文档库 最新最全的文档下载
当前位置:文档库 › 热处理工艺的“四把火”

热处理工艺的“四把火”

热处理工艺的“四把火”
热处理工艺的“四把火”

热处理工艺的“四把火”

金属热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的热处理工艺。按照其处理工艺可以分为退火、正火、淬火、回火四种基本工艺,称为“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。

正火:将钢材或钢件加热到临界点AC3 或ACM 以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。

退火:是将工件加热到适当温度(AC3以上20-40度),根据材料和工件尺寸采用不同的保温时间,然后随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下的热处理工艺,其实质是将钢加热奥氏体化后进行珠光体转变。

目的和作用

(1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工;

(2)细化晶粒,消除因锻、焊等引起的组织缺陷,均匀钢的组织成分,改善钢的性能或为以后的热处理做准备;

(3)消除钢中的内应力,以防止变形或开裂。

淬火:淬火就是将钢加热到Ac3或Ac1点以上某一温度,保持一定时间,然后将工件放入水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却以获得马氏体和(或)贝氏体组织的热处理工艺。淬火后钢件变硬,但同时变脆。为了降

低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。

目的和作用

使过冷奥氏体进行马氏体(或贝氏体)转变,得到马氏体(或贝氏体)组织,然后配合以不同温度的回火,获得所需的力学性能。

(注:淬火态工件不允许直接投入现场使用,通常在此之后必须实时进行1-2次或以上之回火加工,以调整其组织及应力等。)

回火:回火就是将经过碎火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。

目的和作用

(1)合理地调整力学性能,使工件满足使用要求;

(2)稳定组织,使工件在使用过程中不发生组织转变,从而保证工件的尺寸、形状不变;

(3)降低或消除淬火内应力,以减少工件的变形并防止开裂。

钢的热处理温度Al、A3与Acl、Ac3、Arl和Acm 铁碳合金可以查阅Fe-C相图,如果是合金钢只能根据具体牌号查阅。

A1:在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度;

A3:亚共析钢在平衡状态下,奥氏体和铁素体共存的最高泪度;

Acl:钢加热时,开始形成奥氏体的温度;

Ac3:亚共析钢加热时,所有铁素体均转变为奥氏体的温度;

Arl:钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度;

Acm:过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,即过共析钢的上临界点。

即一般所说的下转变温度是Al或Acl,上转变温度是A3或Ac3或Acm。不同化学成分,有不同的临界点。

Q245R钢:Acl是735 、Ac3 是855 、Arl是680 、Ar3 是855 .

Q345R钢: Ac1是735 、Ac3 是863 、Arl是685 、Ar3 是840 .

45钢: Ac1是740 、Ac3 是850 、Arl是735 、Ar3 是785 .

钢的热处理(原理及四把火)

钢的热处理 钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。 第一节钢的热处理原理 热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理和化学气相沉积等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变 加热的目的:使钢奥氏体化 (一)奥氏体( A)的形成 奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c =0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。 1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。 2、残余 Fe 3 C的溶解 A长大同时由于有部分渗碳体没有完全溶解,还需一段时间才能全溶。(F比Fe 3 C先消失) 3、奥氏体成分的均匀化残余Fe 3 C全溶后,经一段时间保温,通过碳原子的扩散,使A成分逐步均匀化。 (二)奥氏体晶粒的长大 奥氏体大小用奥氏体晶粒度来表示。分为 00,0,1,2…10等十二个等级,其中常用的1~10级,4级以下为粗晶粒,5-8级为细晶粒,8级以上为超细晶粒。影响 A晶粒粗大因素 1、加热温度越高,保温时间愈长,奥氏体晶粒越粗大。因此,合理选择加热和保温时间。以保证获得细小均匀的奥氏体组织。(930~950℃以下加热,晶粒长大的倾向小,便于热处理) 2、A中C含量上升则晶粒长大的倾向大。

热处理工艺

热处理工艺 摘要:现代机器制造对金属材料的性能不断提出更高的要求,如果完全依赖原材料的原始性能来满足这些要求,常常是不经济的,甚至是不可能的。热处理可提高零件的强度、硬度、韧性、弹性,同时,还可改善毛胚或原材料切削性能,使之易于加工。可见,热处理是改善原材料或毛胚的工艺性能、保证产品质量、延长使用寿命、挖掘材料潜力不可缺少的工艺方法。热处理在机械制造业中的应用极其广泛。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。 Modern machine manufacturing of metal material performance continuously put forward higher requirements, if totally dependent on the raw performance of the raw materials to meet these requirements, often not economical, even is impossible. Heat treatment can improve the strength, hardness, toughness and elasticity of the parts, and it also can improve the cutting performance of hair germ or raw material, so it is easy to be processed. Heat treatment is an essential method to improve the processing performance of raw materials or hair germ, guarantee the product quality, extend the service life and excavate the potential of material. Heat treatment in the mechanical manufacturing industry is very extensive. Iron and steel is the most widely used material in mechanical industry. The microstructure of steel is controlled by heat treatment, so the heat treatment is the main content of metal heat treatment. 关键词:热处理退火正火淬火回火温度 Heat treatment ,Annealing ,Normalizing ,Quenching ,Tempering ,Temperature 正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 为了降低钢件的脆性,将淬火后的钢件在高于室温而低于650℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。 退火、正火、淬火、回火是整体热处理中的“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 “四把火”随着加热温度和冷却方式的不同,又演变出不同的热处理工艺。为了获得一定的强度和韧性,把淬火和高温回火结合起来的工艺,称为调制。某些合金淬火形成过饱和固溶体后,将其置于室温或稍高的适当温度下保持较长时间,

热处理种类应用

1.热处理工艺的分类 金属热处理工艺大体可分为整体热处理、表面热处理和化学热处理三大类。 整体热处理是对工件整体加热,然后以适当的速度冷却,获得需要的金相组织,以改变其整体力学性能的金属热处理工艺。钢铁整体热处理大致有退火、正火、淬火和回火四种基本工艺。

渗入碳、氮、硼和铬等元素。渗入元素后,有时还要进行其它热处理工艺如淬火及回火。化学热处理的主要方法有渗碳、渗氮、渗金属。 8.5补充手段之二 1.退火:指金属材料加热到适当的温度,保持一定的时间,然后缓慢冷却的热处理工艺。常见的退火工艺有:再结晶退火、去应力退火、球化退火、完全退火等。退火的目的:主要是降低金属材料的硬度,提高塑性,以利切削加工或压力加工,减少残余应力,提高组织和成分的均匀化,或为后道热处理作好组织准备等。 2.正火:指将钢材或钢件加热到或(钢的上临界点温度)以上,30~50℃保持适当时间后,在静止的空气中冷却的热处理的工艺。正火的目的:主要是提高低碳钢的力学性能,改善切削加工性,细化晶粒,消除组织缺陷,为后道热处理作好组织准备等。 3.淬火:指将钢件加热到Ac3 或Ac1(钢的下临界点温度)以上某一温度,保持一定的时间,然后以适当的冷却速度,获得马氏体(或贝氏体)组织的热处理工艺。常见的淬火工艺有盐浴淬火,马氏体分级淬火,贝氏体等温淬火,表面淬火和局部淬火等。淬火的目的:使钢件获得所需的马氏体组织,提高工件的硬度,强度和耐磨性,为后道热处理作好组织准备等。 4.回火:指钢件经淬硬后,再加热到Ac1 以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺。常见的回火工艺有:低温回火,中温回火,高温回火和多次回火等。回火的目的:主要是消除钢件在淬火时所产生的应力,使钢件具有高的硬度和耐磨性外,并具有所需要的塑性和韧性等。 5.调质:指将钢材或钢件进行淬火及高温回火的复合热处理工艺。使用于调质处理的钢称调质钢。它一般是指中碳结构钢和中碳合金结构钢。 6.渗碳:渗碳是指使碳原子渗入到钢表面层的过程。也是使低碳钢的工件具有高碳钢的表面层,再经过淬火和低温回火,使工件的表面层具有高硬度和耐磨性,而工件的中心部分仍然保持着低碳钢的韧性和塑性。

热处理四把火工艺

退火、正火、淬火、回火工艺 金属热处理是将金属工件放在一定的介质中加热到适宜的温度, 并在此温度中保持一定时间 后,又以不同速度冷却的一种工艺方法。 金属热处理是机械制造中的重要工艺之一, 与其它加工工艺相比, 热处理一般不改变工 件的形状和整体的化学成分, 而是通过改变工件内部的显微组织, 分,赋予或改善工件的使用性能。其特点是改善工件的内在质量, 到的。 为使金属工件具有所需要的力学性能、 物理性能和化学性能, 形工艺外,热处理工艺往往是必不可少的。 钢铁是机械工业中应用 最广的材料, 钢铁显微组 织复杂,可以通过热处理予以控制, 所以钢铁的热处理是金属热处理的主要内容。 另外,铝 铜、镁、钛等及其合金也都可以通过热处理改变其力学、 物理和化学性能,以获得不同的使 用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。 早在公 元前770?前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变 形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。 中国河北省易县燕下都出土的两把剑和一把戟, 其显微组织中都有马氏体存在,说明是经过 淬火的。 随着淬火技术的发展, 人们逐渐发现冷剂对淬火质量的影响。 三国蜀人蒲元曾在今陕西 斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到 不同水质的冷却能力了, 同时也注意了油和尿的冷却能力。 中国出土的西汉(公元前206?公 元24)中山靖王墓中的宝剑,心部含碳量为0.15?0.4%,而表面含碳量却达 0.6%以上,说明 已应用了渗碳工艺。但当时作为个人 手艺”的秘密,不肯外传,因而发展很慢。 1863年,英国金相学家和地质学家展示了钢铁在显微镜下的六种不同的金相组织,证 明了钢在加热和冷却时,内部会发生组织改变,钢中高温时的相在急冷时转变为一种较硬的 相。法国人奥斯蒙德确立的铁的同素异构理论, 以及英国人奥斯汀最早制定的铁碳相图, 为 现代热处理工艺初步奠定了理论基础。 与此同时,人们还研究了在金属热处理的加热过程中 对金属的保护方法,以避免加热过程中金属的氧化和脱碳等。 1850?1880年,对于应用各种气体(如氢气、煤气、一氧化碳等 )进行保护加热曾有一 系列专利。1889?1890年英国人莱克获得多种金属光亮热处理的专利。 二十世纪以来,金属物理的发展和其它新技术的移植应用, 使金属热处理工艺得到更大 发展。一个显著的进展是 1901?1925年,在工业生产中应用转筒炉进行气体渗碳 ;30年 代出现露点电位差计,使炉内气氛的碳势达到可控,以后又研究出用二氧化碳红外仪、氧探 头等进一步控制炉内气氛碳势的方法; 60年代,热处理技术运用了等离子场的作用,发展 了离子渗氮、渗碳工艺; 激光、电子束技术的应用,又使金属获得了新的表面热处理和化学 热处理方法。 二金属热处理的工艺 热处理工艺一般包括加热、 保温、冷却三个过程,有时只有加热和冷却两个过程。 这些 过程互相衔接,不可间断。 加热是热处理的重要步骤之一。 金属热处理的加热方法很多, 最早是采用木炭和煤作为 热源,进而应用液体和气体燃料。电的应用使加热易于控制, 且无环境污染。利用这些热源 或改变工件表面的化学成 而这一般不是肉眼所能看 除合理选用材料和各种成

热处理工艺的“四把火”

热处理工艺的“四把火” 金属热处理是对工件整体加热,然后以适当的速度冷却,以改变其整体力学性能的热处理工艺。按照其处理工艺可以分为退火、正火、淬火、回火四种基本工艺,称为“四把火”,其中的淬火与回火关系密切,常常配合使用,缺一不可。 正火:将钢材或钢件加热到临界点AC3 或ACM 以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 退火:是将工件加热到适当温度(AC3以上20-40度),根据材料和工件尺寸采用不同的保温时间,然后随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下的热处理工艺,其实质是将钢加热奥氏体化后进行珠光体转变。 目的和作用 (1)降低钢的硬度,提高塑性,以利于切削加工及冷变形加工; (2)细化晶粒,消除因锻、焊等引起的组织缺陷,均匀钢的组织成分,改善钢的性能或为以后的热处理做准备; (3)消除钢中的内应力,以防止变形或开裂。 淬火:淬火就是将钢加热到Ac3或Ac1点以上某一温度,保持一定时间,然后将工件放入水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却以获得马氏体和(或)贝氏体组织的热处理工艺。淬火后钢件变硬,但同时变脆。为了降

低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。 目的和作用 使过冷奥氏体进行马氏体(或贝氏体)转变,得到马氏体(或贝氏体)组织,然后配合以不同温度的回火,获得所需的力学性能。 (注:淬火态工件不允许直接投入现场使用,通常在此之后必须实时进行1-2次或以上之回火加工,以调整其组织及应力等。) 回火:回火就是将经过碎火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺。 目的和作用 (1)合理地调整力学性能,使工件满足使用要求; (2)稳定组织,使工件在使用过程中不发生组织转变,从而保证工件的尺寸、形状不变; (3)降低或消除淬火内应力,以减少工件的变形并防止开裂。 钢的热处理温度Al、A3与Acl、Ac3、Arl和Acm 铁碳合金可以查阅Fe-C相图,如果是合金钢只能根据具体牌号查阅。 A1:在平衡状态下,奥氏体、铁素体、渗碳体或碳化物共存的温度; A3:亚共析钢在平衡状态下,奥氏体和铁素体共存的最高泪度; Acl:钢加热时,开始形成奥氏体的温度; Ac3:亚共析钢加热时,所有铁素体均转变为奥氏体的温度; Arl:钢高温奥氏体化后冷却时,奥氏体分解为铁素体和珠光体的温度; Acm:过共析钢在平衡状态下,奥氏体和渗碳体或碳化物共存的最高温度,即过共析钢的上临界点。 即一般所说的下转变温度是Al或Acl,上转变温度是A3或Ac3或Acm。不同化学成分,有不同的临界点。 Q245R钢:Acl是735 、Ac3 是855 、Arl是680 、Ar3 是855 . Q345R钢: Ac1是735 、Ac3 是863 、Arl是685 、Ar3 是840 . 45钢: Ac1是740 、Ac3 是850 、Arl是735 、Ar3 是785 .

金属材料热处理中的“四把火”

金属材料热处理中的“四把火” 来源:对钩网 热处理是一种常见的金属材料加工工艺,目的是在不破坏金属材料形状的前提之下,通过改变材料表面化学成分或内部显微结构,从而提升材料某些方面的性能。顾名思义,热处理是以温度控制为手段的,工艺流程一般包括加热、保温和冷却三个环节。早在公元前六世纪,钢铁冶炼技术被人类发明并得到普遍推广。那时候,人们就已经开始使用简单的热处理工艺,以增加钢铁材料的硬度。随着相关科学理论的不断完善,近年来,这种金属材料加工工艺得到了更大的发展。其中最常用的手段被称为“四把火”。 热处理工艺中的“四把火”,这是四种不同处理方法的总称,依次分别是退火、正火、淬火和回火。因为都带一个“火”字,所以合称“四把火”。这“四把火”都与金属材料加热后的冷却处理有关,但因为冷却的方法和媒介不同而有所区别。 退火 当金属加热到适宜温度以后,先保温达到足够的时间,保温时间的长短是根据材料性质和工件的形状、尺寸来决定的,然后再进行缓慢冷却,这种方法称为退火。经过退火处理的金属材料,硬度降低,切削加工性得到改善,残余应力被消除,在加工过程中不容易发生变形或出现裂纹。 正火 正火,又称常化,其过程与退火类似,只是冷却时需将工件放置在空气中,或对其进行喷水、喷雾、吹风等手段辅助冷却。对金属材料进行正火处理,也可以起到去除内应力和改善切削工艺的效果,只是得到的材料硬度更大、组织更细。退火和正火通常都作为改善材料性能的预备热处理,但对一些要求不太高的材料,正火也可以作为最终热处理而使用。 淬火 将工件加热保温,使之全部或部分奥氏体1化以后,借助水、油或其它无机盐、有机水溶液作为介质,对金属进行快速冷却处理的工艺称为淬火。淬火可以大大提高工件硬度,尤其是表面淬火技术,因工件氧化和脱碳量较少,常被应用在机床主轴和齿轮的加工制造当中。但经过淬火后的金属材料通常脆性也会增加,需要及时进行下一步回火工序。 回火 回火是将淬火后的工件重新加热到低于下临界温度范围以内的某一合适温度,然后放置在高于室温而低于650℃的环境内长时间保温,最后进行冷却。这一工序可以有效降低钢件脆性,提高其延性和韧性。回火与淬火经常配合使用,淬火后的工件如果进行高温回火工艺,整个过程统称为调质处理;如果在略高于室温的环境下进行回火,则把整个过程统称为时效处理。 复杂热处理 除简单的“四把火”外,热处理工艺还经常与其他工艺结合使用,形成更复杂的热处理工艺,以达到更好的加工效果。如在对材料进行热处理的流程中,加入了压力加工形变这道工序,这样的结合可以很好地增强工件强度和韧性,这种方法称为形变热处理。如把热处理过程置于负压气氛或真空环境中进行,将有效避免工件发生氧化、脱碳等现象,处理出来的工件表面光洁,性能也有所提升,

热处理工艺之四把火

热处理工艺之四把火 热处理是机械零件和工模具制造过程中的重要工序之一。大体来说,它可以保证和提高工件的各种性能,如耐磨、耐腐蚀等。还可以改善毛坯的组织和应力状态,以利于进行各种冷、热加工。 一、热处理工艺的分类 热处理是将金属材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的晶相组织结构,来改变其性能的一种金属热加工工艺。 热处理工艺大体分为整体热处理、表面热处理和化学热处理三大类。根据加热介质、加热温度和冷却方法的不同,每一大类又可区分为若干不同的热处理工艺。 整体热处理分为正火,退火,淬火,回火,调质,稳定化处理,固溶处理,水韧处理,失效处理。其中正火、退火、淬火、回火称为热处理中的“四把火”。表面热处理的主要方法有火焰淬火和感应加热热处理。化学热处理主要分为渗碳,渗氮,碳氮共渗等。 以下主要介绍整体热处理“四把火”及常见的调质热处理工艺的目的及应用范围。 二、整体热处理中“四把火“及调质热处理工艺的目的及应用范围 (1)正火 1)正火定义:正火又称为常化,是将工件加热至Ac3(Ac是指加热时自由铁素体全部转变为奥氏体的终了温度,一般是从727℃到912℃之间)或Acm(Acm 是实际加热中过共析钢完全奥氏体化的临界温度线 )以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。 2)正火的目的:①去除材料的内应力;②增加材料的硬度。 3)正火的主要应用范围有:①用于低碳钢;②用于中碳钢;③用于工具钢、轴承钢、渗碳钢等;④用于铸钢件;⑤用于大型锻件;⑥用于球墨铸铁。 (2)退火 1)退火定义:指的是将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)。 2)退火的目的:①降低硬度,改善切削加工性;②消除残余应力,稳定尺寸,减少变形与裂纹倾向;③细化晶粒,调整组织,消除组织缺陷;④均匀材料组织和成分,改善材料性能或为以后热处理做组织准备。 3)退火的主要应用范围:①完全退火主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷,使组织变细和变均匀,以提高钢件的塑性和韧性;②不完全退火主要用于中碳和高碳钢及低合金结构钢的锻轧件,使晶粒变细,同时也降低硬度,消除内应力,改善被切削性;③球化退火只应用于钢的中退火方法,其中中碳钢和高碳钢硬度低、被切削性好、冷形变能力大;④去应力退火主要适用于毛坯件及经过切削加工的零件,目的是为了消除毛坯和零件中的残余应力,稳定工件尺寸及形状,减少零件在切削加工和使用过程中的形变和裂纹倾向。(3)淬火

热处理的详细介绍

热处理的详细介绍 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 热处理的发展史 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770至前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成都取水淬火的。这说明中国在古代就注意到不同水质的冷却能力了,同时也注意了油和尿的冷却能力。中国出土的西汉(公元前206~公元24)中山靖王墓中的宝剑,心部含碳量为0.15~0.4%,而表面含碳量却达0.6%以上,说明已应用了渗碳工艺。但当时作为个人“手艺”的秘密,不肯外传,因而发展很慢。

正火回火退火淬火处理

正火,回火,退火,淬火的区别 1.退火 把钢加热到一定温度并在此温度下保温,然后缓慢冷却到室温. 退火有完全退火、球化退火、去应力退火等几种。 a将钢加热到预定温度,保温一段时间,然后随炉缓慢冷却称为完全退火.目的是降低钢的硬度,消除钢中不均匀组织和内应力. b,把钢加热到750度,保温一段时间,缓慢冷却至500度下,最后在空气中冷却叫球化退火.目的是降低钢的硬度,改善切削性能,主要用于高碳钢. c,去应力退火又叫低温退火,把钢加热到500~600度,保温一段时间,随炉缓冷到300度以下,再室温冷却.退火过程中组织不发生变化,主要消除金属的内应力. 2.正火 将钢件加热到临界温度以上30-50℃,保温适当时间后,在静止的空气中冷却的热处理工艺称为正火。 正火的主要目的是细化组织,改善钢的性能,获得接近平衡状态的组织。 正火与退火工艺相比,其主要区别是正火的冷却速度稍快,所以正火热处理的生产周期短。故退火与正火同样能达到零件性能要求时,尽可能选用正火。 3.淬火 将钢件加热到临界点以上某一温度(45号钢淬火温度为840-860℃,碳素工具钢的淬火温度为760~780℃),保持一定的时间,然后以适当速度在水(油)中冷却以获得马氏体或贝氏体组织的热处理工艺称为淬火。 淬火与退火、正火处理在工艺上的主要区别是冷却速度快,目的是为了获得马氏体组织。马氏体组织是钢经淬火后获得的不平衡组织,它的硬度高,但塑性、韧性差。马氏体的硬度随钢的含碳量提高而增高。 4.回火 钢件淬硬后,再加热到临界温度以下的某一温度,保温一定时间,然后冷却到室温的热处理工艺称为回火。 淬火后的钢件一般不能直接使用,必须进行回火后才能使用。因为淬火钢的硬度高、脆性大,直接使用常发生脆断。通过回火可以消除或减少内应力、降低脆性,提高韧性;另一方面可以调整淬火钢的力学性能,达到钢的使用性能。根据回火温度的不同,回火可分为低温回火、中温回火和高温回火三种。 A 低温回火150~250.降低内应力,脆性,保持淬火后的高硬度和耐磨性. B 中温回火350~500;提高弹性,强度. C 高温回火500~650;淬火钢件在高于500℃的回火称为高温回火。淬火钢件经高温淬火后,具有良好综合力学性能(既有一定的强度、硬度,又有一定的塑性、韧性)。所以

热处理工艺详解

热处理工艺 热处理是将材料放在一定的介质内加热、保温、冷却,通过改变材料表面或内部的组织结构,来控制其性能的一种综合工艺过程。 热处理名词: 金属:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特性的物质。金属内部原子具有规律性排列的固体(即晶体)。 合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 相:合金中成份、结构、性能相同的组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。 铁素体:碳在a-Fe(体心立方结构的铁)中的间隙固溶体。 奥氏体:碳在g-Fe(面心立方结构的铁)中的间隙固溶体。

渗碳体:碳和铁形成的稳定化合物(Fe3c)。 珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳4.3%) 金属热处理是机械制造中的重要工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体的化学成分,而是通过改变工件内部的显微组织,或改变工件表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能看到的。 为使金属工件具有所需要的力学性能、物理性能和化学性能,除合理选用材料和各种成形工艺外,热处理工艺往往是必不可少的。钢铁是机械工业中应用最广的材料,钢铁显微组织复杂,可以通过热处理予以控制,所以钢铁的热处理是金属热处理的主要内容。另外,铝、铜、镁、钛等及其合金也都可以通过热处理改变其力学、物理和化学性能,以获得不同的使用性能。 在从石器时代进展到铜器时代和铁器时代的过程中,热处理的作用逐渐为人们所认识。早在公元前770~前222年,中国人在生产实践中就已发现,铜铁的性能会因温度和加压变形的影响而变化。白口铸铁的柔化处理就是制造农具的重要工艺。 公元前六世纪,钢铁兵器逐渐被采用,为了提高钢的硬度,淬火工艺遂得到迅速发展。中国河北省易县燕下都出土的两把剑和一把戟,其显微组织中都有马氏体存在,说明是经过淬火的。 随着淬火技术的发展,人们逐渐发现淬冷剂对淬火质量的影响。三国蜀人蒲元曾在今陕西斜谷为诸葛亮打制3000把刀,相传是派人到成

钢的热处理(原理及四把火)学习资料

钢的热处理(原理及四 把火)

钢的热处理 钢的热处理:是将固态钢材采用适当的方式进行加热、保温和冷却以获得所需组织结构与性能的工艺。热处理不仅可用于强化钢材,提高机械零件的使用性能,而且还可以用于改善钢材的工艺性能。其共同点是:只改变内部组织结构,不改变表面形状与尺寸。 第一节钢的热处理原理 热处理的目的是改变钢的内部组织结构,以改善钢的性能,通过适当的热处理可以显著提高钢的机械性能,延长机器零件的使用寿命。热处理工艺不但可以强化金属材料、充分挖掘材料性能潜力、降低结构重量、节省和能源,而且能够提高机械产品质量、大幅度延长机器零件的使用寿命。 热处理工艺分类:(根据热处理的目的、要求和工艺方法的不同分类如下) 1、整体热处理:包括退火、正火、淬火、回火和调质; 2、表面热处理:包括表面淬火、物理和化学气相沉积等; 3、化学热处理:渗碳、渗氮、碳氮共渗等。 热处理的三阶段:加热、保温、冷却

一、钢在加热时的转变 加热的目的:使钢奥氏体化 (一)奥氏体( A)的形成 奥氏体晶核的形成以共析钢为例A1点则W c =0.0218%(体心立方晶格F)W c =6.69%(复杂斜方渗碳体)当T 上升到A c1 后W c = 0.77%(面心立方的A)由此可见转变过程中必须经过C和Fe原子的扩散,必须进行铁原子的晶格改组,即发生相变,A的形成过程。在铁素体和渗碳体的相界面上形成。有两个有利条件①此相界面上成分介于铁素体和渗碳体之间②原子排列不规则,空位和位错密度高。 1、奥氏体长大由于铁素体的晶格改组和渗碳体的不断溶解,A晶核一方面不断向铁素体和渗碳体方向长大,同时自身也不断形成长大。

四把火

金属热处理大致有退火、正火、淬火和回火四种基本工艺,俗称金属热处理的“四把火”。 一、金属热处理的第一把火——退火: 1、退火是将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却,目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。 2、退火的目的: ①改善或消除钢铁在铸造、锻压、轧制和焊接过程中所造成的各种组织缺陷以及残余应力,防止工件变形、开裂。 ②软化工件以便进行切削加工。 ③细化晶粒,改善组织以提高工件的机械性能。 ④为最终热处理(淬火、回火)作好组织准备。 二、金属热处理的第二把火——正火: 1、正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,也有时用于对一些要求不高的零件作为最终热处理。 2、正火的目的: ①可以消除铸、锻、焊件的过热粗晶组织和魏氏组织,轧材中的带状组织;细化晶粒;并可作为淬火前的预先热处理。 ②可以消除网状二次渗碳体,并使珠光体细化,不但改善机械性能,而且有利于以后的球化退火。 ③可以消除晶界的游离渗碳体,以改善其深冲性能。

三、金属热处理的第三把火——淬火: 1、淬火是将工件加热保温后,在水、油或其它无机盐、有机水溶液等淬冷介质中快速冷却。淬火后钢件变硬,但同时变脆。 2、淬火的目的: ①、提高金属成材或零件的机械性能。例如:提高工具、轴承等的硬度和耐磨性,提高弹簧的弹性极限,提高轴类零件的综合机械性能等。 ②、改善某些特殊钢的材料性能或化学性能。如提高不锈钢的耐蚀性,增加磁钢的永磁性等。 四、金属热处理的第四把火——回火: 1、回火为了降低钢件的脆性,将淬火后的钢件在高于室温而低于710℃的某一适当温度进行长时间的保温,再进行冷却,这种工艺称为回火。 2、回火的目的: ①、减少内应力和降低脆性,淬火件存在着很大的应力和脆性,如没有及时回火往往会产生变形甚至开裂。 ②、调整工件的机械性能,工件淬火后,硬度高,脆性大,为了满足各种工件不同的性能要求,可以通过回火来调整,硬度,强度,塑性和韧性。 ③、稳定工件尺寸。通过回火可使金相组织趋十稳定,以保证在以后的使用过程中不再发生变形。 ④、改善某些合金钢的切削性能。

热处理四把火

钢的退火 退火是生产中常用的预备热处理工艺。大部分机器零件及工、模具的毛坯经退火后,可消除铸、锻及焊件的内应力与成分的组织不均匀性;能改善和调整钢的力学性能,为下道工序作好组织准备。对性能要求不高、不太重要的零件及一些普通铸件、焊件,退火可作为最终热处理。钢的退火是把钢加热到适当温度,保温一定时间,然后缓慢冷却,以获得接近平衡组织的热处理工艺。退火的目的在于均匀化学成分、改善机械性能及工艺性能、消除或减少内应力并为零件最终热处理作好组织准备。 钢的退火工艺种类颇多,按加热温度可分为两大类:一类是在临界温度(Ac3或Ac1)以上的退火,也称为相变重结晶退火。包括完全退火、不完全退火、等温退火、球化退火和扩散退火等;另一类是在临界温度(Ac1)以下的退火,也称低温退火。包括再结晶退火、去应力和去氢退火等。按冷却方式可分为连续冷却退火及等温退火等。 钢的淬火与回火 钢的淬火与回火是热处理工艺中很重要的、应用非常广泛的工序。淬火能显著提高钢的强度和硬度。如果再配以不同温度的回火,即可消除(或减轻)淬火内应力,又能得到强度、硬度和韧性的配合,满足不同的要求。所以,淬火和回火是密不可分的两道热处理工艺。 钢的淬火 淬火是将钢加热到临界点以上,保温后以大于临界冷却速度(Vc)冷却,以得到马氏体或下贝氏体组织的热处理工艺。 钢的回火 回火是将淬火钢加热至A1点以下某一温度保温一定时间后,以适当方式冷到室温的热处理工艺。它是紧接淬火的下道热处理工序,同时决定了钢在使用状态下的组织和性能,关系着工件的使用寿命,故是关键工序。 回火的主要目的是减少或消除淬火应力;保证相应的组织转变,使工件尺寸和性能稳定;提高钢的热性和塑性,选择不同的回火温度,获得硬度、强度、塑性或韧性的适当配合,以满足不同工件的性能要求。 正火和退火区别 正火和退火主要有四个区别: (1)正火的温度较高,退火的温度较低。 (2)正火的冷却速度比退火的冷却速度快。 (3)使用效果不同,在渗碳处理以后,正火能消除网状渗碳体,退火则不能.对含碳量在0.25%以下的,正火后可提高硬度,改善切削加工性能,退火却做不到。 (4)正火的周期短,操作方便;退火的周期长,操作较麻烦(指需要控制一定的冷却速度)。

铝型材热处理的四把火:退火、正火、淬火及回火

铝型材热处理的四把火:退火、正火、淬火及回火铝型材热处理是将铝型材产品放在一定的介质中加热到适宜的温度,铝型材热处理的文章及信息并在此温度中保持一定时间后,又以不同速度冷却的一种工艺。铝型材热处理是材料生产中的最重要的工艺之一,与其他加工工艺相比,热处理一般不改变工件的形状和整体化学成分,而是通过改变工件的内部的显微组织,或改变工件的表面的化学成分,赋予或改善工件的使用性能。其特点是改善工件的内在质量,而这一般不是肉眼所能观察到的。铝型材热处理中的“四把火”指退火、正火、淬火(固溶)和回火(时效)。 退火是指将工件加热到适当温度,根据材料的和工件的尺寸采用不同的保温时间,然后进行缓慢冷却,其目的主要是降低材料的硬度,提高塑性,以利于后续加工,减少残余应力,提高组织和成分的均匀化。退火根据目的不同分为再结晶退火、去应力退火球化退火、完全退火等。正火是将工件加热到适宜的温度后在空气中冷却,正火的效果同退火相似,只是得到的组织更细,常用于改善材料的切削性能,有时也用于对一些要求不高的零件的最终热处理。淬火是将工件加热保温后,在水、油或其他无机盐、有机水溶液淬冷介质中快速冷却。淬火后材料为不平衡组织,通常很硬很脆,需要在高于室温的某一温度进行长时间的保温,再进行冷却,这种工艺叫回火(时效)。 从以上定义可以看出,不论是退火、正火、淬火还是回火,热处理过程中都要对工件进行加热、保温和冷却。所以铝型材热处理中,加热速度,保温时间和冷却速度成为热处理工艺中最重要的工艺参数。 “四把火”中,淬火和回火(时效)关系最为密切,常常配合使用,二者缺一不可。但在实际生产中,为了节约成本,提高生产效率,对于性能要求低的产品,往往用在线淬火代替淬火炉淬火,用自然时效代替回火。比如在挤压6060、6063等低合金化合金型材时,由于这些合金的淬火敏感性很低,硅、镁在固溶温度以上固溶很快。所以在保证挤压材出料口温度高于固溶温度时,通过风冷淬火也能获得固溶程度较大的过饱和固溶体。

金属材料热处理-四把火

淬火1 1.1 定义(过共Ac1Ac3钢的淬火是将钢加热到临界温度(亚共析钢)或析钢)以上温度,保温一段时间,使之全部或部分奥氏体化,然后以附近等温)进行马以下(或Ms大于临界冷却速度的冷速快冷到Ms氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺合金、称为淬火。1.2 主要目的得到马氏淬火的目的是使过冷奥氏体进行马氏体或贝氏体转变,以大幅提高钢的强度、然后配合以不同温度的回火,体或贝氏体组织,硬度、耐磨性、疲劳强度以及韧性等,从而满足各种机械零件和工具耐蚀的不同使用要求。也可以通过淬火满足某些特种钢材的铁磁性、性等特殊的物理、化学性能。1.3 淬火加热温度 以钢的相变临界点为依据,加热时要形成细小、均匀奥氏体晶粒,淬火后获得细小马氏体组织。碳素钢的淬火加热温度范围如图1所示。由本图示出的淬火温度选择原则也适用于大多数合金钢,尤其低合金钢。亚共析钢加热温度为Ac3温度以上30~50℃。高温下钢的状态处在单相奥氏体(A)区内,故称为完全淬火。如亚共析钢加热温度高于Ac1、低于Ac3温度,则高温下部分先共析铁素体未完全转变温Ac1淬火。过共析钢淬火温度为)或亚临界(成奥氏体,即为不完全.双相区。因(A+C)30~50℃,这温度范围处于奥氏体与渗碳体度以上淬火后得到马氏体基体上而过共析钢的正常的淬火仍属不完全淬火,

组织状态具有高硬度和高耐磨性。对于过共-分布渗碳体的组织。这析钢,若加热温度过高,先共析渗碳体溶解过多,甚至完全溶解,则奥氏体晶粒将发生长大,奥氏体碳含量也增加。淬火后,粗大马氏体零件的变形和开裂组织使钢件淬火态微区内应力增加,微裂纹增多,残留奥氏体量增加,由于奥氏体碳浓度高,马氏体点下降,倾向增加;使工件的硬度和耐磨性降低。2 回火 2.1 定义 将经过淬火的工件重新加热到低于下临界温度Ac1(加热时珠光体向奥氏体转变的开始温度)的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理工艺。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用于减小或消除淬火钢件中的内应力,或者降低其硬度和强度,以提高其延性或韧性。淬火后的工件应及时回火,通过淬火和回火的相配合,才可以获得所需的力学性能。 2.2 类型 2.2.1 低温回火 低温回火(150~250摄氏度)目的是在保证淬火后的高硬度和耐磨性的基础上,降低淬火应力,提高工件韧性。低温回火得到的是马氏 。常用于处理高碳工具钢、模具钢、滚体组织,硬度可达58~64HRC 动轴承及渗碳钢等零件。2.2.2中温回火 得到的组织为回火托氏体,他具有高摄氏度)中温回火(350~500的弹性极限、屈服强度及屈强比,同时具有一定的塑性和韧性,硬度。常

材料学-热处理工艺中的四把火

热处理工艺中的四把火 退火、正火、淬火、回火俗称热处理工艺的“四把火”。 下图囊括了钢热处理工艺的“四把火” 1退火 annealing 将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善塑性和韧性,使化学成分均匀化,去除残余应力,或得到预期的物理性能。退火工艺随目的之不同而有多种,如重结晶退火、等温退火、均匀化退火、球化退火、去除应力退火、再结晶退火,以及稳定化退火、磁场退火等等。 退火的一个最主要工艺参数是最高加热温度(退火温度),大多数合金的退火加热温度的选择是以该合金系的相图为基础的,如碳素钢以铁碳平衡图为基础。各种钢(包括碳素钢及合金钢)的退火温度,视具体退火目的的不同而在各该钢种的Ac3以上、Ac1以上或以下的某一温度。各种非铁合金的退火温度则在各该合金的固相线温度以下、固溶度线温度以上或以下的某一温度。 重结晶退火应用于平衡加热和冷却时有固态相变(重结晶)发生的合金。其退火温度为各该合金的相变温度区间以上或以内的某一温度。加热和冷却都是缓慢的。合金于加热和冷却过程中各发生一次相变重结晶,故称为重结晶退火,常被简称为退火。这种退火方法,相当普遍地应用于钢。钢的重结晶退火工艺是:缓慢加热到Ac3(亚共析钢)或Ac1(共析钢或过共析钢)以上30~50℃,保持

适当时间,然后缓慢冷却下来。通过加热过程中发生的珠光体(或者还有先共析的铁素体或渗碳体)转变为奥氏体(第一回相变重结晶)以及冷却过程中发生的与此相反的第二回相变重结晶,形成晶粒较细、片层较厚、组织均匀的珠光体(或者还有先共析铁素体或渗碳体)。退火温度在Ac3以上(亚共析钢)使钢发生完全的重结晶者,称为完全退火,退火温度在Ac1与Ac3之间 (亚共析钢)或Ac1与Acm之间(过共析钢),使钢发生部分的重结晶者,称为不完全退火。前者主要用于亚共析钢的铸件、锻轧件、焊件,以消除组织缺陷(如魏氏组织、带状组织等),使组织变细和变均匀,以提高钢件的塑性和韧性。后者主要用于中碳和高碳钢及低合金结构钢的锻轧件。此种锻、轧件若锻、轧后的冷却速度较大时,形成的珠光体较细、硬度较高;若停锻、停轧温度过低,钢件中还有大的内应力。此时可用不完全退火代替完全退火,使珠光体发生重结晶,晶粒变细,同时也降低硬度,消除内应力,改善被切削性。此外,退火温度在Ac1与Acm之间的过共析钢球化退火,也是不完全退火。重结晶退火也用于非铁合金,例如钛合金于加热和冷却时发生同素异构转变,低温为α相(密排六方结构),高温为β相(体心立方结构),其中间是“α+β”两相区,即相变温度区间。为了得到接近平衡的室温稳定组织和细化晶粒,也进行重结晶退火,即缓慢加热到高于相变温度区间不多的温度,保温适当时间,使合金转变为β相的细小晶粒;然后缓慢冷却下来,使β相再转变为α相或α+β两相的细小晶粒。 等温退火应用于钢和某些非铁合金如钛合金的一种控制冷却的退火方法。对钢来说,是缓慢加热到 Ac3(亚共析钢)或 Ac1(共析钢和过共析钢)以上不多的温度,保温一段时间,使钢奥氏体化,然后迅速移入温度在A1以下不多的另一炉内,等温保持直到奥氏体全部转变为片层状珠光体(亚共析钢还有先共析铁素体;过共析钢还有先共析渗碳体)为止,最后以任意速度冷却下来(通常是出炉在空气中冷却)。等温保持的大致温度范围在所处理钢种的等温转变图上A1 至珠光体转变鼻尖温度这一区间之内(见过冷奥氏体转变图);具体温度和时间,主要根据退火后所要求的硬度来确定。等温温度不可过低或过高,过低则退火后硬度偏高;过高则等温保持时间需要延长。钢的等温退火的目的,与重结晶退火基本相同,但工艺操作和所需设备都比较复杂,所以通常主要是应用于过冷奥氏体在珠光体型相变温度区间转变相当缓慢的合金钢。后者若采用重结晶退火方法,往往需要数十小时,很不经济;采用等温退火则能大大缩短生产周期,并能使整个工件获得更为均匀的组织和性能。等温退火也可在钢的热加工的不同阶段来用。例如,若让空冷淬硬性合金钢由高温空冷到室温时,当心部转变为马氏体之时,在已发生了马氏体相变的外层就会出现裂纹;若将该类钢的热钢锭或钢坯在冷却过程中放入700℃左右的等温炉内,保持等温直到珠光体相变完成后,再出炉空冷,则可免生裂纹。含β相稳定化元素较高的钛合金,其β相相当稳定,容易被过冷。过冷的β相,其等温转变动力学曲线与钢的过冷奥氏体等温转变图相似。为了缩短重结晶退火的生产周期并获得更细、更均匀的组织,亦可采用等温退火。 均匀化退火亦称扩散退火。应用于钢及非铁合金(如锡青铜、硅青铜、白铜、镁合金等)的铸锭或铸件的一种退火方法。将铸锭或铸件加热到各该合金的固相线温度以下的某一较高温度,长时间保温,然后缓慢冷却下来。均匀化退火是使合金中的元素发生固态扩散,来减轻化学成分不均匀性(偏析),主要是减轻

热处理四把火

英文名称:hardenning,quenching 定义:将钢件加热到奥氏体化温度并保持一定时间,然后以大于临界冷却速度冷却,以获得非扩散型转变组织,如马氏体、贝氏体和奥氏体等的热处理工艺。 钢的淬火是将钢加热到临界温度Ac3(亚共析钢)或Ac1(过共析钢)以上某一温度,保温一段时间,使之全部或部分奥氏体1化,然后以大于临界冷却速度的冷速快冷到Ms以下(或Ms附近等温)进行马氏体(或贝氏体)转变的热处理工艺。通常也将铝合金、铜合金、钛合金、钢化玻璃等材料的固溶处理或带有快速冷却过程的热处理工艺称为淬火。 2 退火 英文名称:annealing 定义1:将金属构件加热到高于或低于临界点,保持一定时间,随后缓慢冷却,从而获得接近平衡状态的组织与性能的金属热处理工艺。 应用学科:电力(一级学科);热工自动化、电厂化学与金属(二级学科) 定义2:将金属或合金加热到适当温度,保持一定时间,然后缓慢冷却的热处理工艺。 应用学科:机械工程(一级学科);机械工程(2)_热处理(二级学科);整体热处理(三级学科) 定义3: (1)热变性核酸或蛋白质经缓慢降温后的复性过程。(2)两条单链多核苷酸 通过互补碱基之间的氢键形成双链分子的过程。可发生在同一来源或不同来源核酸链之间,可以形成双链DNA分子、双链RNA或DNA-RNA杂交分子

英文名称:normalizing 定义:将钢件加热到上临界点(AC3或Acm)以上40~60℃或更高的温度,保温达 到完全奥氏体化后,在空气中冷却的简便、经济的热处理工艺。 正火,又称常化,是将工件加热至Ac3或Accm以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化。 4 回火 英文名称:tempering 定义:将淬火后的钢,在AC1以下加热、保温后冷却下来的热处理工艺。

相关文档