后来又将MC法应用于模拟晶粒生长的尺寸分布、拓扑学和局部动力学的研究. 1992年, Anderson使用蒙特卡罗法结合晶粒间的相互作用能, 模拟晶粒边界能量和点缺陷浓度的最小值来驱动的微观结构的进化, 模拟结果与试验值复合很好. 此后, 蒙特卡罗法在材料领域中得到了迅速的发展. 1994年, Paillard等人应用MC技术

蒙特卡罗方法及应用实验讲义2016

蒙特卡罗方法及应用 实验讲义 东华理工大学核工系 2016.8

实验一 蒙特卡罗方法基本思想 一、实验目的 1、了解蒙特卡罗方法方法的基本思想; 2、掌握蒙特卡罗方法计算面积、体积的方法; 3、掌握由已知分布的随机抽样方法。 二、实验原理 Monte Carlo 方法,又称统计模拟方法或计算机随机模拟方法,是一种基于“随机数”进行数值模拟的方法,一种采用统计抽样理论近似求解物理或数学问题的方法。 如待求量可以表述成某些特征量的期望值、某些事件出现的概率或两者的函数形式,那么可采用蒙特卡罗方法求解。在求解某些特征量的期望值或某些事件出现的概率时,必须构建合符实际的数学模型。例如采用蒙特卡罗方法计算某函数所围面积时,构建的数学模型是构造一已知面积的可均匀抽样区域,在该区域投点,由伯努利定理大数定理可知,进入待求区域投点的频率依概率1收敛于该事件出现的概率(面积之比)。 由已知分布的随机抽样方法指的是由已知分布的总体中抽取简单子样。具体方法很多,详见教材第三章。 三、实验内容 1、安装所需计算工具(MATLAB 、fortran 、C++等); 2、学习使用rand(m,n)、unifrnd(a,b,m,n)函数 3、求解下列问题: 3.0、蒲丰氏投针求圆周率。 3.1、给定曲线y =2 – x 2 和曲线y 3 = x 2,曲线的交点为:P 1( – 1,1 )、P 2( 1,1 )。曲线围成平面有限区域,用蒙特卡罗方法计算区域面积; 3.2 、计算1z z ?≥??≤??所围体积 其中{(,,)|11,11,02}x y z x y z Ω=-≤≤-≤≤≤≤。 4、对以下已知分布进行随机抽样:

23(蒙特卡罗模拟)

专题5 蒙特卡罗模拟的有关问题 大家知道,只有当经典回归模型满足所有的假定条件时,参数的估计量才具有最佳线性无偏特性,即有限样本特性,同时也具有渐近特性。当假定条件不成立时(比如存在异方差、自相关等),所采用的广义最小二乘法,以及对联立方程模型的估计,动态分布滞后模型的估计,向量自回归模型的估计所得参数的估计量只具有渐近特性。也就是说,只有当样本容量相当大时,渐近特性才起作用。而当样本容量不是很大,甚至很小时,仍然不知道估计量的有限样本分布特征。 另外通过对非平稳过程的研究知单位根检验式和非平稳变量之间回归参数和t统计量不服从正态分布。他们都是渐近地服从Wiener过程函数的分布。参数估计量和统计量的有限样本特性不能用解析的方法求解。 对于上述两种情形,若要研究这些估计量和统计量的有限样本分布特征,通常采用两种方法。一种为数值计算法。也称为有限样本近似法(finite-sample approximation)。这种方法要用到许多数学知识,专业性很强,使没有受过专门训练的人员运用此方法受到限制。(2)蒙特卡罗模拟方法。又称随机模拟法。Boot strap 1.蒙特卡罗(Monte Carlo)模拟和自举(Boost trap)发展过程 这是一种通过设定随机过程(数据生成系统),反复生成时间序列,并计算参数估计量和统计量,进而研究其分布特征的方法。蒙特卡罗在欧洲的摩那哥,以著名赌城而得名。据说这个术语是Metropolis 在1949年提出的。若再晚些时候,蒙特卡罗模拟也许就称作Las Vegas(在美国的Nevada州,著名赌城)模拟方法了。 自举模拟与蒙特卡罗模拟既有联系,又不相同。自举(Boost trap,亦称靴襻)这个名词是Efron在1979年提出的。“自举”一词来源于儿童故事。指一个人落水时,试图用自提鞋扣儿的方法自救。20世纪80,90年代发展很快。自举,即采用从总体中反复抽取样本的方法计算参数估计量的值,置信区间或相应统计量的值并估计这些量的分布。这里介绍的远不是自举模拟的全貌,而是参数估计方面的应用。 因为这些方法的实现是以高容量和高速度的计算机为前提条件,所以只是在近年才得到广泛推广。 2.蒙特卡罗模拟和自举模拟原理 进行蒙特卡罗模拟和自举模拟首先要设定数据生成系统。而设定数据生成系统的关键是要产生大量的随机数。例如模拟样本为100的随机趋势过程的DF统计量的分布,若试验1万次,则需要生成200万个随机数。 计算机所生成的随机数并不是“纯随机数”,而是具有某种相同统计性质的随机数。计量经济学中蒙特卡罗模拟和自举模拟所用到的随机数一般是服从N(0,1)分布的随机数。计算机生成的随机数称作“伪随机数”(pseudo-random number)。生成的随机数的程序称作“伪随机数生成系统”。实际上计算机不可能生成纯随机数。 在进行蒙特卡罗模拟时一般要给定多种条件。例如样本容量要选择50,100,200等多种。有时模型形式也要选择多种。从而研究参数估计量和统计量在各种条件下的分布特征。当只需要这几个特定条件下的模拟结果时,把结果纪录下来就可以了。当需要很多条件下的模拟结果时,一般采用估计响应面函数(response surface function)的方法研究之。例如Dicky-Fuller的DF检验表中只给出了样本容量为25,50,100,250,500几个点的DF分布特征。显然对25至500间每个样本容量都进行DF分布模拟是不实际的,也是无必要的。

蒙特卡洛方法模拟小例子

例在我方某前沿防守地域,敌人以一个炮排(含两门火炮)为单位对我方进行干扰和破坏.为躲避我方打击,敌方对其阵地进行了伪装并经常变换射击地点. 经过长期观察发现,我方指挥所对敌方目标的指示有50%是准确的,而我方火力单位,在指示正确时,有1/3的射击效果能毁伤敌人一门火炮,有1/6的射击效果能全部毁伤敌人火炮. 现在希望能用某种方式把我方将要对敌人实施的20次打击结果显现出来,确定有效射击的比率及毁伤敌方火炮的平均值。 使用蒙特卡洛方法模拟50次打击结果: function [out1 out2 out3 out4]=Msc(N) % N开炮次数 % out1射中概率 % out2平均每次击中次数 % out3击中敌人一门火炮的射击总数 % out4击中敌人2门火炮的射击总数 k1=0; k2=0; k3=0; for i=1:N x0=randperm(2)-1; y0=x0(1); if y0==1 fprintf('第%d次:指示正确||',i); x1=randperm(6); y1=x1(1); if y1==1|y1==2|y1==3 fprintf('第%d次:击中0炮||',i); k1=k1+1; elseif y1==4|y1==5 fprintf('第%d次:击中1炮||',i); k2=k2+1; else

fprintf('第%d次:击中2炮||',i); k3=k3+1; end else fprintf('第%d次:指示错误,击中0炮||',i); k1+1; end fprintf('\n'); end out1=(k2+k3)/N; out2=(0*k1+k2+2*k3)/20; out3=k2/N; out4=k3/N; 运行: 1.[out1 out2 out3 out4]=Msc(50) 结果: 1.第1次:指示正确||第1次:击中2炮|| 2.第2次:指示错误,击中0炮|| 3.第3次:指示错误,击中0炮|| 4.第4次:指示正确||第4次:击中0炮|| 5.第5次:指示错误,击中0炮|| 6.第6次:指示正确||第6次:击中1炮|| 7.第7次:指示正确||第7次:击中0炮|| 8.第8次:指示错误,击中0炮|| 9.第9次:指示正确||第9次:击中2炮|| 10.第10次:指示正确||第10次:击中1炮|| 11.第11次:指示正确||第11次:击中1炮|| 12.第12次:指示正确||第12次:击中2炮|| 13.第13次:指示错误,击中0炮|| 14.第14次:指示正确||第14次:击中1炮|| 15.第15次:指示错误,击中0炮|| 16.第16次:指示错误,击中0炮|| 17.第17次:指示正确||第17次:击中0炮|| 18.第18次:指示错误,击中0炮||

相关文档