文档库 最新最全的文档下载
当前位置:文档库 › 创伤后肠粘膜屏障改变分子生物学机制的研究

创伤后肠粘膜屏障改变分子生物学机制的研究

肠黏膜屏障

Wilmore等曾把肠道称作是外科患者应激反应的中心器官之一。近年来研究表明,肠道是人体最大的外周免疫器官,肠黏膜间质中的T 淋巴细胞和浆细胞在抗原刺激下产生大量的分泌型S-IgA,这种局部免疫反应构成肠黏膜屏障的第一道防线;若抗原物质穿过肠壁进入门静脉或淋巴管,到达肝脏或肠系膜后,肠壁和肠系膜的淋巴组织及肝、脾内网状内皮系统可起到吞噬和解毒作用,此为免疫屏障的第二道防线。在免疫系统受损时,侵入的细菌及内毒素进入体循环和组织。临床研究亦显示在创伤、手术、饥饿、长期全胃肠外营养(TPN)时肠黏膜屏障功能减弱,肠黏膜的通透性增大,导致细菌移位、内毒素血症,直至败血症,最终的结果便是肠衰竭直至多器官衰竭而危及生命。因此,了解肠内营养(EN)与肠屏障功能的关系有着非常重要的临床意义。 1 肠黏膜屏障的生理组成与作用 正常人体的肠黏膜屏障由肠黏膜上皮、肠道内正常菌群、肠道内分泌物和肠相关免疫细胞组成,正常情况时肠黏膜表面生长着大量的厌氧菌,肠黏膜细胞主要是柱状上皮细胞及少量的杯状细胞,内分泌细胞及Paneth细胞。近年来,国外学者还发现肠道内还存在着一种M细胞,它是肠壁上唯一具有通透性的上皮细胞,抗原、细菌、病毒可通过这一薄弱环节侵入体内。正常肠屏障功能的维持依赖于由胃肠相关淋巴组织产生的特异性的分泌型免疫球蛋白S-IgA,以及非特异性的机械和化学屏障,如胃酸、蠕动、肠上皮紧密连接、黏液、消化酶和正常菌群等。维持正常的上皮细胞能防止经上皮的细菌移位,保

护好紧密连接能防止经细胞旁通道的细菌移位。肠黏膜约有500万个绒毛,总面积约10m2,在某些情况下是细菌及毒素侵入人体的危险通道。当机体应激反应过度或失调,可首先使肠道黏膜屏障的完整性遭到破坏,肠黏膜通透性增高,使原先寄生于肠道内的细菌和内毒素穿越受损的肠道黏膜,大量侵入正常情况下是无菌状态的肠道以外的组织,如黏膜组织、肠壁、肠系膜淋巴结、门静脉及其他远隔脏器和系统,发生细菌(内毒素)移位,进入血液循环中的细菌和内毒素又反过来再作用于肠黏膜,进一步加重肠黏膜屏障受损,导致肠道黏膜通透性继续增高,如此形成了恶性循环,甚至发生全身炎性反应综合征(SIRS)和多器官系统功能衰竭(MOSF)。 2 肠黏膜屏障损伤的原因 2.1 肠黏膜通透性增高肠黏膜通透性是指肠道黏膜上皮容易被某些分子物质以简单扩散的方式通过的特性。临床上肠黏膜通透性主要是指分子量>150的分子物质对肠道上皮的渗透。严重感染、创伤、大面积烧伤、急性胰腺炎等均可导致肠黏膜屏障受损。早在肠道黏膜形态学出现明显变化之前,肠黏膜通透性增高已经发生,故肠黏膜通透性增高可反映早期肠道黏膜屏障的损害。目前认为,多种细胞因子(cytokines)均可引起肠黏膜通透性增高,其中包括内毒素、肿瘤坏死因子(TNF)、γ-干扰素、白细胞介素-1(IL-1)、白细胞介素-2(IL -2)、血小板激活因子(PAF)和一氧化氮(NO)等。内毒素可使肠黏膜上皮细胞的超微结构发生病理改变,通过损伤细胞内支架系统而破坏细胞间紧密连接,从而导致肠黏膜通透性增高。TNF增加肠上皮通透性可能

分子生物学主要研究内容

分子生物学主要研究内容 1. 核酸的分子生物学。 核酸的分子生物学研究 核酸的结构及其功能。由于 核酸的主要作用是携带和传 递遗传信息,因此分子遗传 学是其主要组成部分。由于 50年代以来的迅速发展,该 领域已形成了比较完整的理 论体系和研究技术,是目前分子生物学内容最丰富的一个领域。研究内容包括核酸/基因组的结构、遗传信息的复制、转录与翻译,核酸存储的信息修复与突变,基因表达调控和基因工程技术的发展和应用等。遗传信息传递的中心法则是其理论体系的核心。 2. 蛋白质的分子生物学。 蛋白质的分子生物学研究执行各种生命功能的主要大分子──蛋白质的结构与功能。尽管人类对蛋白质的研究比对核酸研究的历史要长得多,但由于其研究难度较大,与核酸分子生物学相比发展较慢。近年来虽然在认识蛋白质的结构及其与功能关系方面取得了一些进展,但是对其基本规律的认识尚缺乏突破性的进展。 3.细胞信号转导的分子生物学。 细胞信号转导的分子生物学研究细胞内、细胞间信息传递的分子基础。构成生物体的每一个细胞的分裂与分化及其它各种功能的完成均依赖于外界环境所赋予的各种指示信号。在这些外源信号的刺激下,细胞可以将这些信号转变为一系列的生物化学变化,例如蛋白质构象的转变、蛋白质分子的磷酸化以及蛋白与蛋白相互作用的变化等,从而使其增殖、分化及分泌状态等发生改变以适应内外环境的需要。信号转导研究的目标是阐明这些变化的分子机理,明确每一种信号转导与传递的途径及参与该途径的所有分子的作用和调节方式以及认识各种途径间的网络控制系统。信号转导机理的研究在理论和技术方面与上述核酸及蛋白质分子有着紧密的联系,是当前分子生物学发展最迅速的领域之一。 4.癌基因与抑癌基因、肽类生长因子、细胞周期及其调控的分子机理等。 从基因调控的角度研究细胞癌变也已经取得不少进展。分子生物学将为人类最终征服癌症做出重要的贡献。

分子生物学研究方法(下)概论

第六章 分子生物学研究法(下)——基因功能研究技术

基因功能的研究思路主要包括: 1. 基因的亚细胞定位和时空表达谱; 2. 基因在转录水平的调控; 3. 细胞生化水平的功能研究:对该基因的表达产物做一个细胞信号转导通路的定位; 4. gain-of-function & loss-of-function: 分别在细胞和个体水平,做该基因的超表达和敲除,从表型分析该基因的功能。 功能研究应从完整的分子-细胞-个体三个层次研究,综合分析。

本章内容 ?基因表达研究技术 ?基因敲除技术 ?蛋白质及RNA相互作用技术?基因芯片及数据分析 ?利用酵母鉴定靶基因功能?其他分子生物学技术

6.1 基因表达研究技术 6.1.1 基因表达系列分析技术6.1.2 RNA的选择性剪接技术6.1.3 原位杂交技术 6.1.4 基因定点突变技术

6.1.1 基因表达系列分析技术 基因表达系列分析技术(serial analysis of gene expression,SAGE)是1995年由Velculescu 等建立的技术,在整体水平上对细胞或者组织中的大量转录本同时进行定量分析,而无论其是否为已知基因。 9概念: 以DNA测定为基础定量分析全基因组表达模式的技术,能直接读出任何一种细胞类型或组织的基因表达信息。

9原理: 根据理论上任何长度超过9~10(49=262144)个碱基的核苷酸片段可代表一种转录产物的特异序列(转录本),因此,选择特定的限制性内切酶分离转录产物中这些代表基因特异性9~10个碱基的核苷酸序列并制成标签,将这些序列标签连接、克隆和测序,根据其占总标签数的比例即可分析其对应编码基因的表达频率。

肠粘膜屏障与功能医学

肠粘膜屏障与功能医学 曾强范竹萍 二十世纪80年代以前认为肠道的功能仅是消化吸收,80年代以后认识到肠粘膜屏障功能的重要性,肠功能障碍包含消化,吸收障碍与肠粘膜屏障碍.国内学术界真正开始重视肠粘膜屏障的概念,也只是近十年之内的事.2005年5月28至30日在北京召开的全国胃肠黏膜屏障临床与基础研究学术会议,是我国首届有关胃肠道黏膜屏障的学术研讨会.以后的2006年6月17日在上海,2007年8月25日在北京分别召开的学术会议,对肠屏障功能障碍概念的变迁进行了阐述,并出台了”肠屏障功能障碍临床诊治建议”(1,2,3) . 肠黏膜屏障主要由机械屏障、化学屏障、免疫屏障和生物屏障构成,肠道局部微环境、细胞因子、基因调控和凋亡机制是肠道上皮细胞发生、生长、分化的调节因素。肠道生态与肠道健康的关系,肠道微生态与健康和疾病的关系受到关注.影响肠黏膜屏障因素包括肠腔内渗透压的改变,疾病(创伤,失血,烧伤,炎症性肠病等),药物作用,营养因素,细胞因子和激素水平改变等.肠屏障功能障碍可导致肠黏膜萎缩,肠通透性增加,肠上皮细胞受损,肠局部免疫功能受损,肠菌群失调和肠动力障碍。轻者造成肠道功能受损,重者造成各种肠道疾病(1). 广义上来说,肠屏障功能的检测包括肠通透性检查测定, 肠黏膜损伤检查,肠缺血指标等,也可分为体内和体外检测方法.体内检测有口服分子探针尿回收率法,D乳酸和细菌及内毒素水平检测等.其中反映肠黏

膜渗透性改变的检测可准确反映肠黏膜的损伤程度,是监测肠道屏障功能的有效指标.肠黏膜渗透力增高常意味着肠屏障功能的损害,尤其是机械屏障的损害.糖分子探针如尿乳果糖与甘露醇比值(L/M)的检测是安全性和准确性较高的方法,乳果糖和甘露醇在肠道内的吸收途径不同,乳果糖主要通过小肠黏膜上皮细胞问的紧密连接而吸收,甘露醇主要通过小肠上皮细胞膜上的毛细气孔而被主动吸收.二者在体内不进行代谢,从肠道入血后随尿排出,可利用液相层析串联质谱在尿中进行准确和定量测定, 由此反映出其吸收量。尿乳果糖/甘露醇比值增加,表示肠黏膜通透性增加,反映肠黏膜紧密连接部不完整,或有区域性细胞缺失,或绒毛末梢损坏,或有组织问隙水肿.体外检测肠屏障功能是应用离体肠段,细胞和质膜对肠道的屏障功能进行评定,能在较大程度上避免其他因素的干扰,提供客观,单一的研究结果,是体内研究方法的重要补充(4,5,6). 肠粘膜屏障功能的检测为肠易激综合征、炎症性肠病、乳糜泻、慢性食物过敏、遗传性过敏性皮炎、强直性脊髓炎、糖尿病等疾病病因的确定和治疗及预防提供新方法、新思路.我们知道,任何疾病的形成,都需要一、二十年的时间累积,在器官病变之前,通常器官功能先下降,当下降到一个临界点时,才会发生病变.如果我们能在生病之前,了解到我们各个器官功能的指数是不是在正常范围之内,发现那些已经下降的指标,了解将来对我们的影响,同时通过科学的方法改善它们,这样就能避免以上肠道相关疾病或更严重情况的发生,这就是功能医学的理念. 因为器官存在的意义是它们的功能,它们的功能维持我们人的生命

分子生物学研究方法2013

分子生物学研究方法——其他分子生物学研究方法 李崇奇

1.凝胶滞缓实验 ●凝胶滞缓实验(electrophoretic mobility shift assay,EMSA);又叫作DNA迁移率变动试验(DNA mobility shift assay);又叫做凝胶阻滞实验(Gel retardation assay)是用于体外研究DNA与蛋白质相互作用的一种特殊的凝胶电泳技术。 ●它具有简单、快捷等优点,也是当前被选作分离纯化特定DNA结合蛋白质的一种典型的实验方法。

应用 This procedure can determine if a protein or mixture of proteins is capable of binding to a given DNA or RNA sequence, and can sometimes indicate if more than one protein molecule is involved in the binding complex. Gel shift assays are often performed in vitro concurrently with DNase footprinting, primer extension, and promoter-probe experiments when studying transcription initiation, DNA replication, DNA repair or RNA processing and maturation.

分子生物学技术

分子生物学技术 近年来,心血管疾病的发病率和死亡率急剧增加,已成为危害我国人民群众生命和健康的重大疾病。人们逐渐认识到,包括心血管疾病在内的许多疾病的生理、病理机制的本质问题是相关基因的表达及其调控。随着研究的深入, 心血管疾病的研究已深入到分子生物学水平。人们寻找疾病相关基因, 研究其表达调控机制, 希望在分子水平阐明疾病发生机制, 以期更有效地进行疾病的诊断、治疗。相应地, 很多分子生物学研究技术也应用到对心血管疾病的研究中来, 成为不可或缺的基本手段, 如分子杂交技术、聚合酶链式反应(Polymerase Chain Reaction,PCR)技术、反义核酸技术、DNA微阵列、转基因技术等等。分子诊断学是以分子生物学理论为基础,利用分子生物学的技术和方法研究人体内源性或外源性生物大分子和大分子体系的存在、结构或表达调控的变化,为疾病的预防、预测、诊断、治疗和转归提供信息和决策依据的一门学科。1953年Watson & Crich发现DNA 双螺旋结构, 标志着分子生物学时代的到来。随着研究的进展, 人们对心血管疾病的研究也逐步深入到分子水平, 很多分子生物学的研究技术也在疾病机理、药物机理的研究中广泛应用, 成为基本的研究手段。人类基因组计划完成后, 生命科学研究进入后基因组时代, 进行功能基因组学、蛋白质组学的研究, 相应的实验技术也广泛应用并不断发展。 在过去的短短的10余年中,检验医学发展日新月异、发展迅猛,临床实验室的实验设备已高度自动化及网络化,“实验室全自动化”(Total Laboratory Automation,TLA)、分子诊断(MolecularDiagnostics)、床旁检验(Point of Care Tests,POCT)、循证检验医学(Evidence basedlaboratory medicine,EBLM)的兴起为心血管疾病的诊疗提供了极大帮助。 一、分子生物学技术 由于分子生物学技术的快速发展,以及人类基因组序列认识的逐渐完善,以PCR为代表的体外核酸扩增技术已在临床基因诊断中得以较为广泛的应用,如病毒、细菌的基因快速检测,遗传性疾病的诊断,肿瘤的基因诊断等。实时荧光定量PCR技术的应用,不仅使临床基因检测更加快速,而且使基因检测进入定量阶段,这特别有利于某些疾病治疗效果的评价。免疫检验中的放射免疫分析(Radioimmunoassay,RIA),酶免疫分析(Enzyme Iimrrmnoassay,EIA),金标记免疫分析,荧光免疫分析(Fluoroimmunoassay,FIA),时间分辨荧光免疫分析(Time-resolved Fluoroimmunoassay,TRFIA),化学发光免疫分析(Chemiluminescence Immunoassay,CLI A),电化学发光免疫分析(Electro-Chemiluminescence Immunoassay ,ECLI)技术的临床应用不仅拓宽了免疫学检测的领域,同时提高了免疫学检测的灵敏度,促进了免疫检测的自动化。特别是化学发光免疫分析、电化学发光免疫分析技术的诞生,使得免疫学检验进入了一个新的时代,检测灵敏度可达pg水平,其检测速度、分析自动化程度及分

口腔黏膜的功能

口腔黏膜的屏障保护功能 口腔黏膜防御屏障包括物理化学屏障、黏膜表面和黏膜内的特异性、非特异性体液和细胞免疫屏障。 一、唾液屏障唾液形成了口腔黏膜的第一道屏障。唾液对口腔黏膜的机械冲洗作用,一方面排除了有毒物质,另一方面使微生物不致附着于黏膜表面形成克隆,阻断了微生物治病的关键步骤,也是第一步。黏蛋白是唾液中黏液的主要成分,来自于颌下腺、舌下腺、大量小涎腺的黏液分泌细胞。被认为在口腔非免疫保护作用中起主要作用。黏蛋白形成一层薄的、具有黏弹性的膜覆盖于整个口腔黏膜的表面,起着润滑抗干燥保护作用,并阻止外源性的酸、降解酶进入黏膜内。唾液中的乳铁蛋白具有与铁结合的高活性,剥夺了细菌依赖的必需元素——铁,从而行使抗菌作用。来自唾液腺的溶菌酶是一种具有溶解细菌细胞壁糖脂的酶,它可解聚链球菌链,使其生长潜力下降。 二、上皮屏障完整的黏膜上皮是阻止异物、微生物进入深层组织的天然生理屏障。此外,口腔黏膜上皮内还存在一种上皮内屏障。主要由上皮细胞成熟过程中所排出进入细胞外间隙的膜被颗粒组成。在角化的口腔上皮,膜被颗粒与细胞膜连接,伸长形成一系列平行的板层结构。在非角化的口腔上皮,膜被颗粒以一种密集非层状中心轴的形成循环排列。所有膜被颗粒都与细胞膜融合,排出它们的内容物进入细胞外间隙。它主要包含中性脂及一些极性脂,而不是磷脂,膜被颗粒缺乏磷脂层,说明它参与了非角化区上皮间隙屏障的形成。 此外,前述基底膜复合物,又构成了有选择通透性的大分子物质滤过

性屏障。 三、免疫细胞屏障上皮内的淋巴细胞包括抑制性T细胞,辅助性T细胞、B淋巴细胞,在受到抗原刺激后发生增殖反应,产生淋巴因子,发挥免疫功能。 四、免疫球蛋白屏障免疫球蛋白屏障或称为体液免疫屏障。SigA 是最重要的免疫球蛋白,它能保留在上皮细胞或细菌表面,成为一种“抗菌涂层”,具有很强的抗菌作用和消化水解酶的蛋白降解作用,且不需补体活化,不引起组织细胞溶解,不增加局部损伤。

肠道粘膜屏障的构成及功能

肠道粘膜屏障的构成及功能 前言 人体肠道内栖息着大量的正常微生物,这些微生物在长期进化过程中和宿主形成了共生关系。正常情况下并不损害机体继康,这完全依赖于机体完整的肠道粘膜屏障功能。肠道粘膜屏障主要由机械屏障、免疫屏障、化学屏障和生物屏障四部分组成,这些功能分别有相应的结构基础,是防止肠道内有害物质和病原体进人机体内环境,并维持机体内环境稳定的一道重要屏障。以上任何一方面损害均可能造成细菌及内毒素易位。 1. 肠道屏障的构成 肠道屏障功能是指正常肠道具有较为完善的功能隔离带,可将肠腔与机体内环境分隔开来,防止致病性抗原侵入的功能。肠道屏障包括机械、化学、生物及免疫屏障。 1.1 机械屏障 由肠道粘膜上皮细胞、细胞间紧密连接等构成,肠上皮由吸收细胞、杯状细胞及潘氏细胞等组成,细胞间连接有紧密连接、缝隙连接、黏附连接及桥粒连接等,尤以紧密连接最为重要。紧密连接主要由紧密连接蛋白组成,包括咬合蛋白(occludin)、闭合蛋白(claudin)家族、带状闭合蛋白(zonula occludens,ZO)家族、连接黏附分子(junctional adhesion molecule,JAM)等。广义的机械屏障还包括肠道的运动功能,肠道的运动使细菌不能在局部肠黏膜长时间滞留,起到肠道自洁作用。

吸收细胞侧面和质膜在近肠腔侧与相邻的细胞连接形成紧密连接复合体,只允许水分子和小分子水溶性物质有选择性通过。潘氏细胞具有一定的吞噬细菌的能力,并可分泌溶菌酶、天然抗生素肽、人类防御素5和人类防御素6,在抑制细菌移位、防治肠源性感染方面日益受到重视。杯状细胞分泌粘液糖蛋白,可阻抑消化道中的消化酶和有害物质对上皮细胞的损害。并可包裹细菌;还与病原微生物竞争抑制肠上皮细胞上的粘附素受体,抑制病菌在肠道的粘附定植从而可预防小肠细菌过度增生和肠源性感染。 1.2 化学屏障 由胃肠道分泌的胃酸、胆汁、各种消化酶、溶菌酶、粘多糖、糖蛋白和糖脂等化学物质构成了肠道的化学屏障。 胃酸能杀灭进入胃肠道的细菌,抑制细菌在胃肠道上皮的粘附和定植;溶菌酶能破坏细菌的细胞壁,使细菌裂解;粘液中含有的补体成分可增加溶菌酶及免疫球蛋白的抗菌作用;其中,肠道分泌的大量消化液可稀释毒素,冲洗清洁肠腔,使潜在的条件致病菌难以粘附到肠上皮上。 1.3 生物屏障 肠道是人体最大的细菌库,寄居着大约1013~1014个细菌,99%左右为专性厌氧菌,肠道内常驻菌群的数量、分布相对恒定,形成一个相互依赖又相互作用的微生态系统,此微生态系统平衡即构成肠道的生物屏障。 专性厌氧菌(主要是双歧杆菌等)通过粘附作用与肠上皮紧密结

分子生物学前沿技术教材

激光捕获显微切割Laser capture microdissection (LCM) technology是在不破坏组织结构,保存要捕获的细胞和其周围组织形态完整的前提下,直接从冰冻或石蜡包埋组织切片中获取目标细胞,通常用于从组织中精确地分离一个单一的细胞。 背景:机体组织包含有上百种不同的细胞,这些细胞各自与周围的细胞、基质、血管、腺体、炎症细胞或免疫细胞相互粘附。在正常或发育中的组织器官内,细胞内信号、相邻细胞的信号以及体液刺激作用于特定的细胞,使这些细胞表达不同的基因并且发生复杂的分子变化。在病理状态下,如果同一类型的细胞发生了相同的分子改变,则这种分子改变对于疾病的发生可能起着关键性的作用。然而,发生相同分子改变的细胞可能只占组织总体积的很小一部分;同时,研究的目标细胞往往被其它组织成分所环绕。为了对疾病发生过程中的组织损害进行分子水平分析,分离出纯净的目标细胞就显得非常必要。1996年,美国国立卫生院(NIH)国家肿瘤研究所的[2]开发出激光捕获显微切割技术(Laser capture microdissection ,LCM ),次年,美国Arcturus Engineering公司成功研制激光捕获显微切割系统,并实现商品化销售。应用该技术可以在显微镜直视下快速、准确获取所需的单一细胞亚群,甚至单个细胞,从而成功解决了组织中细胞异质性问题。这项技术现已成为美国“肿瘤基因组解剖计划”的一项支撑技术[1]。 原理:LCM的基本原理是通过一低能红外激光脉冲激活热塑膜———乙烯乙酸乙烯酯(ethylene vinylacetate,EVA)膜(其最大吸收峰

接近红外激光波长),在直视下选择性地将目标细胞或组织碎片粘到该膜上[2]。LCM 系统包括倒置显微镜、固态红外激光二极管、激光控制装置、控制显微镜载物台(固定载玻片)的操纵杆、电耦合相机及彩色显示器。用于捕获目标细胞的热塑膜直径通常为6mm,覆在透明的塑料帽上,后者恰与后继实验所用的标准 0.5ml离心管相匹配。 机械臂悬挂控制覆有热塑膜的塑料帽,放到脱水组织切片上的目标部位。显微镜直视下选择目标细胞,发射激光脉冲,瞬间升温使EVA膜局部熔化。熔化的EVA膜渗透到切片上极微小的组织间隙中,并在几毫秒内迅速凝固。组织与膜的粘合力超过了其与载玻片间的粘合力,从而可以选择性地转移目标细胞。激光脉冲通常持续0.5~5.0毫秒,并且可在整个塑料帽表面进行多次重复,从而可以迅速分离大量的目标细胞。将塑料帽盖在装有缓冲液的离心管上,将所选择的细胞转移至离心管中,从而可以分离出感兴趣的分子进行实验[3]。 EVA膜约100~200μm厚,能够吸收激光产生的绝大部分能量,在瞬间将激光束照射区域的温度提高到90°C,保持数毫秒后又迅速冷却,保证了生物大分子不受损害。采用低能量红外激光的同时也可避免损伤性光化学反应的发生。 优缺点:LCM最显著的优点在于其迅速、准确和多用途的特性。结合组织结构特点以及所需的切割精确度,通过选择激光束的直径大小,可以迅速获取大量的目标细胞。LCM与以显微操作仪为基础的显微切割技术相比[4],具有以下优点:(1)分离细胞速度快,无需精巧的操作技能;(2)捕获细胞和剩余组织的形态学特征均保持完好,可以较

分子生物学研究技术

:分子生物学研究技术 文库 文库,代表了生物体某一器官或组织中所有的或绝大部分的遗传信息。其构建过程总共有个步骤(项技术):、总的提取;、的纯化;、的合成;、文库构建;、基因文库筛选。 详细: 、总的提取:目前常用的提取方法是异硫氰酸胍苯酚提取法(提取法),提取步骤:()首先用液氮研磨材料成匀浆,加入试剂,进一步破碎并溶解细胞;()加入氯仿抽提,离心,收集含有的水相;()用异丙醇沉淀,初步纯化,获得样品用于下一步的纯化;(:实验中还常将含有的细胞破碎物液通过硅胶膜纯化柱后,再通过低盐浓度下从硅胶膜上直接洗脱,获得纯度较高的总); 总的浓度、纯度测定:通过分光光度计测其和值,为时相当于总量为μ;而的比值如果在之间,则表示所提取的纯度较好。 、的纯化:纯化原理,将真核细胞的分子具有‘端帽子()和’端()尾巴的特征结构,作为提取时的选择性标记。纯化提取方法:常用寡纤维素柱层析法获,该方法利用‘末端的()尾巴的特点,当流经寡纤维柱时,在高盐缓冲液的作用下,或特异性结合到柱子上,之后再用低盐溶液洗脱,经过两次层析后可获得较高纯度的。 、的合成:利用技术,常以()为引物,甲基化的(保证新合成的链被甲基化,防止构架克隆时被限制性内切酶切割)。合成基本过程:以为模板链,在逆转录酶的催化下以甲基化为原料合成第一条链;之后再以第一条链为模板,在聚合酶催化下合成第二条(常用切割杂链中的序列所产生的小片段为引物合成的第二条片段,再同过连接酶的作用连接成完整的链。(:最后,两端应加上不同内切酶所识别的接头序列,保证所获得的具有方向性)、文库的构建:由于的长度一般为,所以常用质粒载体和噬菌体类的载体便能用于承载。基本过程:将合成的连接到特定的载体上,然后将载体转入宿主细胞(一般为大肠杆菌),然后筛选阳性克隆,最终获得文库。 :一般而言,文库的载体选择要根据文库的用途来确定,例如载体是一种噬菌粒载体,具备噬菌体的高效性和质粒载体系统可利用蓝白斑筛选的便利,可容纳片段插入。 、基因文库筛选:是指通过某种特殊方法从基因文库中鉴定出含有所需要的重组分子的特定克隆的过程。目前主要的筛选方法有:核酸杂交法、筛选法和免疫筛选法。 核酸杂交法(最常用的筛选方法之一):()将圆形硝酸纤维素膜放在含有琼脂培养基的培养皿表面,将待筛选的菌落从其生长的平板上转移到硝酸纤维素膜上,后进行适当的温育(同时保留原菌板作为对照。)()取出已长有菌落的硝酸纤维素膜,用碱液处理,裂解细菌并使变性;()接着用蛋白酶处理硝酸纤维素膜上的蛋白质,形成菌落印迹;()℃烘烤滤膜,将固定在膜上;()将滤膜与放射性同位素标记的或探针杂交,通过放射自显影显示杂交结果。(射线底片上显黑色斑点的就是试验中寻找的目的克隆)()通过比对显影的结果,可在对应的原菌板上获得相对应的克隆。 筛选法:使用前提,已知足够的序列信息并获得基因特异性引物。基本过程:()将整个文库(以质粒或菌落的形式均可)保存到多孔培养板上;()用设计好的目的基因探针对每个样孔进行筛选,鉴定出阳性孔;()把每个阳性孔中的克隆在稀释到次级多孔板中进行筛选。重复以上程序,直到鉴定出于目的基因对应的单个克隆为止。 免疫筛选法:基本步骤与核酸杂交检测类似,主要过程:先将菌落或噬菌斑影印到硝酸纤维

常用的分子生物学基本技术

常用的分子生物学基本技术 核酸分子杂交技术 由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。 固相杂交 固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。 斑步杂交(dot hybridization) 是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显色,检测特定大小分子的含量。可进行克隆基因的酶切图谱分析、基因组基因的定性及定量分析、基因突变分析及限制性长度多态性分析(RELP)等。 Northern印迹杂交:由Southerm印杂交法演变而来,其被测样品是RNA。经甲醛或聚乙二醛变性及电泳分离后,转移到固相支持物上,进行杂交反应,以鉴定基中特定mRNA分子的量与大小。该法是研究基因表达常用的方法,可推臬出癌基因的表达程度。 差异杂交(differential hybridization) 是将基因组文库的重组噬菌体DNA转移至硝酸纤维素膜上,用两种混合的不同cDNA探针(如:转移性和非转移性癌组织的mRNA逆转录后的cDNA)分别与滤膜上的DNA杂交,分析两张滤膜上对应位置杂交信息以分离差异表达的基因。适用于基因组不太复杂的真核生物(如酵母)表达基因的比较,假阳性率较低。但对基因组非常复杂的盐酸核生物(如人),则因工作量太大,表达的序列所占百分比较低(仅5%左右),价值不大。

分子生物学常用实验技术

分子生物学常用实验技术 第一章质粒DNA的分离、纯化和鉴定 第二章 DNA酶切及凝胶电泳 第三章大肠杆菌感受态细胞的制备和转化 第四章 RNA的提取和cDNA合成 第五章重组质粒的连接、转化及筛选 第六章基因组DNA的提取 第七章 RFLP和RAPD技术 第八章聚合酶链式反应(PCR)扩增和扩增产物克隆 第九章分子杂交技术 第十章测序技术 第一章质粒DNA的分离、纯化和鉴定 第一节概述 把一个有用的目的DNA片段通过重组DNA技术,送进受体细胞中去进行繁殖和表达的工具叫载体(Vector)。细菌质粒是重组DNA技术中常用的载体。 质粒(Plasmid)是一种染色体外的稳定遗传因子,大小从1-200kb不等,为双链、闭环的DNA分子,并以超螺旋状态存在于宿主细胞中。质粒主要发现于细菌、放线菌和真菌细胞中,它具有自主复制和转录能力,能在子代细胞中保持恒定的拷贝数,并表达所携带的遗传信息。质粒的复制和转录要依赖于宿主细胞编码的某些酶和蛋白质,如离开宿主细胞则不能存活,而宿主即使没有它们也可以正常存活。质粒的存在使宿主具有一些额外的特性,如对抗生素的抗性等。F质粒(又称F因子或性质粒)、R质粒(抗药性因子)和Col质粒(产大肠杆菌素因子)等都是常见的天然质粒。 质粒在细胞内的复制一般有两种类型:紧密控制型(Stringent control)和松驰控制型(Relaxed control)。前者只在细胞周期的一定阶段进行复制,当染色体不复制时,它也不能复制,通常每个细胞内只含有1个或几个质粒分子,如F因子。后者的质粒在整个细胞周期中随时可以复制,在每个细胞中有许多拷贝,一般在20个以上,如Col E1质粒。在使用蛋白质合成抑制剂-氯霉素时,细胞内蛋白质合成、染色体DNA复制和细胞分裂均受到抑制,紧密型质粒复制停止,而松驰型质粒继续复制,质粒拷贝数可由原来20多个扩增至1000-3000个,此时质粒DNA占总DNA的含量可由原来的2%增加至40-50%。 利用同一复制系统的不同质粒不能在同一宿主细胞中共同存在,当两种质粒同时导入同一细胞时,它们在复制及随后分配到子细胞的过程中彼此竞争,在一些细胞中,一种质粒占优势,而在另一些细胞中另一种质粒却占上风。当细胞生长几代后,占少数的质粒将会丢失,因而在细胞后代中只有两种质粒的一种,这种现象称质粒的不相容性(Incompatibility)。但利用不同复制系统的质粒则可以稳定地共存于同一宿主细胞中。 质粒通常含有编码某些酶的基因,其表型包括对抗生素的抗性,产生某些抗生素,降解复杂有机物,产生大肠杆菌素和肠毒素及某些限制性内切酶与修饰酶等。 质粒载体是在天然质粒的基础上为适应实验室操作而进行人工构建的。与天然质粒相比,质粒载体通常带有一个或一个以上的选择性标记基因(如抗生素抗性基因)和一个人工合成的含有多个限制性内切酶识别位点的多克隆位点序列,并去掉了大部分非必需序列,使分子量尽可能减少,以便于基因工程操作。大多质粒载体带有一些多用途的辅助序列,这些用途包括通过组织化学方法肉眼鉴定重组克隆、产生用于序列测定的单链DNA、体外转录外源DNA序列、鉴定片段的插入方向、外源基因的大量表达等。一个理想的克隆载体大致应有下列一些特性:(1)分子量小、多拷贝、松驰控制型;(2)具有多种常用的限制性内切酶的单切点;(3)能插入较大的外源DNA片段;(4)具有容易操作的检

常用的分子生物学基本技术

常用的分子生物学基本技术?核酸分子杂交技术 ?由于核酸分子杂交的高度特异性及检测方法的灵敏性,它已成为分子生物学中最常用的基本技术,被广泛应用于基因克隆的筛选,酶切图谱的制作,基因序列的定量和定性分析及基因突变的检测等。其基本原理是具有一定同源性的原条核酸单链在一定的条件下(适宜的温室度及离子强度等)可按碱基互补原成双链。杂交的双方是待测核酸序列及探针(probe),待测核酸序列可以是克隆的基因征段,也可以是未克隆化的基因组DNA和细胞总RNA。核酸探针是指用放射性核素、生物素或其他活性物质标记的,能与特定的核酸序列发生特异性互补的已知DNA或RNA片段。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。? 固相杂交 ?固相杂交(solid-phase hybridization)是将变性的DNA固定于固体基质(硝酸纤维素膜或尼龙滤膜)上,再与探针进行杂交,故也称为膜上印迹杂交。? 斑步杂交(dot hybridization)??是道先将被测的DNA或RNA变性后固定在滤膜上然后加入过量的标记好的DNA或RNA探针进行杂交。该法的特点是操作简单,事先不用限制性内切酶消化或凝胶电永分离核酸样品,可在同一张膜上同时进行多个样品的检测;根据斑点杂并的结果,可以推算出杂交阳性的拷贝数。该法的缺点是不能鉴定所测基因的相对分子质量,而且特异性较差,有一定比例的假阳性。 印迹杂交(blotting hybridization) ?Southern印迹杂交:凝胶电离经限制性内切酶消化的DNA片段,将凝胶上的DNA变性并在原位将单链DNA片段转移至硝基纤维素膜或其他固相支持物上,经干烤固定,再与相对应结构的已标记的探针进行那时交反应,用放射性自显影或酶反应显色,检测特定大小分子的含量。可进行克隆基因的酶切图谱分析、基因组基因的定性及定量分析、基因突变分析及限制性长度多态性分析(RELP)等。 ?Northern印迹杂交:由Southerm印杂交法演变而来,其被测样品是RNA。经甲醛或聚乙二醛变性及电泳分离后,转移到固相支持物上,进行杂交反应,以鉴定基中特定mRNA分子的量与大小。该法是研究基因表达常用的方法,可推臬出癌基因的表达程度。? 差异杂交(differential hybridization) ?是将基因组文库的重组噬菌体DNA转移至硝酸纤维素膜上,用两种混合的不同cDNA探针(如:转移性和非转移性癌组织的mRNA逆转录后的cDNA)分别与滤膜上的DNA杂交,分析两张滤膜上对应位置杂交信息以分离差异表达的基因。适用于基因组不太复杂的真核生物(如酵母)表达基因的比较,假阳性率较低。但对基因组非常复杂的盐酸核生物(如人),则因工作量太大,表达的序列所占百分比较低(仅5%左右),价值不大。 ?cDNA微点隈杂交(cDNAmicroarray hybridization)? 是指将cDNA克隆或cDNA的PCR产物以高度的列阵形式排布并结合于固相支持物上(如:尼龙膜或活化的载玻片)以微点阵,然后用混合的不同DNA探针与微点阵上的DNA进行杂交。再利用荧光、化学发光、共聚焦显微镜等技术扫描微点阵上的杂交信息。它比差异杂交技术的效率高、速度快、成本低,适用于大规模的分析。已成商品问世。其缺点是无法克服保守的同源序列及重序对杂交信息的干扰。??寡核苷酸微点隈杂交(oligonucleotidemicroarrayhybridization)? 是在特殊的固相支持物上原位合成寡核苷酸,使它共价结合于支持物表面,与平均长度为20-50nt的混合RNA或cDNA探针进行杂交,以提高杂交的特异性和灵敏度。应用共聚焦显微镜可检测跨越三个数量级的杂交信息。适用于低丰度mRNA的检测,以区分基因家族不同成员的差异表达特征,或鉴定同一转录在不同组织和细胞中的选择性剪接。但有工作量较大、

相关文档
相关文档 最新文档