文档库 最新最全的文档下载
当前位置:文档库 › 点焊中弱信号的混沌振子检测系统研究

点焊中弱信号的混沌振子检测系统研究

点焊中弱信号的混沌振子检测系统研究
点焊中弱信号的混沌振子检测系统研究

223

点焊中弱信号的混沌振子检测系统研究*

宋凯磊 罗震 叶锋 袁书现 熬三三 李潇一 薛志清

(天津大学材料科学与工程学院 天津 300072)

摘要:点焊作为一种针对板材的高效、快捷的加工方法,其焊接质量的检测技术至关重要。由于影响点焊质量的

因素很多,现在对点焊过程中有用弱信号的数据处理技术效果不理想,限制了它在航空航天等高精端技术领域的

应用。本文基于混沌振子检测理论提出了一种新型的弱信号检测模型,并利用Melnikov 方法和Lyapunov 指数确

定了系统进入和跳出混沌状态的阀值。并利用大量数据进行了数值模拟发现:检测弱正弦信号最低门限值可达到

220d B ?;在强白噪音背景下,检测正弦信号的信噪比可达到112.6dB ?。相对于传统的弱信号检测技术,混沌振子检

测方法不仅具有较好的检测门限和信噪比,而且性能稳定在实际中易于实现和操作,对提高电焊质量有较好的应

用前景。

关键词:点焊 混沌振子 Duffing 方程 SNR

1 前言

点焊作为一种针对板材的高效、快捷的加工方法,得到越来越广泛的应用。然而,在航空航天等精密加工中,对焊接质量要求高,现有的检测方法与理论不能适应,这就要求我们寻求一种新的高精度的检测系统。点焊过程中质量监控难度较大,主要体现在:1点焊的形核处于封闭状态属于动态变化过程随着加热的不断进行,熔核将产生从无到有从小到大的变化,熔核尺寸无论在焊接期间还是在焊后都无法直接观测。2 焊接过程中从材料性能工艺方法设备等方面影响点焊质量的因素有54个之多【1】。现有的质量检测方式有:电流电压参数监控、热膨胀监控、热电偶监控等。这些检测方法对数据信号的处理有局限性,数据中的一些有用弱信号没有被有效利用,如果焊接质量要求较细,微小差别检测不出来,这影响了点焊方法在高精端产品生产中的应用。

天津大学罗震,2006【2】年2007【3】年分别通过计算Lyapunov 指数,得到电阻点焊的位移信号和声音信号中有混沌现象,同时Lyapunov 指数处与〔0,1〕之间,说明数据有较强的拟周期性,它不同于确定信号和随机信号,利用混沌性质可精确的检测点焊质量。

因此建立一个混沌检测模型成为混沌质量检测应用与工程实践的一个必要环节。本文首先建立了一个Duffing 振子检测模型,然后确定了其进入和跳出混沌状态的阀值,最后给出了该系统可检测的最低门限值和信噪比。

2 数学模型的提出

Duffing 振子已被广泛的用于微弱信号混沌检测中,并收到了较好的效果[4]。Duffing 方程的一般形式为:

...3cos()x x

t x x δαβγω+?+= (1) 李月[5]等将非线性项3x x αβ?+改为35x x αβ?+,构建了一类新的混沌振子系统(L-Y )系统:

...35cos()x

x t x x δαβγω+?+= (1.2) 利用(L-Y )系统在色噪音下检测弱周期信号的信噪比可达-88dB 。 目前,基于Duffing 方程作为混沌振子的检测系统其非线性恢复力项主要为(),文献【6】研究发现: * 基金项目:国家自然科学基金(5057159);教育部基金(106049,20060056058);天津市应用基础研究计划基金(06YTJMC03400);广东省教育部产学研结合项目(2007A090302105)资助项目。

224

在弱信号检测中系统(1.2)的检测效果比(1.1)要好。把系统(1.2)和系统(1.1)对比可以发现,恢复力项的次数越高其检测效果越好。基于此规律本文提出将系统(1.1)中的非线性项变为(57

x x αβ?+),令1αβ==得: ...57cos()x

x t x x δγω+?+= (3)

3 系统阀值的确定 一般混沌系统都经历同宿轨道状态、混沌状态、和大尺度周期状态。微弱信号混沌检测的主要依据是系统状态的变化,检测的主要问题是对系统处于混沌与周期的判别,因此混沌判别问题成为微弱信号混沌检测的一个重要内容。

2.1 同宿轨道状态到混沌状态的阀值

Melnikov 方法是研究Hamilton 系统在弱周期激励下混沌运动的最实用和最简便的解析方法[7],下图1是是利用Melnikov 方法研究系统(3)出现混沌时所满足的解析条件,并用数值积分的方法画出系统的Melnikov 函数阀值曲线:

图1 系统(1)的Melnikov 函数阀值曲线 图1是随ω变化的c 变化的曲线:当/δ?在曲线上方时,系统(1.3)出现混沌。现在取ω=1,δ=0.5,则?>0.2411时,系统出现混沌,分别取?=0.15和?=0.35,对系统(1)进行数值仿真得到相应的相平面图,如图2(a )-(b )所示,?=0.15系统处于周期振荡状态;而?=0.35时,系统处于混沌状态。

(a )

(b) 图2 ω=1,δ=0.5时的相图(a )?=0.15 (b )?=0.35 2.1混沌状态到周大尺度周期状态的阀值

Melnikov 方法只能确定系统进入混沌状态的条件,而Lyapunov 指数可用于确定系统跳出混沌状态进入

大尺度周期状态的阀值。当ω=1,δ=0.5时, Lyapunov 指数与参数?∈[0.1,1]之间的变化关系曲线如图3。

图3 系统Lyapunov 指数与参数?之间的关系

从图中可看出,系统由混沌进入周期状态的阀值c

?∈[0.6,0.7],进一步计算c ?=0.67237628159。当?=c ?时系统处于混沌状态(如图4所示),当?=c ?+1110?时,系统处于周期状态(如图5所示)。

225

图4 ω=1,?=c ?时相图

图5 ω=1,?=c ?+1110?时相图

由此我们可知系统(3),对幅值为10-11小信号敏感,即系统可检测的弱正弦信号最低门限值可达10-11。下面我们将对计算系统的信噪比。

4 系统信噪比的确定

由以上分析可可知,当ω=1,δ=0.5,?不断增大时,系统将经历同宿轨道、混沌状态、和大尺度周期状态,选取?=c ?作为系统由混沌状态到大尺度周期状态的临界值。将系统调至临界状态即:

...

570.5cos c x x x x t γ+?+= 将待检测信号()S t 并入上述系统有:

...570.5cos ()c x x x x t S t γ+?+=+ (4) 针对上述系统(4),采用四阶Runge-Kutta 法求解方程,数值仿真中δ=0.5,h=0.005,c ?=0.67237628159。 首先在检测模型中加入噪音信号,即()S t =n()t ,其中n()t 是均值为零,平均功率为2σ的高斯白噪音,

发现系统处于混沌状态,不断调大n()t 功率,系统仍处于混沌状态,说明混沌系统对噪音有免疫力,如图

6:

(a ) (b )

图6 系统(2)在不同功率噪音下的相图 (a)=0.3; (b) =

5.5. (a )

(b )

图7 (a)ω=1,a=1×10?11,δ=5×10?5; (b)ω=1,a=1×10?11,δ=7× 10?7; 然后在系统中加入混有噪音的弱周期信号,即()=a cos t+n(t)S t ,不断调大n(t)的功率。仿真发现,若11a 110?≥×,6310σ?≤×时,系统进入大尺度周期状态,弱信号完全被淹没在噪音中,即弱信号不能被

检测出来,如图7(a );而当6310σ?≤×时系统进入大尺寸周期状态,弱正弦信号被可靠的检测出来,如

图7(b )。因此我们测得系统检测弱正弦信号信噪比的最低门限为:

21126

/2

11010lg 20lg 112.6310a SNR dB σ??×==≈?×

2265 结论:

本文主要构造了一类新的混沌振子检测系统,即含有非线性项为(57x x ?+)的Duffing 方程:

...

57cos x x x x t δγω+?+=()

分析了其动力学行为,通过大量的数值仿真发现此混沌振子检测系统具有以下优点:能检测幅值为

1110?的弱正弦信号,即最低门限值可达到:1120lg (10)220d B ?=?;在强白噪音背景下,检测正弦信号的信噪比可达到112.6dB ?。

本文中提出的模型为点焊过程中微弱信号的检测提供了一种全新的检测方法,对点焊过程中的质量进行精细检测,使点焊可应用与航空航天等高科技领域。。相对于传统的弱信号检测技术,混沌振子检测方法不仅具有较好的检测门限和信噪比,而且稳定在实际中易于实现和操作,在其它领域也有较好的应用前景。

参 考 文 献

[1] 罗震 铝合金电阻点焊过程质量检测及控制方法的研究[D] 天津大学 材料学院 材料加工工程专业 2003

[2] 罗震,单平,用Lyapunov 指数研究点焊位移信号的混沌特性,焊接学报 2006,12(12):36

[3] 罗震,李青松, 基于Lyapunov 指数的电阻点焊声音混沌时间序列识别, 天津大学学报,2007,6(6): 756

[4] Guanyu Wang. Sailing He. A quantitative study on detection an estimation of weak signal by using chaotic Duffing oscillators[J].

IEEE Transaction on circuits and systems I-fundamental theory andapplications, 2003, 50(7):945-953

[5] Y .Li,B.J.Yang, Chaotic system for the detection of periodic signals under the background of strong noise, Chinese Science Bulletin,

2003a,48(5):508-510.

[6] 李月,杨宝俊,混沌振子系统(L-Y )与检测,科学出版社,2007

[7] 刘曾荣,混沌的微扰判据,上海科技教育出版社,1994

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

字信号发生器

基于LabVIEW技术的Lorenz方程虚拟混沌信号发生器设计 本产品关键字:基于LabVIEW技术的Lorenz方程虚拟混沌信号发生器设计,资料,技术文章,说明,基于LabVIEW技术的Lorenz方程虚拟混沌信号发生器设计图片 基于LabVIEW技术的Lorenz方程虚拟混沌信号发生器设计型号: 厂商: 【摘要】利用美国NI公司的虚拟仪器软件LabVIEW设计混沌信号发生仪器。本文结合三阶非线性Lorenz方程理论用LabVIEW强大的数学分析功能编写混沌信号生成程序,进而由LabVIEW驱动数据采集卡输出混沌信号。与传统的自治混沌系统相比,此发生器具有参数调节方便、易实现、可靠度高等优点。 【关键词】虚拟仪器 LabVIEW Lorenz方程混沌 Design of Lorenz Equation Virtual Chaotic Signal Generator Based on LabVIEW Technology Du Yue-lin Cheng Yun-fei Wang Yong (Nanjing University of Posts and Telecommunications, Nanjing 210003 ) Abstract: LabVIEW is used to design chaotic signal generator virtua l instrument. The program of Chaotic signal generation is redacted by LabVIEW software combining Lorenz equation theory . By means of invoking the function of LabVIEW’s mathematical tools, w e can embed the program of chaotic signal generation into LabVIEW . Finally chaotic signal is generated by LabVIEW driving Data Acquisition . To compare tradition al chaotic system, this chaotic signal generator has some property including a convenient parameter changing, easy gaining, high accuracy Dec. Key words: Virtual Instrument LabVIEW Lorenz Equation Chaos 1.引言 软件LabVIEW(Laboratory Virtual Instrument Engineering Workbenc h,实验室虚拟仪器工程平台)是美国NI公司(National Instruments Compa ny,简称NI公司)研制的一种编程语言,由于LabVIEW采用基于流程图的图形化编程语言,因此也被称为G语言(Graphics Language)。与其他编程语言相同,G语言既定义了数据类型、结构类型、语法规则等编程语言基本要素,也提供了包括断点设置,单步调试和数据探针在内的程序调试工具,在功能完整性和应用灵活性上不逊于任何高级语言。LabVIEW最大的优势表现在两个方面:一是编程简单,易于理解;另一方面LabVIEW针对数据采集、仪器控制、信号分析和数据处理等任务,设计提供了丰富完善的功能图标,用户只需直接调用,就可免去自己编写程序的繁琐,而且LabVIEW作为开放的工业标准,提供了各种接口总线和常用仪器的驱动程序,是一个通用的软件开发平台。

WiFi信号及手机信号检测方法及标准

WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实 际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android系统移动设备和笔记本电脑。 2、检测软件:

基于混沌振子的微弱信号检测方法研究(精)

第30卷第9期2011年9期煤CoalTechnology炭技术Vol.30,No.09September,2011 基于混沌振子的微弱信号检测方法研究 张东 (中央司法警官学院监狱学系,保定071000) 摘要:分析了Duffing方程的基本形式以及Duffing振子的混沌运动,阐述了基于相平面变化进行微弱信号检测的工作原理,并推导出系统发生间歇混沌现象的频差条件和相位差对于系统特性的影响。实验证明该振子对与参考信号频差较小的周期小信号具有敏感性,对白噪声和与参考信号频差较大的干扰信号具有免疫力。 关键词:微弱信号检测;Duffing振子;信噪比;间歇混沌 中图分类号:TN911.23文献标识码:A文章编号:1008-8725(2011)09-0219-03 ReaserchofWeakSignalDetection basedonChaosOscillatorTheory ZHANGDong (DepartmentofPenology,CentralInstituteforCorrectionalPolice,Baoding071000,China ) Abstract:ThispaperfirstanalyzesthebasicformofDuffingequationandthechaoticmotionoft heDuffingoscillator,andthendescribestheprincipleofweaksignaldetectionbasedonthechan geofphasetrace.Thefrequencydifferenceconditionoftheintermittentchaoshappening byandtheeffectofphasedifferenceonsystemperformancearededuced.Itisconcluded,simulationexperimentsresults,thattheoscillatorissensitivetothesmallsignalhavingthetinyangularfrequencydifferencewit hthereferentialsignal,andimmuneagainsttherandomnoiseandinterferencesignalhavinglarg erangularfrequencydifferencewiththereferentialsignal. Keywords:weaksignaldetection;duffingoscillator;signaltonoiseratio(SNR);intermittentc haos 0引言 微弱信号检测技术运用近年来迅速发展的电子 学、信息论和物理学方法,研究被测信号和噪声的统 计特性及其差别,采用一系列信号处理方法,检测被图2稳定周期状态图1混沌状态背景噪声覆盖的微弱信号,使微弱信号测量精度得为周期运动的临界状态。当f大于阈值fd时,系统进到很大的提高。)。(如图2文中分析利用Duffing 混沌振子检测微弱信号入大尺度的周期运动状态 的方法,着重阐释不同形式的正弦信号输入的仿真2利用混沌振子检测信号的原理简介结果。

微弱信号检测装置(实验报告)剖析

2012年TI杯四川省大学生电子设计竞赛 微弱信号检测装置(A题) 【本科组】

微弱信号检测装置(A题) 【本科组】 摘要:本设计是在强噪声背景下已知频率的微弱正弦波信号的幅度值,采用TI公司提供的LaunchPad MSP430G2553作为系统的数据采集芯片,实现微弱信号的检测并显示正弦信号的幅度值的功能。电路分为加法器、纯电阻分压网络、微弱信号检测电路、以及数码管显示电路组成。当所要检测到的微弱信号在强噪音环境下,系统同时接收到函数信号发生器产生的正弦信号模拟微弱信号和PC机音频播放器模拟的强噪声,送到音频放大器INA2134,让两个信号相加。再通过由电位器与固定电阻构成的纯电阻分压网络使其衰减系数可调(100倍以上),将衰减后的微弱信号通过微弱信号检测电路,检测电路能实现高输入阻抗、放大、带通滤波以及小信号峰值检测,检测到的电压峰值模拟信号送到MSP430G2553内部的10位AD 转换处理后在数码管上显示出来。本设计的优点在于超低功耗 关键词:微弱信号MSP430G2553 INA2134 一系统方案设计、比较与论证 根据本设计的要求,要完成微弱正弦信号的检测并显示幅度值,输入阻抗达到1MΩ以上,通频带在500Hz~2KHz。为实现此功能,本设计提出的方案如下图所示。其中图1是系统设计总流程图,图2是微弱信号检测电路子流程图。 图1系统设计总流程图 图2微弱信号检测电路子流程图

1 加法器设计的选择 方案一:采用通用的同相/反相加法器。通用的加法器外接较多的电阻,运算繁琐复杂,并且不一定能达到带宽大于1MHz,所以放弃此种方案。 方案二:采用TI公司的提供的INA2134音频放大器。音频放大器内部集成有电阻,可以直接利用,非常方便,并且带宽能够达到本设计要求,因此采用此方案。 2 纯电阻分压网络的方案论证 方案一:由两个固定阻值的电阻按100:1的比例实现分压,通过仿真效果非常好,理论上可以实现,但是用于实际电路中不能达到预想的衰减系数。分析:电阻的标称值与实际值有一定的误差,因此考虑其他的方案。 方案二:由一个电位器和一个固定的电阻组成的分压网络,通过改变电位器的阻值就可以改变其衰减系数。这样就可以避免衰减系数达不到或者更换元器件的情况,因此采用此方案。 3 微弱信号检测电路的方案论证 方案一:将纯电阻分压网络输出的电压通过反相比例放大电路。放大后的信号通过中心频率为1kHz的带通滤波器滤除噪声。再经过小信号峰值电路,检测出正弦信号的峰值。将输出的电压信号送给单片机进行A/D转换。此方案的电路结构相对简单。但是,输入阻抗不能满足大于等于1MΩ的条件,并且被测信号的频率只能限定在1kHz,不能实现500Hz~2KHz 可变的被测信号的检测。故根据题目的要求不采用此方案。 方案二:检测电路可以由电压跟随器、同相比例放大器、带通滤波电路以及小信号峰值检测电路组成。电压跟随器可以提高输入阻抗,输入电阻可以达到1MΩ以上,满足设计所需;采用同相比例放大器是为了放大在分压网络所衰减的放大倍数;带通滤波器为了选择500Hz~2KHz的微弱信号;最后通过小信号峰值检测电路把正弦信号的幅度值检测出来。这种方案满足本设计的要求切实可行,故采用此方案。 4 峰值数据采集芯片的方案论证 方案一:选用宏晶公司的STC89C52单片机作为。优点在于价格便宜,但是对于本设计而言,必须外接AD才能实现,电路复杂。

微电信号检测系统

微电信号检测系统 摘要:文中基于高速DSP数字采集系统,提供一种通过仪用放大器芯片ad620及滤波处理电路实现对微弱电信号的前置处理及采集的实用性方法。经实验与检测,该设计可以有效的对微弱信号进行实时采集,且滤波、去噪、放大效果较好。 关键词:微弱信号;DSP;仪用放大器;陷波电路 引言: 微电信号检测技术是一门新兴的技术学科,是利用电子学、信息论和物理学的方法,分析噪声产生的原理和规律,研究被测信号的特点与相关性,检测被噪声背景淹没的微弱信号。能在噪声背景中检测信号的微弱信号检测仪器,为现代科学技术和工农业生产提供了强有力的测试手段。应用范围遍及几乎所有的科学领域,已成为现代科技必备的常用仪器。国外很多大学和公司都在从事不同领域的微信号检测的研究和相关芯片的研发工作。且随着仿生智能学的发展,是人们日益认识到若想更加深入的了解生物体内部结构,归根到底就是对人体各种微电信号的采集和处理及分析,所以研究微电信号的采集和处理具有很深远的意义。本文设计了一种微电信号采集和处理系统,通过电路的设计实现了对微弱电信号采集。 一.系统原理介绍 如图所示的是系统的整体设计框图,整个系统由三部分组成:前置仪用放大电路[1]、中间级处理电路、信号采集识别电路。由传感器传来的微弱信号经由前置仪用放大电路放大后经由中间级处理电路的滤波、增益调节及陷波后调制成复合信号采集识别电路可采集及识别的信号,将模拟信号转变为数字信号输入到DSP数字控制电路后序处理。 图1系统原理框图 二、主要功能模块实现电路 2.1前置仪用放大电路 前置放大电路主要考虑噪声、输入阻抗和共模抑制比等的影响。电路如图2所示,包括输入缓冲、高频滤波和仪用放大电路三部分。前置放大电路的最前级直接采用了电压跟随器的设计,此种设计在理论上输入阻抗无穷大,有效的将信号输入源与电路系统隔离,去除了信号源内阻高且不稳定的影响。仪用放大器因为其经典的三运放结构而具有较高的输入阻抗和共模抑制比,并且只需外接一个电阻即可设定增益,在生物信号处理领域被广泛地应用。本文选用的AD公司的AD620。 图 2 前置放大电路 2.2中间级处理电路 中间级处理电路分为带通选频网络[2]、二级放大电路、50Hz陷波器[3]和增益调节电路[4]等。带通选频网络由RC无源网络组成,简单可靠,通带的最大范围设定为0.05kHz~10kHz(在本文设计中是对以上频率做的通带范围,若信号源信号超出此范围改变滤波电路的具体器件参数可改变通带范围)。根据不同信号的差异,可以对信号的放大倍数进行调整,以适合后续数字控制电路对数据的采集的要求。在图3-图6分别给出以上四部分的电路设计原理图。 2.3信号采集电路

混沌电路系统的模型仿真与电路实现_林若波

2009 年 6月 JOURNAL OF CIRCUITS AND SYSTEMS June , 2009 文章编号:1007-0249 (2009) 03-0121-05 混沌电路系统的模型仿真与电路实现* 林若波1,2 (1. 揭阳职业技术学院,广东 揭阳 522051;2. 湖南大学 电气信息工程学院,湖南 长沙 410082) 摘要:通过对混沌电路系统的分析方法的介绍,指出模型仿真和电路实现的重要性;以二个典型混沌系统为例,阐述了基于Matlab/Simulink 环境下的仿真方法,同时介绍基于Multisim 8平台的电路仿真和实现过程;最后指出混沌电路的发展前景和研究方向。 关键词:混沌;仿真;Lorenz;Simulink;Multisim 8 中图分类号:N945.1 文献标识码:A 1 引言 非线性科学是一门研究非线性现象共性的基础科学,而混沌理论是非线性 科学最重要的成就之一。“混沌”的发现冲破了传统的决定性观念,著名物理学 家福特(J. Ford )认为混沌的发现是继相对论、量子力学之后,20世纪物理学 的第三次革命。目前混沌系统理论有三个主要的发展方向:应用、综合、和引 入比较复杂的数学工具,以求机理研究、分类与构造理论等的进一步发展;寻 求数学与物理模型的新范例,研究混沌的应用及其工程系统实现。 2 混沌电路系统的分析方法[1] 混沌系统模型的研究一般包括以下几个基本步骤:问题描述、模型建立、 仿真实验、结果分析、电路实现,其流程如图1所示。 (1)建立数学模型 数学模型是指描述系统的输入、输出变量以及各变量之间关系的数学表达式。混沌系统中最常用、最基本的数学模型是微分方程与差分方程。 (2)建立仿真模型 仿真模型是借助计算机对数学模型进行数值分析计算的模型。仿真模型的建立是最重要的,它是混沌系统分析的关键点。有些混沌模型不能直接用于数值计算的, 如微分方程,必须进行相应的转换。 (3)仿真与实验 变量之间的联系必须通过编制程序来实现,常用的数值仿真编程语言有MATLAB 、C 、FORTRAN 等。MATLAB 由于编写方便、界面友好、功能相当强大而受到广泛的应用,已成为系统仿真最重要的分析工具。 (4)电路的实现 只有数学模型的仿真是不够的,理论的验证只是数值的仿真,与实际系统可能存在偏差。因此,一个混沌电路系统的研究与应用,实际电路的验证是非常必要的。只有通过实际电路的仿真和调试,才能确保系统分析的正确性。 3 改进Lorenz 混沌电路系统的模型仿真与电路实现[2,3] Lorenz 混沌系统是1963年Lorenz 在研究大气时发现的,俗称“蝴蝶效应”。现在考虑受控Lorenz * 收稿日期:2008-11-28 修订日期:2009-03-07 图1 流程图

GSM 900 MHz手机信号强度检测系统设计

GSM 900 MHz手机信号强度检测系统设计 姚达雯;周国平;封维忠;王鑫鑫;黄峰 【期刊名称】《微型机与应用》 【年(卷),期】2014(000)001 【摘要】The design is used to detect the signal intensity of GSM 900 MHz adopted in cellular digital mobile communication network in China. With STC12C5A60S2 as the core MCU, it designs a detection system of signal intensity. It mainly includes the small signal amplifier module, adjustable attenuator, 0900BL18B200 radio transformer, AD8362 power voltage conversion circuit, LCD1602 display module and so on. With the help of ZY12RFSys32BB1 radio frequency training system to simulate GSM 900 MHz cellular signal, it determines the relevant parameters. Then, it carries out the actual tests with antenna collecting GSM 900 MHz cellular signal. Test resultes show that the system can work stably, and meet the requirements of design.%设计了用于检测我国蜂窝数字移动通信网 GSM 通信采用的900 MHz 频段的信号功率强度,以 STC12C5A60S2微处理器为核心,设计制作了信号强度检测系统,该系统主要包括小信号放大模块、可调衰减器、0900BL18B200射频变压器、AD8362功率电压转换电路和LCD1602显示模块等。在用ZY12RFSys32BB1射频训练系统模拟900 MHz 手机信号进行测试并确定相关参数后,通过天线收集GSM 900 MHz 信号进行了实际测试。测量结果表明,系统工作稳定,达到了设计要求。 【总页数】3页(28-30)

微光信号检测系统

基于AD549的微光信号检测系统 引言 近年来,随着微光技术及生物芯片技术的高速发展,各类的传感器、光电器件应运而生,广泛应用于工业,农业,军事等各大领域。然而技术水平的不断提高就要求研究设备对微光信号的响应程度的大幅提高。微光信号检测是发展高新技术、科学研究的重要手段,微光信号检测精度的高低往往会对产品的性能等起到决定性的作用。 在微光信号检测系统中,通常光电转换器件接收到的光信号都十分的微弱,转换后的电信号也非常的小(nA量级)。因此,放大器噪声,背景噪声,电路噪声,外界电磁干扰等都会对检测系统的精度产生极大的影响。为此,选择一个合适的低噪声高精度的前置放大器就显得至关重要了。本文的微光信号检测系统选用的前置放大器是AD549。它是具有极低输入偏置电流的单片电路静电计型运算放大器。为达到高精度的目的,输入偏置电压和输入偏置电压漂移均通过激光调节。这种极低输入电流性能由ADI公司专有的topgate工艺技术完成。这样的放大器很好的满足了系统的需要。 1.微光信号检测系统的原理框图 微光信号检测系统的原理框图如图1所示。光信号由光电阴

极转换为电信号输入到前置放大器中,经过一级放大的电压信号由二级放大器放大之后再输入到AD转换器件中转换成数字信号,之后经由单片机控制显示出来。为了防止模拟电路同数字电路间的串扰,及前置放大器屏蔽的需要,本系统将两部分的电路分离开来。光电检测电路由光电阴极和前置放大器AD549组成,数字显示电路由二级放大器OPA124PA,AD转换器件ADS7816,单片机及数字显示电路组成。 图1 微光信号检测系统的原理框图 2.光电检测电路 2.1 光电检测电路原理 图2 光电检测电路

WiFi信号及手机信号检测方法及标准

店家WiFi信号及手机信号检测方法及标准 一、技术参数说明: 1、信号功率绝对值dBm:仔细看的时候会发现这个值是负的,也就是说手机会显示比如-67(dBm),那就说明信号很强。科普一个小知识:中国移动的手机接收电平≥(城市取-90dBm;乡村取-94dBm)、(中国联通的手机接收电平≥-95dBm)时,则满足覆盖要求,也就是说此处无线信号强度满足覆盖要求。-67dBm 要比-90dBm 信号要强20多个dB,那么它在打电话接通成功率和通话过程中的话音质量都会强很多(当然也包括EDGE/GPRS上网的速度那些),所以dBm值越大信号就越好,因为是个负值,而且在你手里的时候它永远是负值。如果感兴趣且附近有无线基站的天线的话,可以把你的手机尽量接近天线面板,那么值就越来越大,如果手机跟天线面板挨到一起,那么它可能十分接近于0。(0是达不到的,这里0的意思不代表手机没信号)。 2、移动设备信号发射功率概念:由于手机不断移动,手机和基站之间的距离不断变化,因此手机的发射功率不是固定不变的,基站根据距离远近的不同向手机发出功率级别信号,手机收到功率级别信号后会自动调整自身的功率,离基站远时发射功率大,离基站近时发射功率小。手机中的数据存储器存放有功率级别表,当手机收到基站发出的功率级别要求时,在CPU的控制下,从功率表中调出相应的功率级别数据,经数/模转换后变成标准的功率电平值,而手机的实

际发射功率经取样后也转换成一个相应的电平值,两个电平比较产生出功率误差控制电压,去调节发射机激励放大电路、预放、功放电路的放大量,从而使手机的发射功率调整到要求的功率级别上。也就是说,手机信号强度不是越强越好,也不是起弱越好,它是在一定标准范围内的。 3、Kbps、KBps:又称比特率,指的是数字信号的传输速率,也就是每秒钟传送多少个千位的信息(K表示千位,Kb表示的是多少千个位);Kbps也可以表示网络的传输速度,为了在直观上显得网络的传输速度较快,一般公司都使用kb(千位)来表示,如果是KBps,则表示每秒传送多少千字节。1KByte/s=8Kbps(一般简写为1KBps=8Kbps)。ADSL上网时的网速是512Kbps,如果转换成字节,就是512/8=64KBps(即64千字节每秒)。 二、店家检测各类信号强度的方法: 1、移动设备类型:检测设备可以是:iOS系统移动设备、Android 系统移动设备和笔记本电脑。 2、检测软件: 1)iOS系统:SPEEDTEST,可检测Ping值、下载速率、上传速率,功能亮点是可以保存往次检测记录。 2)Android系统:SPEEDTEST,功能和iOS系统的一样,功能亮点是可以保存往次检测记录。 3)WiFi分析仪:可检测WiFi信号强度、信道、寻找AP等功能。

转子系统非线性振动研究进展

转子系统非线性振动研究进展 3 陈安华 刘德顺 朱萍玉 (湘潭矿业学院振动、冲击与诊断研究所,湖南湘潭,411201)摘 要 由于机械运转速度的不断提高和新型材料、新型结构的推广应用,旋转机械的非线性动力学行 为日显突出和重要1基于线性系统原理的转子动力学理论与方法难以对实践中出现的丰富的非线性动 力学现象作出准确的描述、阐释和预测1近年来,随着非线性科学研究的深入和渗透,转子系统非线性 振动已成为应用力学和机械工程领域的研究热点之一1从有利于建立旋转机械振动状态集与故障集之 间的映射关系出发,综述了近年来转子系统非线性振动研究的主要进展,总结了转子系统中出现的典型 非线性动力现象及其产生机理,目的在于丰富旋转机械故障诊断知识库1参551 关键词 转子 非线性振动 故障诊断 稳定性 分岔 分类号 TH17,TH113 第一作者简介 陈安华 男 35岁 博士 副教授 机械动力学与机械故障诊断 0 引言 自从Jeffcott H H (1919)以来,基于线性系统理论的转子动力学获得了很大的发展,涉及的主要问题(不平衡响应计算、临界转速确定、运转稳定性、参数辨识以及转子平衡)至今在理论上已较为成熟,在实践中也获得了成功的应用,并且拓展了新的应用领域,如机械故障诊断技术等1随着机械运转速度的日益提高和新型材料、新型结构的推广应用,旋转机械中出现的复杂的非线性动力学行为日益引起关注1导致转子系统非线性的主要因素有:轴和支承材料本身的非线性应力应变关系[1,2],滚动轴承刚度[3,4,5,6,7],滑动轴承和挤压油膜阻尼器的油膜力[8,9,10,11],间隙和碰摩[12,13,14,15,16,17],裂纹[18,19,20],参数(质量或刚度)时变[21,22,23]等1由于这些因素不可避免地存在,准确描述转子系统真实动力学行为的微分方程是非线性的1在不少实际问题的处理中,合理的线性化自然能显著地减少分析与计算工作量,降低理论上和技术上的难度,且所得结果与对真实系统的观测基本相符,因而基于线性系统理论的转子动力学得到了充分的发展和广泛的应用,并显示出强大的生命力1然而,当真实转子系统的非线性较为显著时,如果仍采用近似的线性化模型和线性系统的分析方法,将不可避免地“过滤”掉许多系统固有的非线性动力学现象,如稳态响应对初始条件的依赖性、解的多样性与稳定性、振动状态突变、超谐波次谐波共振、混沌振动以及系统长期性态(吸引子)对参数的依赖性等,其主观分析结果与真实系统的客观动力学行为之间必然存在不可忽视的定性和定量上的差异1在大型旋转机械状态监测与故障诊断实践中,人们时常面临转子动力学传统理论难以作出准确阐释的异常振动现象,这就说明,开展转子系统非线性振动的研究,不仅是转子动力学学科自身不断深化的必然结果,更是源于工业实践的迫切需求1 收稿日期:1999-02-24 3国家自然科学基金资助项目(编号:59875073)本文责任编辑:王窈惠 第14卷第2期 1999年 6月湘潭矿业学院学报J.XIAN GTAN MIN.INST.Vol.14No.2J un. 1999

单自由度非线性系统的混沌振动

考虑由非线性弹簧和线性阻尼组成的质量-弹簧系统在简谐激振力作用下的受迫振动,动力学方程为: 30mx cx kx F cos t ++=ω 30mx cx kx F cos t '''++=ω 取参数值:m=1.0,c=0.05,k=1.0,F 0=7.5,ω=1.0,以及初始条件:()()11x 0 3.0,x 0 4.0== 求解:令()()()()12 u t x t u t x t =??'=?,则原方程变换为: ()()()()()()()()()121123022121212u t u t f t,u ,u F c k u t cos t-u t u t f t,u ,u m m m u 0 3.0u 0 4.0 '==???'=ω-=???=?=?? 根据Runge-Kutta 方法构造如下数值迭代计算公式: [][]1,i 11,i 111213142,i 12,i 21222324h u u k 2k 2k k 6h u u k 2k 2k k 6++?=++++????=++++?? 其中 ()() 111i 1,i 2,i 121i 1,i 112,i 21131i 1,i 122,i 22141i 1,i 132,i 23k f x ,u ,u h h h k f x ,u k ,u k 222h h h k f x ,u k ,u k 222k f x h,u hk ,u hk ?=????=+++ ???????? ?=+++ ?????=+++??

() () 212i 1,i 2,i 222i 1,i 112,i 21232i 1,i 122,i 22242i 1,i 132,i 23k f x ,u ,u h h h k f x ,u k ,u k 222h h h k f x ,u k ,u k 222k f x h,u hk ,u hk ?=?? ? ?=+++ ??????? ? ?=+++ ???? ?=+++?? 020406080100120140160 1 2 3 4 -4-3 -2 -1 1 2 3 4

信号发生器研究背景及意义

信号发生器研究背景及意义 信号发生器作为一种历史悠久的测量仪器,早在20年代电子设备刚出现时就产生了。随着通信和雷达技术的发展,40年代出现了主要用于测试各种接收机的标准信号发生器,使得信号发生器从定性分析的测试仪器发展成定量分析的测量仪器。同时还出现了可用来测量脉冲电路或用作脉冲调制器的脉冲信号发生器。 自60年代以来信号发生器有了迅速的发展,出现了函数发生器。这个时期的信号发生器多采用模拟电子技术,由分立元件或模拟集成电路构成,其电路结构复杂,且仅能产生正弦波、方波、锯齿波和三角波等几种简单波形。 自从70年代微处理器出现以后,利用微处理器、模数转换器和数模转换器,硬件和软件使信号发生器的功能扩大,产生比较复杂的波形。这时期的信号发生器多以软件为主,实质是采用微处理器对DAC的程序控制,就可以得到各种简单的波形。 在80 年代以后,数字技术日益成熟,信号发生器绝大部分不再使用机械驱动而采用数字电路,从一个频率基准由数字合成电路产生可变频率信号。 90 年代末出现了几种真正高性能的函数信号发生器,HP 公司推出了型号为HP770S 的信号模拟装置系统,它是由HP8770A 任意波形数字化和HP1770A 波形发生软件组成。 信号发生器技术发展至今,引导技术潮流的仍是国外的几大仪器公司,如日本横河、Agilent、 Tektronix 等。美国的FLUKE 公司的FLUKE-25 型函数发生器是现有的测试仪器中最具多样性功能的几种仪器之一,它和频率计数器组合在一起,在任何条件下都可以给出很高的波形质量,能给出低失真的正弦波和三角波,还能给出过冲很小的快沿方波,其最高频率可以达到 5MHz,最大输出幅度也达到 10Vpp。 国内也有不少公司已经有类似的仪器。如南京盛普仪器科技有限公司的SPF120DDS 信号发生器,华高仪器生产的HG1600H 型数字合成函数/任意波形信号发生器。国内信号发生器起步晚,但是发展至今,已经渐渐跟上国际的脚步,能够利用高新技术开发出达到国际水平的高性能多功能信号发生器。 就正弦波信号发生器而言,从有通信设备的时候起,就有了正弦波信号发生

一种弱光信号光电检测系统的设计

一种弱光信号光电检测系统的设计 1 引言 光的信息就存在于光强和相位中。而相位信息又是通过干涉转化成强度信息进行测量的,故光强的测量是很重要的检测目标。 光强变化的检测要针对光的变化特性进行设计。第一,入射光从频谱方面分析有单色的,有白光的,有特定光谱的;第二,光强有缓变和快变之分,一天之中日光强度的变化就属于缓变,再快一点的话如屏幕上木一个像素点随动画播放强度的变化,更快的还有人眼无法识别的,这将涉及到器件的响应度;第三,光强有变化幅度的问题,变化幅度有大有小针,这将涉及到器件的灵敏度;第四,光强的静态点,如果静态点在零点,且属于小幅度变化便属于微光检测。本段是对光源的分析,这是设计的目的,理想的检测是能针可以检测任意光强处,光强度的极高频极微弱变化,显然这是无法达到的,只对特定的需求进行设计。 光电检测的第一步是分析光,及其设计目标。第二步是光感应器件。第三步是配套电路。光电器件涉及到半导体,光与物质间的作用和原件制备工艺与技巧等知识,这些会影响器件的性能误差等参数。再根据电子技术知识,通过电路优化消除误差,可得出理想的电路。误差的来源有光电器件的非线性性质,外界温度,放大器件本身的噪声。 能感应光强的器件有:光敏电阻,光电池,光电二极管(PIN管,雪崩管等),复合光电三极管,光电三极管。其中响应最慢的是光敏电阻,他不但惯性大,还具有前历效应。本实验选用光电二极管,它具有较快的动态响应。 光敏电阻器是利用半导体的光电效应制成的一种电阻值随入射光的强弱而改变的电阻器;入射光强,电阻减小,入射光弱,电阻增大。光敏电阻器一般用于光的测量、光的控制和光电转换(将光的变化转换为电的变化)。通常,光敏电阻器都制成薄片结构,以便吸收更多的光能。当它受到光的照射时,半导体片(光敏层)内就激发出电子—空穴对,参与导电,使电路中电流增强。 光电二极管和普通二极管一样,也是由一个PN结组成的半导体器件,也具有单方向导电特性。但是,在电路中它是通过它把光信号转换成电信号。光电二极管在设计和制作时尽量使PN结的面积相对较大,以便接收入射光。光电二极管是在反向电压作用在工作的,没有光照时,反向电流极其微弱,叫暗电流;有光照时,反向电流迅速增大到几十微安,称为光电流。光的强度越大,反向电流也越大。光强的变化引起光电二极管电流变化,这就可以把光信号转换成电信号,成为光电传感器件。 本试验采用光电二极管,完成对低频微弱光信号的检测。对微弱或极微弱光的检测, 在科学研究,生活应用和军事等领域有广泛的应用。为将微弱光信号转换为电信号以方便后级电路处理, 设计了针对于微弱光信号检测电路。电路由光电转换和前置放大两部分组成。该放大电路设计可有效放大低于1nW的微弱输入信号, 同时对噪声也有很强的抑制作用。 微弱光信号检测的一般办法是通过光电转换器件将微弱的光信号转换成为微弱电信号, 然后再通过电路放大, 将这个微弱电信号转变为可处理的电信号。微弱光信号检测的难点在于光电信都很微弱,所以制作低噪声、高精度光电放大器是关键所在。 现在一般采用光电转换电路和前置放大电路组成放大器的方法, 并且多采用专用集成电路来构建电路。全部采用专用集成电路的方法缺乏灵活性, 在有些应用

人体脉搏信号检测系统设计

第1章绪论 1.1 研究背景和意义 随着社会和科学技术的不断进步,人们对生命现象的认识也越来越深入,生物医学信号的检查是对人体健康状况评估的手段。在医院里,通过检查必要的生物医学数据,医生可以对病人健康程度做一个评估,并且根据数据诊断出病患所得的疾病以及康复状况。同时,医药保健类产品早已经不是医院的专利,以家庭为单位,几乎每个家庭都配备了必要的医疗保健类用品[1-3]。在适宜的医疗设备条件下,病人可以不依靠医生的辅助,自己采集医学生理数据,通过医学根据对此参数分析,评估健康水平或者诊断自身是否有疾病。现代的医疗仪器给人民生活带来了便捷,在智能化、便携式、可靠性、安全性等方面都有了很大的提高。仪器在实现功能的同时都有不同的特点,有的仪器便于携带,有的仪器操作简单。当然,结合众多优点的仪器无疑受到消费者的青睐。以医院为单位,因为测量出来的数据可以直接提供给医生作为诊断或评估病人身体状况的参考,所以这类医疗仪器性能高、功能强大、测量数据准确。而对于以家庭或个人来说,在保证功能的同时,方便测量生理数据、便于携带、价格低廉、智能化这些特点是此类医疗仪器发展的趋势。 作为诸多生理信号的一种,脉象信号蕴含着丰富的信息,从脉搏波中提取人体的生理病理信息作为临床诊断和治疗的依据,历来都受到中外医学界的重视。脉搏波所呈现出的形态(波形)、强度(波幅)、速率(波速)和节律(周期)等方面的综合信息,在很大程度上反映出人体心血管系统中许多 生理病理的血流特征[4]。许多中医文献分析脉象的形成和西医分析虽然表、述各有不同,但是有相同的科学原理。 人体循环系统由心脏、血管、血液所组成,负责人体氧气、二氧化碳、养分及废物的运送。血液经由心脏的左心室收缩而挤压流入主动脉,随即传递到全身动脉。当大量血液进入动脉将使动脉压力变大而使管径扩张,在体表较浅处动脉即可感受到此扩张,即所谓的脉搏[1]。 正常人的脉搏和心跳是一致的。脉搏的频率受年龄和性别的影响,婴儿每分钟

信号检测在雷达系统方面的应用

信号检测与估计理论在雷达系统方面的应用 摘要:随着互联网应用的普及及发展,信号的检测与估计技术的应用也越来越受到人们的关注。雷达中的信号检测是一个综合性问题,涉及多个学科,多领域知识,所以它是科学领域最为关注的问题。近年来已经开展了大量雷达系统信号实现方法相关的研究课题,其中回波信号的检测和估计是最为重要的方面。本论文就是针对雷达信号检测和估计的精确性问题加以展开的。 关键词:雷达系统,信号估计,信号检测 第一章雷达系统 1.1起源和发展 早期雷达用接收机、显示器并靠人眼观察来完成信号检测和信息提取的工作。接收机对目标的回波信号进行放大、变频和检波等,使之变成能显示的视频信号,送到显示器。人们在显示器的荧光屏上寻找类似于发射波形的信号,以确定有无目标存在和目标的位置。随着雷达探测距离的延伸,回波变弱,放大倍数需要增加。于是,接收机前端产生的噪声和机外各种干扰也随着信号一起被放大,而成为影响检测和估计性能的重要因素。这时,除了降低噪声强度之外,还要研究接收系统频带宽度对发现回波和测量距离精度的影响。这是对雷达检测理论的初期研究。后来,人们开始在各种干扰背景中对各种信号进行检测和估计的理论研究,其中有些结论,如匹配滤波理论,关于滤波、积累、相关之间等效的理论,测量精度极限的理论,雷达模糊理论等,已在实际工作中得到应用. 1.2雷达的概述 雷达的英文名字是radar,是“无线电探测与定位”的英文缩写。雷达的基本任务是探测感兴趣的目标,测定有关目标的距离、方问、速度等状态参数。雷达主要由天线、发射机、接收机(包括信号处理机)和显示器等部分组成。

雷达发射机产生足够的电磁能量,经过收发转换开关传送给天线。天线将这些电磁能量辐射至大气中,集中在某一个很窄的方向上形成波束,向前传播。电磁波遇到波束内的目标后,将沿着各个方向产生反射,其中的一部分电磁能量反射回雷达的方向,被雷达天线获取。天线获取的能量经过收发转换开关送到接收机,形成雷达的回波信号。由于在传播过程中电磁波会随着传播距离而衰减,雷达回波信号非常微弱,几乎被噪声所淹没。接收机放大微弱的回波信号,经过信号处理机处理,提取出包含在回波中的信息,送到显示器,显示出目标的距离、方向、速度等。 为了测定目标的距离,雷达准确测量从电磁波发射时刻到接收到回波时刻的延迟时间,这个延迟时间是电磁波从发射机到目标,再由目标返回雷达接收机的传播时间。根据电磁波的传播速度,可以确定目标的距离为:S=CT/2 其中S:目标距离;T:电磁波从雷达到目标的往返传播时间;C:光速 1.3雷达的工作原理 雷达是利用目标对电磁波的反射(或称为二次散射)现象来发现目标并测定其位置的空间任一目标所在位置可用下列三个坐标来确定:1>目标的斜距R;2>方位角a;3>仰角B。同时也就是说根据雷达接收到的信号检查是否含有目标反射回波,并从反射回波中测出有关目标状态的数据。 第二章雷达中的信号检测 雷达的基本任务是发现目标并测定其坐标通常目标的回波信号中总是混杂着噪声和各类干扰而噪声和各种干扰信号均具有随机持性在这种条件下发现目标的问题属于信号检测的范畴信号检测理论就是要解决判断信号是否存在的方法及其最佳处理方式。

相关文档