文档库 最新最全的文档下载
当前位置:文档库 › 找马鞍点

找马鞍点

找马鞍点

#include

void main()

{

int max,min,i,j,k,t,m,a[5][5]={{7,15,9,2,6},{-9,9,4,5,1},{4,16,-7,6,2},{10,11,3,9,-4},{2,17,-6,-5,4}}; for(i=0;i<5;i++)

{

for(j=0;j<5;j++)

{

printf("%5d",a[i][j]);

if((j+1)%5==0)

printf("\n");

}

}

for(i=0;i<5;i++)

{k=0;

max=a[i][0];

for(j=0;j<5;j++)

{

if(max

{ max=a[i][j];

k=j;

}

}

t=0;

min=a[0][k];

for(m=0;m<5;m++)

{

if(min>a[m][k])

{

min=a[m][k];

t=m;

}

}

if(i==t)

{printf("该鞍点为:a[%d][%d]=%d\n",k,t,a[k][t]);}

}

}

变分原理在物理学中的应用

变分原理在物理学中的应用 [摘要]从变分法出发,简述了变分原理的建立和发展;并就变分原理在各个学科的应用予以列举,为变分原理的初学者作以引导。 [关键字] 变分法;变分原理;发展历程;应用。 引言 变分原理愈来愈引起重视。固体力学变分原理的发展最为成熟,流体力学变分原理近年来也获得突破, 电磁学、传热学等领域变分原理在不断应用和发展。这是因为变分原理与有限元结合起来使古典的变分原理焕发青春[1]。本文就变分原理的发展历程和变分原理在物理学中的应用予以概括, 以形成一个了解变分原理的脉络,为更好的应用变分原理打下基础。 1.变分原理发展简史 年份历史事件 1696年约翰·伯努利提出最速曲线问题开始出现 1733年欧拉首先详尽的阐述了这个问题. 他的《变分原理》(Elementa Calculi Variationum)寄予了这门科学这个名字。 1786年拉格朗日确定了变分法, 但在对极大和极小的区别不完全令人满意。 1810~1831年Vincenzo Brunacci, Carl Friedrich Gauss, Simeon Poisson,Mikhail Ostrogradsky和Carl Jacobi对于这两者的区别都曾做出过贡献。 1842年柯西Cauchy浓缩和修改了变分法,建立了一套严格的理论。 1849~1885年Strauch, Jellett, Otto Hesse, Alfred Clebsch和Carll写了一些其他有价值的论文和研究报告。 1872年Weierstrass系统建立了实分析和复分析的基础,基本上完成了分析的算术化。他关于这个理论的著名教材是划时代的, 并且他可能是第一个将变分法置于一个稳固而不容置疑的基础上的。 1900年希尔伯特(Hilbert)发表的第20和23个数学问题促进了变分思想更深远的发展。 20世纪初David Hilbert, Emmy Noether, Leonida Tonelli, Henri Lebesgue和Jacques Hadamard 等人做出重要贡献。 20世纪30年代Marston Morse 将变分法应用在Morse理论中。

变分原理与变分法

第一章 变分原理与变分法 1.1 关于变分原理与变分法(物质世界存在的基本守恒法则) 一、 大自然总是以可能最好的方式安排一切,似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律,获称最小作用原理。 Examples : ① 光线最短路径传播; ② 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); ③ CB AC EB AE +>+ Summary : 实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的(映射)关系 特征描述法:{ J :R x R D X ∈=→?r J )(|} Examples : ① 矩阵范数:线性算子(矩阵)空间数域 ‖A ‖1 = ∑=n i ij j a 1 max ;∑=∞=n j ij i a A 1max ;21 )(11 2 2∑∑===n j n i ij a A ② 函数的积分: 函数空间数域

D ?=?n b a n f dx x f J )( Note : 泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussion : ① 判定下列那些是泛函: )(max x f f b x a <<=; x y x f ??) ,(; 3x+5y=2; ?+∞∞-=-)()()(00x f dx x f x x δ ② 试举另一泛函例子。 物理问题中的泛函举例 ① 弹性地基梁的系统势能 i. 梁的弯曲应变能: ?=∏l b dx dx w d EJ 02 22)(21 ii. 弹性地基贮存的能量: dx kw l f ?=∏0 221 iii. 外力位能: ?-=∏l l qwdx 0 iv. 系统总的势能: 00 0;})({2 2122202 1===-+=∏?dx dw w x dx qw kw dx w d EJ l 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个w (x ),使 系统势能泛函取最小值。 ② 最速降线问题 问题:已知空间两点A 和B ,A 高于B ,要求在两点间连接一条曲线,使 得有重物从A 沿此曲线自由下滑时,从A 到B 所需时间最短(忽略摩擦力)。 作法: i. 通过A 和B 作一垂直于水平面的平面,取坐标系如图。B 点坐标(a , b ),设曲线为y = y (x ),并已知:x = 0,y = 0;x = a ,y = b ii. 建立泛函: x

(完整版)弹性力学第十一章弹性力学的变分原理

第十一章弹性力学的变分原理知识点 静力可能的应力 弹性体的功能关系 功的互等定理 弹性体的总势能 虚应力 应变余能函数 应力变分方程 最小余能原理的近似解法扭转问题最小余能近似解有限元原理与变分原理有限元原理的基本概念有限元整体分析几何可能的位移 虚位移 虚功原理 最小势能原理 瑞利-里茨(Rayleigh-Ritz)法 伽辽金(Гапёркин)法 最小余能原理 平面问题最小余能近似解 基于最小势能原理的近似计算方法基于最小余能原理的近似计算方法有限元单元分析 一、内容介绍 由于偏微分方程边值问题的求解在数学上的困难,因此对于弹性力学问题,只能采用半逆解方法得到个别问题解答。一般问题的求解是十分困难的,甚至是不可能的。因此,开发弹性力学的数值或者近似解法就具有极为重要的作用。 变分原理就是一种最有成效的近似解法,就其本质而言,是把弹性力学的基本方程的定解问题,转换为求解泛函的极值或者驻值问题,这样就将基本方程由偏微分方程的边值问题转换为线性代数方程组。变分原理不仅是弹性力学近似解法的基础,而且也是数值计算方法,例如有限元方法等的理论基础。 本章将系统地介绍最小势能原理和最小余能原理,并且应用变分原理求解弹

性力学问题。最后,将介绍有限元方法的基本概念。 本章内容要求学习变分法数学基础知识,如果你没有学过上述课程,请学习附录3或者查阅参考资料。 二、重点 1、几何可能的位移和静力可能的应力; 2、弹性体的虚功原理; 3、 最小势能原理及其应用;4、最小余能原理及其应用;5、有限元原理 的基本概念。 §11.1 弹性变形体的功能原理 学习思路: 本节讨论弹性体的功能原理。能量原理为弹性力学开拓了新的求解思路,使得基本方程由数学上求解困难的偏微分方程边值问题转化为代数方程组。而功能关系是能量原理的基础。 首先建立静力可能的应力和几何可能的位移概念;静力可能的应力 和几何可能的位移可以是同一弹性体中的两种不同的受力状态和变形状态,二者彼此独立而且无任何关系。 建立弹性体的功能关系。功能关系可以描述为:对于弹性体,外力在任意一组几何可能的位移上所做的功,等于任意一组静力可能的应力在与上述几何可能的位移对应的应变分量上所做的功。 学习要点: 1、静力可能的应力; 2、几何可能的位移; 3、弹性体的功能关系; 4、真实应力和位移分量表达的功能关系。 1、静力可能的应力 假设弹性变形体的体积为V,包围此体积的表面积为S。表面积为S可以分为两部分所组成:一部分是表面积的位移给定,称为S u;另外一部分是表面积的面力给定,称为Sσ 。如图所示

变分原理与变分法

变分原理与变分法 1.1关于变分原理与变分法(物质世界存在的基本守恒法则) 一、大自然总是以可能最好的方式安排一切, 似乎存在着各种安排原理: 昼/夜,日/月,阴/阳,静止/运动 等矛盾/统一的协调体; 对静止事物:平衡体的最小能量原理,对称/相似原理; 对运动事物:能量守恒,动量(矩)守恒,熵增原理等。 变分原理是自然界静止(相对稳定状态)事物中的一个普遍适应的数学定律, 获称最小作用原理。 Exa mp les ① ② Summary:实际上光的传播遵循最小能量原理; 在静力学中的稳定平衡本质上是势能最小的原理。 二、变分法是自然界变分原理的数学规划方法(求解约束方程系统极值的数学方 法),是计算泛函驻值的数学理论 数学上的泛函定义 定义:数学空间(集合)上的元素(定义域)与一个实数域间(值域)间 的 (映射)关系 第一章 光线最短路径传播; 光线入射角等于反射角,光线在反射中也是光传播最短路径(Heron ); 光线折射遵循时间最短的途径(Fermat ); AE+ EB A AC +CB ③

特征描述法:{ J: X u D T R | J ( x ) = r € R } Exa mp les ① 矩阵范数:线性算子(矩阵)空间— 数域 泛函的提法:有一种梁的挠度函数(与载荷无关),就会有一个对应的系 统势能。 泛函驻值提法:在满足位移边界条件的所有挠度函数中,找一个 w (x ),使 i.梁的弯曲应变能: □b =-f' EJ (雪 2 P dx 2 ii.弹性地基贮存的能量: n f 1 J 2 =一 J kw dx 2 0 iii.外力位能: 口 l l =-0 qwdx iv.系统总的势能: )2dx 11 AII 1 = max 2 a j i4 ;|A L = max 2 a ij ; I A 2 仁 )12 ②函数的积分:函数空间i 数域 b J = a f n (X )dX fn U D Note:泛函的自变量是集合中的元素(定义域);值域是实数域。 Discussi on : ①判定下列那些是泛函: c f (x y) --- '—-3x+5y=2; J 6(x-x 0) f (x)dx = f (x 0) f i=ma 少(x )i ; ex ②试举另一泛函例子。 物理问题中的泛函举例 q(x) /■'■'I rmTrfT ① 弹性地基梁的系统势能 ■ d 丨 L l d 2 w 2 □卡E J( dxr) 2 Tkw - qW}dx; x = 0 d w = 0 dx x x = 0,固支;x =

广义变分原理课程论文

《广义变分原理》课程报告 题目:变分原理与数值计算方法 年级:2013级工程力学 姓名:顾鑫 学号:130810040001 时间:2014年5月6日

变分原理与数值计算方法 河海大学2013级工程力学 摘要:本文从变分法的发展出发,阐释泛函理论中变分原理的定义,说明了由一般微分方程构造泛函的方法;具体分析了弹塑性理论中的各种变分原理,说明由变分原理建立有限元模型的方法;最后,详细阐释了以变分原理为基础的数值方法的建立与改进方法。 关键词:变分法、变分原理、泛函、弹塑性、有限元、数值方法的改进 1.变分法及变分原理 1.1.变分法 1687年,Newton在《自然哲学的数学原理》中提出第一个变分问题——定轴转动阻力最小的旋转曲面形状问题;1696年,Bernoulli提出了著名的最速降线问题;到18世纪,经过Euler,Lagrange等人的努力,逐渐形成变分法。 古典变分法的基本内容是确定泛函的极值和极值点,它为许多数学、物理、科技、工程问题提供了强有力地数学工具。现代理论证明,微分方程(组)中的变分法是把微分方程(组)化归为其对应泛函的临界点(即化为变分问题),以证明其解的存在性及解的个数。讨论对应泛函临界点的存在性及其个数的基本方法是Morse理论与极小极大理论(Minimax Theory)。 变分法有着深刻的物理背景,某种意义上,自然界一切物质运动均可以用某种形式的数理方程表示,一般数理方程又与一定的泛函相对应,所以一切物质运动规律都遵从“变分原理” 1.2.变分原理 泛函中定义的变分原理:设A为Hilbert空间H0上的自伴正算子(对称的正算子),考虑H0上的非线性泛函 J(u)??2⑴若u0为J在H0上的最小值函数,则u0在Ω上满足Au0=f,反之亦然。 该定理给出了由已知满足一定条件的算子,如何构造相关泛函的一般方法,如:(1)弹性力学最小势能原理可由该抽象变分原理推出;(2)经典力学中的哈密顿(Hamilton)原理,在泛函定义的变分原理中,若有自伴正算子A为二阶偏导算子,H0为具有二阶连续导数的闭区域,且边界条件确定,此时J即为能量泛函,求泛函的的极小值问题即为Hamilton原理。 进而,在固体力学中,设考察的物体存在泛函 Π(u i)=?F(u i,u i,j,…)dΩ Ω+?E(u i,u i,j,…)ds S ⑵ 式中,u i是位置函数,F和E分别为给定的微分算子;若由Π(u i)的驻值条件δΠ=0能求得该连续体问题的解,则定义描述和求解该问题的定理统称为变分原理。在连续介质理论中,具体即为物体存在某个泛函,使得对应的运动方程是它的Euler方程,求这些Euler方程的解便化归为求对应泛函的临界点问题。 泛函本身与变分后的方程之间不存在一一对应关系,在弹性力学中,任一变分原理都可以建立相应的Euler方程,反之不然,即不需要变分约束条件而能导出全部方程和条件的泛函是很多的。 不论是连续介质力学中,还是在热传导、电磁学等其他理论中,该方法均很常见,对许多问题可方便的得到方程正确解。同时,变分原理以某种积分加权平均形式去近似微分关系式,将强形式的微分方程转换为弱形式的积分方程;通过对基本微分方程取逼近方程,或对

相关文档