文档库 最新最全的文档下载
当前位置:文档库 › 循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法
循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法

一、循环冷却水系统为什么会结垢

1.一般解释

冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应:

Ca(HCO3)2→CaCO3↓+ H2O + CO2↑

当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应:

Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32-

难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。

2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。

若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。

若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。

注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP

二、抑制为结垢的方法

(一)化学方法

1.加酸:

目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.

优点:费用较小,效果比较明显

缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险.

2.软化

目的:降低水中至垢阳离子的含量

优点:防止结垢效果好

缺点:操作复杂、软化后水腐蚀性增强.

3.加阻垢剂:

目的:使碳酸钙的过饱和溶液保持稳定。

优点:防垢效果好、具有缓蚀作用、针对性强.

缺点:药剂一般含磷,对环境保护造成压力.

(二)物理方法(电子防垢)

电子水处理仪中有静电水处理器(带电极),和电子感应水处理器(非接触)两大类。

静电水处理器通过法兰连接在供水管道上,通过释能器内阳极发射高压静电场来改变水垢的结晶形式,其电磁场频率单一,在常温下作用有效时间0.5~2个小时。它的实际防垢率跟水质关系很大,当用在高硬度水或高浊度水时,其防垢率明显降低。早期产品的金属电极没有涂层,水中的悬浮物会吸附在电极表面,干扰了静电场的发射,防垢率随之降低,电极污染严重时防垢性能完全丧失,所以3个月到半年必须擦洗一次电极。为减少维护电极的频率,现在的产品在电极表面覆有泰氟隆涂层,表面光滑,抗污染能力有所提高,但泰氟隆涂层耐磨性能差,水中杂质的冲刷会破坏泰氟隆涂层,一旦涂层破损,电极很快被污染,防垢率随之降低,若使用者不能及时知道,就会引起设备结垢严重,造成生产隐患。

静电水处理器则是一根稀有金属棒为阳极,亮体为阴极,由镀锌钢管制成。被处理的水通过芯棒与亮体之间的环状空间流入用水设

备。静电场发生器,是向静电水处理器提供高频电场能量与控制的设备,静电场电压高达为8500V 以上。

静电水处理器安装的数量及位置不合理时,会对系统产生腐蚀。静电水处理器是利用电化学原理使水分子极化(磁化),极化的水分子具有极强的电负性,来吸引钙、镁离子,从而延缓其结垢时间,达到其防垢的目的。具有极强的电负性的水分子也能侵蚀水垢和锈垢。但是.如果电子水处理器的安装数量及位置不合理时,它会对水系统产生严重的腐蚀,它的这种负面作用远大于正面作用。会对冷却器、水泵系统及设备造成严重的危害。以蓝星化工的已二醇制冷机组为例说明.在清理泵人口的过滤器时发现有成团成团的红色铁锈随水涌出,可见水系统的腐蚀已经相当的严重。为了解决腐蚀问题.操作人员将水系统的所有静电水处理器全部关掉.经过一段时间的观察,发现在清理泵入口过滤器时,水质明显变清.当再使用静电水处理器时,发现循环水系统的水质又开始变的浑浊,并经过反复的实验,发现使用静电水处理器是严重腐蚀水系统管道的根源,最后拆除了所有的静电水处理器。

最新一代广谱感应水理器:广谱感应水处理器的主机产生强度和频率都按一定规律变化的脉冲电流,通过缠绕在管道外壁的信号线形成感应电磁场作用到水中,使水中的钙镁离子与酸根离子结合生成大量的文石晶核,在水中的矿物质超过饱和溶解度时,钙镁离子与酸根

离子在文石晶核上形成大量的文石晶体,该文石晶体呈惰性,粘附力弱,很容易被水流冲走。

广谱感应水处理器产生的感应电磁场其变频范围宽,可适用于多种水质,这就解决了以前多种电子水处理器频率单一只适合某种特定水质的问题,在油田原油集输系统的油水混合物防垢方面也有很好的应用效果。

广谱感应水处理器在常温下的作用有效时间是可达12小时。在一般流速下作用距离可达几公里至十几公里,同一工况可减少设备的安装数量。

广谱感应水处理器没有任何与水接触的部件,不用担心电极被污染或磨损。其实际防垢率高,可达90%以上,效果稳定,可用在高硬度水或高浊度水广谱感应水处理器能根据水质情况和水的流速调整对输出电流进行补偿,可适用于高流速系统,水质变化大的系统。该产品免维护,是当今世界最先进的物理防垢技术。

行业中国- 中国除垢门户新闻资讯发表于:2009-07-03 09:44:26

循环水结垢原理及处理方

循环水结垢原理及处理 方 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】

循环水结垢原理及处理方法 一. 结垢原理 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO 3)2 ? CaCO 3 ˉ + H 2O + CO 2- 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2 + 2OH- ? CaCO 3 ˉ + 2H 2O + CO 32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。 碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡: Ca2++CO3 2- CACO 3(固)

在一定条件下达到平衡状态时〔Ca2+〕与〔CO 3 2-〕的乘积为碳酸 钙在此条件下的溶度积K SP ,为一定值。 若此条件下〔Ca2+〕×〔CO 32-〕> K SP 时,平衡向右移,有晶体 析出。 若此条件下〔Ca2+〕×〔CO 32-〕< K SP 时,平衡向左移,晶体溶 解。 注:实际情况下〔Ca2+〕×〔CO 32-〕值称为K CP 二. 抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度.优点:费用较小 缺点:不易控制、过量会产生腐蚀的危险、有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量 优点:防止结垢效果好 缺点:操作复杂、软化后水腐蚀性增强. 3.加阻垢剂: 目的:使碳酸钙的过饱和溶液保持稳定。 优点:防垢效果好、具有缓蚀作用、针对性强. 缺点:药剂一般含磷,对环境保护造成压力. (二)物理方法

电厂循环冷却水系统中的问题解决知识讲解

电厂循环冷却水系统中的问题解决 2011年7月31日 FJW提供 1.概述 电厂的循环水冷却处理系统是由以下几部分组成:①生产过程中的热交换器;②冷却构筑物(冷却塔);③循环水泵及集水池。该系统是利用冷却水进行降温和水质处理。冷却水在冷却生产设备或产品的过程中,水温升高,虽然其物理性状变化不大,但长期循环使用后,水中某些溶解物浓缩或消失、尘土积累、微生物滋长,造成设备、管道内垢物沉积或对金属设备管道腐蚀。因此,必须对其进行降温和稳定处理等解决方案,才能使循环水系统正常进行,使上述问题得到解决或改善。 2.敞开式循环冷却水系统存在的问题 2.1循环冷却水系统中的沉积物 2.2.1沉积物的析出和附着 一般天然水中都含有重碳酸盐,这种盐是冷却水发生水垢附着的主要成分。 在直流冷却水系统中,重碳酸盐的浓度较低。在循环冷却水系统中,重碳酸盐的浓度随着蒸发浓缩而增加,当其浓度达到过饱和状态时,或者在经过换热器传热表面使水温升高时,会发生下列反应 Ca(HCO3)2=CaCO3↓+CO2↑+H2O 冷却水在经过冷却塔向下喷淋时,溶解在水中的CO2要逸出,这就促使上述反应向右进行。 CaCO3沉积在换热器传热表面,形成致密的碳酸钙水垢,它的导热性能很差。不同的水垢其导热系数不同,但一般不超过1.16W/(m.K),而钢材的导热系数为46.4-52.2 W/(m.K),可见水垢形成,必然会影响换热器的传热效率。 水垢附着的危害,轻者是降低换热器的传热效率,影响产量;严重时,则管道被堵。 2.2设备腐蚀 循环冷却水系统中大量的设备是金属制造的换热器。对于碳钢制成的换热器,长期使用循环冷却水,会发生腐蚀穿孔,其腐蚀的原因是多种因素造成的。 2.2.1冷却水中溶解氧引起的电化学腐蚀 敞开式循环冷却水系统中,水与空气能充分的接触,因此水中溶解的氧气可达饱和状态。当碳钢与溶有氧气的冷却水接触时,由于金属表面的不均一性和冷却水的导电性,在碳钢表面会形成许多腐蚀微电池,微电池的阳

工业循环冷却水处理系统

工业循环冷却水处理系统 一、概述 循环冷却水在使用之後,水中的Ca2+、Mg2+、Cl-、SO42-等离子,溶解固体和悬浮物相应增加,空气中污染物如灰尘、杂物、可溶性气体以及换热器物料泄露等,均可进入循环冷却水,使循环冷却水系统中的设备和管道腐蚀、结垢,造成换热器传热效率降低,过水断面减少,甚至使设备管道腐蚀穿孔。 循环冷却水系统中结垢、腐蚀和微生物繁殖是相互关联的,污垢和微生物粘泥可以引起垢下腐蚀,而腐蚀产品又形成污垢,要解决循环冷却水系统中的这些问题,必须进行综合治理。 采用水质稳定技术,用物理与化学处理相结合的办法控制和改善水质,使循环冷却水系统中的腐蚀、结垢、生物污垢得到有效的解决,从而取得节水、节能的良好效益。臭氧产品已在国内电子、电力、饮料、制药行业广泛应用,质量达到国外同行业90年代水平。投入产出比的可比效益为:1:2-1:10以上,节约能源,提高设备使用效率,延长设备的使用寿命和运行的安全性,减少环境污染。 臭氧可以作为唯一的处理药剂来替代其它的处理冷却水处理剂,它能阻垢、缓蚀、杀菌、能使冷却水系统在高浓缩倍数甚至在零排污下运行,从而节水节能,保护水资源;同时,臭氧冷却水处理不存在任何环境污染。国外应用臭氧进行循环水处理已经取得了成功,而我国在这个领域却是空白。 二、系统工艺 循环水冷却通常分为密闭式循环水冷却系统和敞开式循环水冷却系统。密闭式循环水冷却系统中,水是密闭循环的,水的冷却不与空气直接接触。敞开式循环水冷却系统,水的冷却需要与空气直接接触,根据水与空气接触方式的不同,可分为水面冷却、喷水冷却池冷却和冷却塔冷却等。 敞开式循环水冷却系统可分为以下3类: 1.压力回流式循环冷却系统 此种循环水系统一般水质不受污染,仅补充在循环使用过程中损失的少量水量。补充水可流入冷水池,也可流入冷却构筑物下部。冷水池也可设在冷却塔下面,与集水池合并。 补充水→ 冷水池→ 循环泵房→生产车间或冷却设备→冷却塔 压力回流式循环冷却系统

浅谈循环水的结垢

浅谈循环水的结垢 [摘要]人类社会为了满足生活及生产的需求,要从各种天然水体中取用大量的水,其数量是极为可观的。除生活用水外,工业用水量也很大,几乎没有哪一种工业不用水。[1]本文主要从循环水的水温、流速等方面对循环水使用中常见的结垢问题进行了分析,提出了控制想法,对于循环水的正常运行具有一定指导意义。 【关键词】循环水;结垢 1、简介 循环水系统出现设备结垢、腐蚀等等,是换热设备降低换热效率、发生泄露的主要危害。目前工业应用的水质稳定剂多为阻垢缓蚀剂,质量的差强人意,换热设备材质的种类各异,都会造成循环水系统运行状况的差异。 2、结垢的影响因素 结垢是指在水中溶解或悬浮的无机物,由于种种原因,而沉积在金属表面。敞开式循环冷却水系统的结垢主要成分有CaCO3和腐蚀产物二种,由于缓蚀剂的使用使腐蚀产物大大减少,而以CaCO3垢、Ca3(PO4)2垢及锌垢为主要成份。垢的产生会引起水冷设备换热效率下降,管线的阻力增大,导致循环水量减少或列管的堵塞等。敞开式循环冷却水系统中影响结垢的主要因素是冷却水pH、Ca、总碱度、水温、流速及金属表面状况等。[2] 2.1水温 循环冷却水中的碳酸钙、碳酸镁等硬度盐类,其溶解度都是随着温度的升高而减小,因此水温越高越易析出,同时分子活动也随温度的上升越加活泼,水垢的附着速度也越高。 污垢的温差表示法是生产现场常用的表示结垢程度的方法,它通过换热器工艺介质和冷却水进出口温差的变化来反映污垢沉积量的变化。[3] 2.2流速 水垢的附着速度是随着换热器内的冷却水流速的增大而减小的。一般而言,如水流速度达到1.0m/s以上时,水垢、悬浮物等杂质易被水流冲走,不易沉积,相反某些部位流速过小、存在死角拐角、温差大的地方就容易沉积水垢,因此应适当提高水流速度来降低设备的结垢。 此外,循环水本身水质、温差、换热表面光滑度、浓缩倍数、阻垢剂的选择和正确使用等因素都对结垢有着重要的影响。

循环水(冷却水)腐蚀结垢及微生物问题探讨

冷却水问题探讨 一般冷却水常引起的危害有三种,即腐蚀( corrosion ) 、水垢(scale)、淤泥之沉积( deposition ) 及微生物 ( slime ),兹将其发生原因及控制方法分述如下: 1、腐蚀 !腐蚀发生原因: 金属腐蚀是经由化学或电化学反应而导致金属毁坏之现象。最主要的腐蚀问题是由氧气所引起的,冷却水于冷却水塔中与空气密切接触,水中溶氧高达 8~10 ppm 极易促成腐蚀。 a.铁材质与水中氧气作用而腐蚀,其反应如下: 氧气所引起的腐蚀呈点蚀( pitting ) 状态有愈深之倾向(如下图), 若未有效抑止可能穿透管壁而造成穿孔、泄漏。点蚀是最具腐蚀破坏力之一,并且也是最难在实验室预测得知。 b.当微生物繁殖时,其微生物体的分泌物与冷却水有机物、无机物聚积而形成的黏泥,沉积在系统中时,将造成沉积下腐蚀。沉积物上下界面因溶存氧浓度不同将会造成氧浓淡电池( Oxygen concentration cell)于沉积物下发生严重之腐蚀现象。

图 : pitting 会导致设备快速破损 c.两种不同金属互相接触时,因金属间电位差造成流电腐蚀(galvanic corrosion), 例如热交换器之铜管与碳钢端板,其接触部份的钢铁材质会因此加速腐蚀。双金属之间的电位差会因金属接触而造成流电腐蚀,但工业上也时常运用此原理来做防蚀方法,此方法称之为牺牲阳极。 双金属腐蚀 d.其它影响腐蚀的因素尚有pH、间隙、溶解盐类、温度、流速等。 !腐蚀控制方法: 腐蚀之控制不外是改变系统金属材质,就是改变系统环境。改变系统材质将是一很大成本花费,而且并不是百分之百可以防止腐蚀发生。然改变系统环境是目前广泛被用到控制腐蚀的方法。在水系统内,有三种方式改变水中环境来有效抑制腐蚀; 用水中自然存在之钙离子及碱度,在金属表面上形成碳酸钙保护膜。 利用化学或机械方法将溶存于水中之氧气去除。 加入腐蚀抑制剂 。 如上所云,加入腐蚀抑制剂亦是一个简便而有效的方式。腐蚀既是一种电池反应 ﹐

工业循环冷却水系统处理的重要性

工业循环冷却水系统处理的重要性 循环水的使用及水处理的重要性 用水来冷却工艺介质的系统,我们称作冷却水系统,通常可分为以下两种类型:直流冷却水系统和循环冷却水系统。其中,循环冷却水系统目前已被广泛地应用于各行各业之中,比如,石油化工、电力、冶金、医药、纺织、机械、电子等等传统工业企业中的工艺用循环冷却水系统,及各楼宇的中央空调用循环冷却水系统。 最早使用的是直流冷却水系统,冷却水仅仅通过换热设备一次,用过后水就被排放掉。这种系统虽然投资少、操作简便,但它的用水量却很大,冷却水的操作费用也大,不符合节约使用水资源的要求,目前基本都改成了循环冷却水系统(除了海水中还在使用的直流冷却水系统),即冷却水用过后不立即排放掉,而是收回循环再用。从直流水系统到循环水系统,水资源的节约非常可观,例如:一个年产30万吨的合成氨工厂,如采用直流水系统,每小时用水量约25000T,而改成循环水系统,并以3倍的浓缩倍数运行,则每小时耗水量只需约550T。 冷却水循环后遇到什么问题? 腐蚀:冷却水在循环使用中,水在冷却塔内和空气充分接触,使水中的溶解氧得到补充,所以循环水中溶解氧总是饱和的,水中溶解氧是造成金属电化学腐蚀的主要原因,这是冷却水循 环后易带来的问题之一。 结垢:水在运行中蒸发(尤其是在冷却塔的环境中),使循环水中含盐量逐渐增加,加上水中二氧化碳在塔中解析逸散,使水中碳酸钙或其它盐类在传热面上结垢析出的倾向增加,这是问题之二。 生物污垢:冷却水和空气接触,吸收了空气中大量的灰尘、泥沙、微生物及其孢子,使系统的污泥增加;冷却塔内的光照、适宜的温度、充足的氧和养分都有利于细菌和藻类的生长,从而使系统粘泥增加,在换热器内沉积下来,造成了粘泥的危害,这是水循环使用后易带来的问题之三。 冷却水循环后,冷却水补充水量可大幅度降低,节约了用水,这是我们所希望的。但水循环后突出的腐蚀、结垢和生物污垢等问题如不解决,生产装置的长周期、满负荷、安全稳定运行是难以保证的,那么采用循环水后所期望的经济、技术效益不仅不能充分发挥,而且将给企业带来许多危害——严重的沉积物的附着、设备腐蚀和微生物的大量滋生,由此形成的黏泥污垢堵塞管道或各种材料及设备严重受损等问题,会威胁和破坏工厂的安全生产;而由于各种沉积物使换热设备的水流阻力加大,水泵及相关设备的能耗大幅增加,传热效率降低,从而降低产品品质或生产效率,这一切都可能造成极大的经济损失,例如:电厂出现此类问题,必然使凝汽器凝结水的温度升高、真空度下降,严重影响汽轮机的出力和电厂的发电量,并且大幅增加能耗(有一个经验数值:发电机组真空度每下降1%,多耗燃料原油0.8%)。 所以,必须要选择一种科学合理、全面有效且经济实用的循环冷却水处理方案,使上述问题得到妥善解决或改善,水处理就是通过水质处理的办法来解决以上问题。如能真正做好水处理,不但能保证保质保量、安全生产,而且还能通过大幅降低能耗、节约材料、节约用水来降低生产成本,直接创造可观的经济效益,例如在电厂,就可以提高汽轮机凝汽器的真空度,一般可提高7~8%,提高汽轮机的功率,提高电负荷5~6%,增加发电能力;如应用在低压锅炉炉内处理,不但可将水处理运行费用从仅使用炉外处理方式时的0.5元/吨降到0.3元/吨左右,而且据统计,可使每台2t?h-1的锅炉节煤约5%;现代工业一般水冷换热器在未进行水处理时的寿命为2年左右,经水处理后的寿命可达7~8年,检修费和检修工作量可降低90%,一个小型化工厂由此节约的检修费即可达50万元。 科学合理且全面完整的化学水处理方案

循环水中腐蚀和管道结垢原因和处理方法

在现代的工业生产中,循环水含有的物质例如化学物质、金属物资等方面,工业循环水管道受到这些物质的影响,会产生结垢还有腐蚀等影响,如果处理不及时,就是妨碍到循环水管道的使用性能,继而降低工业生产效率,不能得到良好的经济效益。所以,需要对工业循环水管道结垢产生的原因还有机理明确好,针对性的采取控制和解决措施,目的就是保证循环水管道使用的稳定性,提升工业生产的效率,实现比较好的经济效益。 1.结垢和腐蚀产生的机理和原因 结垢和腐蚀可以说是影响工业循环水管道使用性能的重要原因,并且两者有直接的联系,通常情况下腐蚀就会产生结垢,结垢会产生腐蚀,时间长了就会影响管道的相关零件的使用性能,提升机泵运行的负荷,继而对设备、整体系统换热冷却等方面,不仅会影响到工业循环水管道的使用性能,还会使得工业生产效率还有经济效益,有所下降。接下来就和大家针对于工业循环水管道结垢和腐蚀产生的机理和原因相关内容,展开分析和阐述。 1.1补充水 由于在工业生产中,会消耗大量的是,因此为了保证生产的效率还有稳定性,需要定期进行补充,但是补充水在进入工业循环水管道之后,补充水中硬度、碱度还有PH值、浊度等方面,都会导致结垢。如果补充水中的硬度和碱度越大,意味着结垢离子更多,并且受到温度的影响,补充水容易达到饱和的状态,增加了循环水管道腐蚀现象的产生。此外,在工业循环水管道使用中,水质中的悬浮物会起到晶核的作用,这样浊度就会产生较多,悬浮物也会变多,这样如果不定期进行处理,也会导致悬浮物长期积累,增加工业循环水管道腐蚀和结垢现象的产生。 1.2温度 导致工业循环水管道结垢和腐蚀的重要因素之一就是温度,主要是由于工业循环水管道在运行过程中,循环水中包含的硬度盐类会根据温度的变化,产生溶解的现象。并且,在溶

循环冷却水系统水处理(必要性)

循环冷却水系统水处理 一、水处理的必要性 循环冷却水系统主要由冷却塔、循环泵、管道及管道过滤器、阀门等组成。以上系统主要设备材质有铁。循环冷却水在运行过程中,随着水的不断浓缩和通过空气与周围环境大量接触不可避免地产生腐蚀、结垢和微生物粘泥这三大障碍,造成设备和管道的腐蚀、结垢,使用寿命缩短,传热阻力增加,换热效率降低,甚至造成设备和管道堵塞及损坏,直至影响系统的正常运行及产品的合格率。循环冷却水水处理的目的为解决腐蚀、结垢和微生物粘泥这三个障碍,避免上述问题的产生。 对循环水进行水质稳定处理,能解决系统中存在的腐蚀、结垢、污泥、菌藻繁殖等问题。使设备寿命延长,维修费用减少,能耗下降保证系统正常运转。 据日本1981年的建设白皮书所记载的设备器材耐用年限比较结果为,未经 水处理的循环水系统设备的耐用年限要比经过预防处理(如加药处理)的循环水系统设备的耐用年限缩短一半左右。另外,每附着0.15mm垢泥,电费增加10%。再从换热效果看,达到同样的换热效果,加药处理比未加药处理传热效果要高6. 4倍。因此对循环水进行水质稳定处理,其经济效益是相当显著的。 表1.水垢厚度与过量能源消耗关系一览表 表2.加药处理与未加药处理的效果比较

二、水处理方案依据 1. 甲方提供的循环水系统的基本资料; 2. 中华人民共和国国家标准。 1)《工业循环冷却水处理设计规范》GB50050-95。 2)《中华人民共和国化工行业标准工业设备化学清洗质量标准》HG/T 2387-92 3)《中华人民共和国污水综合排放标准》GB8978-1996。 4)《水与废水的测试标准》GB-5750-1995. 3. 水处理原则 1)本方案以上海恩梯恩精密机电有限公司循环冷却水补充水(市政自来水) 为水源,以此作为循环水水质稳定处理的依据。 2)循环水水质稳定处理后的水质参照《工业循环冷却水水处理设计规范》 GB50050-95 及《宾馆饭店空调用水及冷却水水质标准》DB31/T143-94。 3) 经处理过的循环水的排放均不对环境产生污染。 三、水处理的技术服务内容 1. 提供水处理的各类所需化学品; 2. 对现有的系统提出改进建议; 3. 提供日常处理技术服务及日常水质分析; 4.调试并改造原自动加药自动排污装置并保证其正常运行。

基于MCGS中央空调冷却水循环系统(超详细)

目录 摘要 (2) 前言 (2) 1.设计准备 (3) 1.1设计内容与要求 (3) 1.2设计思路 (4) 1.3 具体设计及实现功能 (4) 2.系统报警记录与参数设置 (4) 2.1 报警定义设置 (4) 2.1.1 冷却塔储水容量的报警定义设置 (4) 2.1.2 冷却塔出水温度报警定义的设置 (5) 2.2报警显示的设置 (6) 2.3报警数据的设置 (7) 2.4报警参数设置 (9) 3.历史数据报表和历史曲线的设置 (10) 3.1历史数据报表的设置 (10) 3.2 历史曲线的设置 (11) 4.运行与调试 (14) 4.1 系统运行 (14) 4.2 系统调试 (14) 4.2.1调试中出现的问题 (14) 4.2.2 解决方案 (14) 5.设计总结 (15) 参考文献 (16) 答谢 (17) 附录 (18)

基于MCGS中央空调冷却水循环系统演示 摘要冷却水循环系统是中央空调系统中的重要组成部件,它直接影响到中央空调供冷、供热功能的实现效果,所以对它准确的测试与处理要求很高。 本设计研究了基于MCGS组态环境在中央空调冷却水循环系统中得应用。利用组态软件MCGS设计了冷却水循环系统监控界面,提供了直观、清晰、准确的冷却水循环系统的运行状态,进而为控制运行、维修和故障诊断提供了多方面的可能性,充分提高了系统的工作效率。 关键词中央空调、冷却水循环、MCGS Abstract The cooling water circulation system is a key component in the central air conditioning system, it directly affects the central air-conditioning cooling and heating function to achieve the effect, so it is accurate testing and demanding. This design study Based on MCGS environment have central air-conditioning cooling water circulation system applications. Configuration software MCGS design of the cooling water circulation system monitoring interface provides an intuitive, clear, accurate operational status of the cooling water circulation system, and thus provide a wide range of possibilities for the control of the operation, maintenance and troubleshooting to fully enhance the system efficiency. Key words central air conditioning, cooling water circulation, MCGS 前言

采暖循环水结垢问题及解决

2011年08月 科教纵横 采暖循环水结垢问题及解决 文/鲁彬 摘 要:采暖循环水系统存在的主要问题是换热设备的结垢影响换热效率,目前在采暖循环水系统的水处理中,通常采用软化水方式,即在补水系统安装钠离子交换器,将水质软化后注入循环系统。在国内水处理市场上,各种物理法水处理设备主要以解决防垢、缓蚀、杀菌为主。 关键词:采暖循环水;结垢;暖通 中图分类号:TD928.5 文献标识码:A 文章编号:1006-4117(2011)08-0299-01 一、采暖水循环系统的组成 对于普通居民采暖系统,热量表、疏水器、降污器、过滤器及阀门等,是采暖系统的重要配件,为保证系统正常运行,安装时应符合设计要求。集中采暖建筑物热力入口及分户热计量户内系统入户装置,具有过滤、调节、计量及关断等多种功能,为保证正常运转及方便检修、查验,应按设计要求施工和验收。高温热水一般工作压力较高,而一旦渗漏危害性也要高于低温热水,因此规定可拆件使用安全度较高的法兰和耐热橡胶板做垫料。热量表、疏水器、除污器、过滤器及阀门的型号、规格、公称压力及安装位置应符合设计要求。采暖系统人口装置及分户热计量系统人户装置,应符合设计要求。安装位置应便于检修、维护和观察。散热器支管长度超过1.5m时,应在支管上安装管卡。上供下回式系统的热水于管变径应顶平偏心连接,蒸汽干管变径应底平偏心连接。在管道干管上焊接垂直或水平分支管道时,干管开孔所产生的钢渣及管壁等废弃物不得残留管内,且分支管道在焊接时不得插入于管内。另外,采暖管道分支相连接时或焊接连接时,较多使用冲压弯头。由于其弯曲半径小,不利于自然补偿。在作为自然补偿时,应使用煨弯。同时规定,塑料管及铝塑复合管除必须使用直角弯头的场合,应使用管道弯曲转弯,以减少阻力和渗漏的可能,特别是在隐蔽敷设时。 二、采暖循环水垢的产生原因 现在居民所常用采暖的主要形式有电暖直接辐射法和水暖管道辐射法,第二种也就是采暖循环水系统。普通管道采暖系统主要采用专门设计的管道回路式结构,目前多以PP-R和PEX管材作为散热管道,由于管路较长,由于供水温度的变化会产生钙镁离子垢长期附着在管路内壁上,如果不定期处理,也会导致温度下降,直接影响散热效果。另外,由于水中含有大量的微生物,在条件适宜的情况下会产生大量的生物粘泥,生物粘泥覆盖在管壁内部,造成管道变绿、变黑,据有关资料统计,在地热采暖系统中,平均每年管道结垢1mm,而这1mm厚的水垢可导致水温下降6℃,这不仅影响正常的使用温度,也造成能源的浪费,如长时间得不到有效的清洁处理,会使地热采暖系统出现故障,造成管内栓塞无法使用,甚至造成破坏地面,拆除或更换地热管路系统,给地暖用户造成财产损失与生活不便。 三、系统水压试验及除污 采暖系统安装完毕,管道保温之前应进行水压试验。试验压力应符合设计要求。蒸汽、热水采暖系统,应以系统顶点工作压力加0.1MPa作水压试验,同时在系统顶点的试验压力不小于0.3MPa。高温热水es采暖系统.试验压力应为系统顶点工作压力加0.4MPa。使用塑料管及复合管的热水采暖系统;应以系统顶点工作压力加0.2MPa作水压试验,同时在系统顶点的试验压力不小于0.4MPa。使用钢管及复合管的采暖系统应在试验压力下10min内压力降不大干0.02MPa,降至工作压力后检查,不渗、不漏;使用塑料管的采暖系统应在试验压力下1h内压力降不大干0.05MPa,然后降压至工作压力的1.15倍,稳压2h,压力降不大于0.03MPa,同时各连接处不渗、不漏。系统试压合格后,应对系统进行冲洗并清扫过滤器及除污器。现场观察,直至排出水不含泥沙、铁屑等杂质,且水色不浑浊为合格。系统冲洗完毕应充水、加热,进行试运行和调试。 四、利于除污除垢的管道安装要求 管道坡度是热水采暖系统中的空气和蒸汽采暖系统中的凝结水顺利排除的重要措施,安装时应有一定的坡度。为妥善补偿采暖系统中的管道伸缩,避免因此而导致的管道破坏,补偿器及固定支架等应按设计要求正确施工。实践中发现,热水采暖系统由于水力失调导致热力失调的情况多有发生。为此,系统中的平衡阀及调节阀,应按设计要求安装,并在试运行时进行调节、作出标志。科学的安装能够保证蒸汽采暖系统安全正常的运行。例如从受力状况考虑,使焊口处所受的力最小,确保方形补偿器不受损坏。避免因方形补偿器垂直安装产生“气塞”造成的排气、泄水不畅,从而避免了水垢的积淀。膨胀水箱的膨胀管及循环管上不得安装阀门。当采暖热媒为110℃—130℃的高温水时,管道可拆卸件应使用法兰,不得使用长丝和活接头。法兰垫料应使用耐热橡胶板。焊接钢管管径大于32mm的管道转弯,在作为自然补偿时应使用煨弯。塑料管及复合管除必须使用直角弯头的场合外应使用管道直接弯曲转弯。管道、金属支架和设备的防腐和涂漆应着良好,无脱皮、起泡、流淌和漏涂缺陷。 五、除垢清洗剂的使用 很多厂家开发出了除垢清洗剂,但是当我们在水中加注使用时,一定要做到操作安全、快速、高效、简捷、省时、环保、节能。操作安全是对人员不能有毒副作用,也不能腐蚀管道,高效是要求能快速的清除水垢,不影响正常使用。环保,是指对环境没有长期的危害,也不会对人造成健康的损害。还有的公司开发出了新技术新设备。该管路清洁设备的工作原理是以压缩空气做为动力,利用PSI发射器向管路中发射一颗大于管路内径10—20%的特制射弹,使射弹沿管线高速运动并与管路内壁充分磨擦,达到清洁管路内壁的干式物理清洁技术。一分钟可清洗200米以上,有效清洁地热盘管内长期积存的水锈、粘泥、残留物等杂质。这是物理式清洁,不用任何化学试剂和水。它能有效清除地热盘管内部的钙镁离子垢和生物粘泥及其它残留杂质,轻松解决管路栓塞问题。 总而言之,采暖循环水系统是世界举世公认的一项先进的理想采暖新技术,也是我们最常见的采暖系统。它具有舒适健康、安全可靠、清洁环保、节能经济、节省空间、美观时尚等不可比拟的优势,受到广大国民的青睐。但由于采暖循环水系统中出现水垢等常见且不易解决的问题,要求安装工作者和使用者要科学地采取对策。 作者单位:甬港现代工程有限公司参考文献: [1]王爱军.Y型除污器在换热站的合理应用[J].石河子科技,2006.03. [2]陶明锋.浅谈热力系统“除污器”应注意的问题[J].黑龙江科技信息,2009.16. [3]李生武,姜文涛.除污器应用研究[J].齐齐哈尔大学学报(自然科学版),2009.04. 2011.08 299

循环水结垢原因与防止教学教材

循环水结垢原因与防止 1、固相物的生成 ⑴形成污垢的原因: ①多组份过饱和溶液中盐类的结晶析出;②有机胶状物和矿质胶状物的沉积;③不同分散度的某些物质固体颗粒的粘结;④某些物质的电化学还原过程生成物等。 以上混合物沉积总称作污垢。 ⑵形成水垢的原因:水中溶解盐类产生固相沉淀是构成结垢 (水垢)的主要因素,其产生固相沉淀的条件是: ①随着温度的升高,某些盐类的溶解度降低,如Ca(HCO3)2 CaC03 Ca(0H)2、CaS04 MgC03 Mg(0H)2等; ②随着水份的蒸发,水中溶解盐的浓度增高,达到过饱和程度; ③在被加热的水中产生化学过程,某些离子形成另一些难溶的盐类离子。 具备了上述条件的某些盐类,首先在金属表面上个别部分沉积出原始的结晶胚,并以此为核心逐渐合并增长。之所以易沉积于金属表面,这是因为金属表面在微观上具有一定的粗糙度,微观上的凹凸不平成为过饱和溶液中固体结晶核心;同时加热面上的氧化膜对固相物也有很强的吸附力。作为构成水垢的盐类——钙镁,在过饱和溶液中生成固相结晶胚芽,逐变而为颗粒,具有无定形或潜晶型结构,接着互相聚附,形成结晶或絮团。固相沉渣的生成与胚芽核心的生成速度有关,即与单位时间内出现的结晶核数量与结晶生长的线速度有关,而这两个因素又与水温和水中含盐浓度及其它杂质的存在有关。 2、重碳酸盐的分解冷却水结垢的主要原因是因为水中含有较多的重碳酸钙,在加热过程中失去平衡,分解为碳酸钙、二氧化碳和水。碳酸钙溶解度较低,因而首先在冷却设备表面沉积下来。温度、压力等因素也影响结垢的强度与速度。重碳酸钙是反溶解度盐类,在超过一定温度(临界点)时,其饱和浓度急剧减小。 3、钙、镁碳酸盐水垢碳酸盐水垢通常以致密的结晶沉淀在加热器壁面甚至冷却塔填料或壁上。但当水温在过热面超过100C时,CaC0沉淀是海绵状的絮状体。虽然,在沸腾温度以下,也有可能出现硫酸钙的沉淀,但这只能是特例,因为硫酸钙的三种状态: C aS04 2CaS04 H20 CaS04 2H20三者的溶解度都很大,因而在冷却水的具体条件下,可以完全不必考虑硫酸钙的沉积问题。氢氧化钙的溶解度也是随温度升 高而降低的,但在一般情况下在水中不会生成氢氧化钙,因而也不必考虑。重点在于钙镁的碳酸盐: Ca2++2HCO3=H2O+CO+CaCO3 Ca(HC03)2=CaCO3+H20+CO2 Mg(HCO3)2=MgC0@H2O+CO2 MgCO的溶解度比CaCO3勺溶解度大六倍以上,而且在水中的MgCO会很快水解。

工业循环冷却水处理设计规范2007

工业循环冷却水处理设计规范 中华人民共和国国家标准 GB50050--2007 工业循环冷却水处理设计规范 Code for design of industrial recirculating cooling water treatment 中华人民共和国建设部 关于发布国家标准《工业循环冷却水处理设计规范》的公告 中华人民共和国建设部公告第742号 现批准《工业循环冷却水处理设计规范》为国家标准,编号为GB50050-2007,自2008年5月1日起实施。其中,第3.1.6(2、4、5、6)、3.1.7、3.2.7、6.1.6、8.1.7、8.2.1、8.2.2、8.5.1(1、2、3、4、5、6、7)、8.5.4条(款)为强制性条文,必须严格执行。原《工业循环冷却水处理设计规范》GB50050-95同时废止。本标准由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部 二〇〇七年十月二十五日 1 总则 1.0.1 为了贯彻国家节约水资源和保护环境的方针政策,促进工业冷却水的循环利用和污水资源化,有效控制和降低循环冷却水所产生的各种危害,保证设备的换热效率和使用年限,减少排污水对环境的污染,使工业循环冷却水处理设计做到技术先进,经济实用,安全可靠,制定本规范。 1.0.2 本规范适用于以地表水、地下水和再生水作为补充水的新建、扩建、改建工程的循环冷却水处理设计。 1.0.3 工业循环冷却水处理设计应符合安全生产、保护环境、节约能源和节约用水的要求,并便于施工、维修和操作管理。 1.0.4 工业循环冷却水处理设计应不断地吸取国内外先进的生产实践经验和科研成果,积极稳妥地采用新技术。 1.0.5 工业循环冷却水处理设计除应按本规范执行外,还应符合国家有关现行标准和规范的规定。 2 术语、符号 2.1 术语 2.1.1 循环冷却水系统Recirculating Cooling Water System 以水作为冷却介质,并循环运行的一种给水系统,由换热设备、冷却设备、处理设施、水泵、管道及其它有关设施组成。 2.1.2 间冷开式循环冷却水系统(间冷开式系统)Indirect Open Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与大气直接接触散热的循环冷却水系统。2.1.3 间冷闭式循环冷却水系统(闭式系统)Indirect Closed Recirculating Cooling Water System 循环冷却水与被冷却介质间接传热且循环冷却水与冷却介质也是间接传热的循环冷却水系

冷却水控制系统说明书新版

冷却水控制系统操作说明书

一、控制系统说明 1.冷却水控制系统是冷却水换热并经降温,再循环使用的给水系统。主要由冷却设备、水泵和管道组成。有节约大量工业用水的作用。 2.冷却水控制柜具有操作循环泵,冷却风机,电磁阀的启动和停止,故障报警,故障切换等功能。可以通过人机界面和远程实时监控系统的运行状态。 3..控制柜本身有防雨罩,具有防雨功能 4.控制柜本身带有保护功能: 短路保护:采用施耐德智能电源转换开关,当发生短路时自我保护不会将电源烧毁; 电机过热:当电机运转过程中,出现发热时影响电机PTC 阻值,使其阻值越来越大,这时热敏电阻继电器通过其阻值变化来判断电机此时的温度,当检测到电机温度异常或时,停止低温泵输出并在文本显示器上出现相应提示,且对应循环泵故障指示灯亮。重置按钮可以进行复位操作。 过载保护:通过热过载继电器保护限制电机工作电流,当电机电流大于额定值一定时间时,热过载继电器报警动作,并停止低温泵输出,在文本显示器上有相应提示,通过热过载继电器复位键进行复位;

二、安装说明 1.运输:柜体到达现场后,请用叉车或吊车平稳的将柜体运 到柜体所需安装的基础台(槽钢或水泥台)上。运输过程中,柜体不应受碰撞,以免骨架变形,或者薄面板碰凹,表面涂层 受撞伤,影响外观。 2.安装:本控制柜属于落地式安装。安装完毕后打开箱体, 将电源引入,电机按照图纸连接,电磁阀控制由端子引出。 安装完毕后,要检查电机与控制柜的绝缘性,机械传动是否 正常。 3.环境要求: 现场环境温度应控制在-10°~50°这个范围内 现场的防护等级要求为IP55 无导电尘埃和破坏绝缘介质的气体或蒸汽。 无剧烈震动或冲击 良好通风环境 4.当以上条件均符合后,接通电源,观察电机运转是否正常,转速方向,转速高低和转速大小等。 三、工作原理 该电控柜由西门子S7-200作为主控制器。现场各种模拟量信号(压力、温度信号)由变送器(安置于现场〉转换为4-20mA的电流信号,经PLC的AD釆集模块,送入CPU进行处理。CPU对实时信号和设定信号比较,并作相应报警处理,同时监控整个系统流程。文本显示器

循环冷却水换热器结垢及腐蚀的原因及处理措施

循环冷却水换热器结垢及腐蚀的原因及处理措施 化工生产中各类介质的热量交换均离不开冷却水换热器这一重 要的工业设备,大多数冷却水换热器在使用过程中存在结垢堵塞和腐蚀问题,常出现因换热不够而被迫停车清洗甚至导致换热器的报废更换,严重时会影响生产的安全稳定运行,针对冷却水换热器结垢和腐蚀的原因,阐述了常见的结垢和腐蚀的处理措施。 1、结垢的原因 A、悬浮于循环水中的固体微粒附着在换热器表面,一般由颗粒细小的泥沙、尘土、不溶性盐类、胶状物、有无等组成,当含有这些物质的水流经换热器表面时,容易形成污垢沉积物,造成垢下腐蚀,为某些细菌生存和繁殖创造了条件。当防腐措施不当时,最终导致换热表面腐蚀穿孔泄漏。 B、一般生物污垢均指微生物污垢,循环水系统中最常见的微生物主要是铁细菌、真菌,铁细菌能见溶于水中的Fe2+转化为不溶于水的Fe2O3的水合物,在水中产生大量铁氧化物沉淀以及建立氧浓度差腐蚀电池,腐蚀金属。 C、结晶污垢 在冷却循环水中,随着水分的蒸发,水中溶解的盐类(重碳酸盐、硫酸盐、硅酸盐)的浓度升高,部分盐类因过饱和而析出,而某些盐类因为则因通过换热器表面受热分解形成沉淀,这些盐类有无机盐组成,结晶致密,被称为结晶水垢。 D、腐蚀污垢 具有腐蚀性的流体或流体中含有腐蚀性杂质对换热器表面腐蚀 而产生的污垢,腐蚀程度取决于流体中的成分、温度及被处理流体中的PH等因素,金属腐蚀主要是温度在40~50℃的氧腐蚀,而合成冷排工作温度40~60℃,正好跟金属发生氧腐蚀的温度相吻合,加之循环水的PH值长期偏低,一般都在PH至8.0以下,更容易形成金属腐蚀。 2、腐蚀原因 A、电化学腐蚀是金属最常见的一种腐蚀形式当冷却水系统内

循环水结垢问题

一循环水结垢问题 我们公司使用的循环水是从长江里抽上来的水,经过简单的沉降处理后就作为循环水用于生产中,在生产过程中冷凝器经常结垢堵塞,我们每几个月就要清洗一次,而且清洗时不好清洗,需请清洗公司的进行化学清洗才行,清洗费用很多。对于循环水结垢问题,我们也采取了很多的方法进行处理,如加药、超声波除垢、安装水处理器等等,但效果不是很好。请问同行们你们的循环水结垢严重么?你们是采用什么方法处理的? 1、两种思路供你选择: 1、对水源进行水质分析,可参考锅炉水质分析方法分析,主要分析水中的钙、镁离 子浓度,叫硬度。 2、根据水质分析结果,自配或者请水质稳定剂生产厂家配制水质稳定剂添加,其主 要作用是增加垢物的溶度积,减缓垢物的形成和防止沉积,适时排泄和补充新鲜水。 3、分析垢物成分,看看是以碳酸盐垢为主还是硫酸盐垢为主,或者是两者的混合垢, 再结合设备材质,在设备运行一段时间,垢物严重时,停车,谨慎选用盐酸、磷酸、 硝酸、硫酸的复配物清洗设备,酸浓在10-15%之间。当酸浓降至4%以下时,根据 垢物清洗情况适当给予补充,直到垢物清洗到满意为止。 2、我们公司有一段时间也是出现你说的情况。但是我们后来给离子膜系统单独上了凉 水塔自循环系统然后定期加药,排污,对于进水和凉水塔水定期做水质分析,主要 离子是钙、镁、磷、氯根等离子。同时对凉水塔大修时对塔进行清污,管道清洗等。 3、循环水结垢确实是一个头疼的问题,加缓蚀阻垢剂、除藻剂等方法都用过,但每年 大修时仍需要对夹套进行化学清洗。在我们南方蒸发量又大,循环水的钙镁离子容 易浓缩,加药频繁,费用很高。我觉得可以从下面几个方面考虑优化: 1、寻求高效稳定的缓蚀阻垢剂; 2、夹套定期进行化学清洗; 3、循环水池定期排污,加入清洁水。 4、我公司使用的循环水也是从长江里抽上来的水,我们首先投加混凝剂进入反应池, 混凝后再到沉淀池,经过过虑后送到各个装置做生产工业用水,若要做装置冷却用

PLC冷却水泵节能循环控制系统

目录 摘要 (2) 前言 (3) 第一章实际中的应用 (4) 第二章主要任务 (6) 第三章具体设计要求 (7) 第四章系统软件设计 (8) 4 . 1设备名称 (8) 4 . 2控制方案 (8) 4.2.1 控制功能 (8) 4.2.2 具体控制方案 (9) 4.2.3 PLC输入、输出分配表 (10) 4.2.4 控制综合接线 (11) 4.2.5 变频器参数设置...................... .11 4.2.6 软件设计 (13) 总结................................................. . 14 致谢词.............................................. . 15 参考文献 (16)

中央空调冷却水循环节能控制系统设计摘要 在现代工厂企业、办公大楼、商厦、酒店等环境中,中央空调系统是不可缺少的,因此,中央空调的节能也是有待解决的关键技术问题。中央空调系统除主机的耗能外风机、冷冻、冷却泵进行调节,这就需要有较好的自动控制模块。现在,随着电力电子技术、微电子技术的发展,应用变频调节技术与PLC自动控制系统可以大幅度节约电能和提高系统的自动程度,并使系统具有运行可靠、结构简化、维护维修方便等优点。 本文简单阐述了中央空调系统的工作原理,并具提研究冷却水循环控制系统在节能方面的自动控制模块。主要对冷却水进出温差和进水温度进行混合控制,最终使中央空调冷却水循环节能控制系统达到节能的目的。 中央空调系统足大型建筑物小町缺少的配套设施之一,其电能的消耗非常大。由变频器、PLC构成的控制系统应用在中央空调的冷却水泵的节能改造中,使冷却水泵能随宅调负荷的变化而自动变速运行,达到显著节能效果。 关键词:PLC自动控制系统;自动控制;设计。

浅谈循环水系统的结垢与管理

浅谈循环水系统的结垢与管理 安全生产部张利民 摘要:本文概述了循环水系统的作用,并从水系统结垢的原因及影响进行了分析,水的结垢受水质、水温、流速的影响,根据原因及操作现场的运行情况,提出了对现有的水系统需要采取那些控制措施,可在循环水系统进一步落实实行科学的管理方式。 关键词:循环水、冷水、冷却水、结垢、管理与运行 1、概述 工业循环水系统是工业企业正常运行的基本保证,循环水系统的管理中遇到了设备结垢、腐蚀、生物粘泥堵塞等等,使换热设备损坏和效率降低。目前工业应用的水质稳定剂多为缓蚀阻垢剂,但阻垢剂的品质参差不齐,系统的换热设备的种类千差万别,同时管理的方法又各有不同,这就造成了循环水系统运行的优劣之分。因此,我对循环水系统的管理谈谈自己认识。 2、结垢原因及影响因素 循环水结垢其实是循环水系统中微溶物质在环境条件发生变化导致生成过饱和现象,产生晶核析出,随着晶核不断长大沉积在换热器表面,按垢的种类可分为碳酸垢、磷酸垢、硅酸垢、硫酸垢等;按金属离子区分可分为钙垢、镁垢、铁垢等。换热器内垢的形成受到水质、水温、流速、换热温差和缓蚀阻垢剂等因素的影响。 2.1 循环水和原水的水质 循环冷却水在运行过程中,随着挥发的消耗,水中各种杂质的浓度就会相应增大,结垢的概率就会同时增加,这时补充水的水质其含盐量、碱度、硬度、pH值等指标就显得尤为重要。这几个指标越高循环水越容易达到饱和而产生结垢。因此这在投加阻垢剂方案时就必须考虑进去。 2.2 水温和浓缩倍数 循环水中的碳酸钙、碳酸镁等硬度盐类,其溶解度都是随着温度的升高而减小,因此水温越高越易结垢;循环水的浓缩倍数在夏季热负荷较大时就应适当降低,减少系统中硬度盐类离子的浓度,就会相应减少设备结垢的概率, 2.3 流速 水垢的附着速度是随着换热器内的冷却水流速的增大而减小,如果水流速度达到1.0m/s以上时,水垢、悬浮物等杂质易被水流冲走,不易沉积,相反如果在换热器中,某些部位流速过小或水流分配不均、死角就容易沉积水垢。因此根据换热器的形式、结构在工艺条件允许的情况下,适当提高水流速度也是降低设备结垢的有效手段。

循环冷却水结垢原理及处理方法

循环冷却水结垢原理及处理方法 一、循环冷却水系统为什么会结垢 1.一般解释 冷却水中溶解有各种盐类,如碳酸盐、碳酸氢盐、硫酸盐、硅酸盐、磷酸盐和氯化物等,它们的一价金属盐的溶解度很大,一般难以从冷却水中结晶析出,但它们的两价金属盐(氯化物除外)的溶解度很小,并且是负的温度系数,随浓度和温度的升高很容易形成难溶性结晶从水中析出,附着在水冷器传热面上成为水垢。如冷却水中的碳酸氢根离子浓度较高,当冷却水经过水冷器的换热面时,受热发生分解,发生如下反应: Ca(HCO3)2→CaCO3↓+ H2O + CO2↑ 当冷却水通过冷却塔时,溶解于水中的二氧化碳溢出,水的pH 值升高,碳酸氢钙在碱性条件下发生如下反应: Ca(HCO3)2+ 2OH- →CaCO3↓+ 2H2O + CO32- 难溶性碳酸钙可以是无定型碳酸钙、六水碳酸钙、一水碳酸钙、六方碳酸钙、文石和方解石。方解石属三方晶系,是热力学最稳定的碳酸钙晶型,也是各种碳酸钙晶型在水中转变的终态产物。 2.碳酸钙的溶解沉淀平衡。

碳酸钙的溶解度虽然很小,但还是有少量溶解在水里,而溶解的部分是完全电离的。所以在溶液里也出现这样的平衡:Ca2++CO3 2-CACO3(固) 在一定条件下达到平衡状态时〔Ca2+〕与〔CO32-〕的乘积为碳酸钙在此条件下的溶度积K SP,为一定值。 若此条件下〔Ca2+〕×〔CO32-〕>K SP时,平衡向右移,有晶体析出。 若此条件下〔Ca2+〕×〔CO32-〕<K SP时,平衡向左移,晶体溶解。 注:实际情况下〔Ca2+〕×〔CO32-〕值称为K CP 二、抑制为结垢的方法 (一)化学方法 1.加酸: 目的:降低水的PH值,使水的碳酸盐硬度硬度转化重碳酸盐硬度. 优点:费用较小,效果比较明显 缺点:加酸量不易控制、过量会产生腐蚀的危险、投加过量有产生硫酸钙垢的危险. 2.软化 目的:降低水中至垢阳离子的含量

相关文档
相关文档 最新文档