文档库 最新最全的文档下载
当前位置:文档库 › 聚类算法学习笔记

聚类算法学习笔记

聚类算法学习笔记
聚类算法学习笔记

聚类的定义

聚类是一个将数据集划分为若干个子集的过程,并使得同一集合内的数据对象具有较高的相似度,而不同集合中的数据对象则是不相同的,相似或不相似的度量是基于数据对象描述属性的聚类值来确定的,通常就是利用各个聚类间的距离来进行描述的。聚类分析的基本指导思想是最大程度地实现类中对象相似度最大,类间对象相似度最小。

聚类与分类不同,在分类模型中,存在样本数据,这些数据的类标号是已知的,分类的目的是从训练样本集中提取出分类的规则,用于对其他标号未知的对象进行类标识。在聚类中,预先不知道目标数据的有关类的信息,需要以某种度量为标准将所有的数据对象划分到各个簇中。因此,聚类分析又称为无监督的学习。

聚类主要包括以下几个过程:

(1)数据准备:包括特征标准化和降维。

(2)特征选择、提出:从最初的特征中选择是有效的特征,并将其存储于向量中。

(3)特征提取:通过对所选择的特征进行转换,形成新的突出特征。

(4)聚类(或分组):首先选择合适特征类型的某种距离函数(或构造新的距离函数)进行接近程度的度量,然后执行聚类或分组。

聚类结果评估:指对聚类结果进行评估。评估主要有3种:外部有效性评估、内部有效性评估和相关性测试评估。

聚类算法的要求

(1)可扩展性。许多聚类算法在小数据集(少于200个数据对象)时可以工作很好;但一个大数据库可能会包含数以百万的对象。利用采样方法进行聚类分析可能得到一个有偏差的结果,这时就需要可扩展的聚类分析算法。

(2)处理不同类型属性的能力。许多算法是针对基于区间的数值属性而设计的。但是有些应用需要对实类型数据。如:二值类型、符号类型、顺序类型,或这些数据类型的组合。

(3)发现任意形状的聚类。许多聚类算法是根据欧氏距离和Manhattan距离来进行聚类的。基于这类距离的聚类方法一般只能发现具有类似大小和密度的

圆形或球状聚类。而实际一个聚类是可以具有任意形状的,因此设计能够发现任意开关类集的聚类算法是非常重要的。

(4)需要(由用户)决定的输入参数最少。许多聚类算法需要用户输入聚类分析中所需要的一些参数(如:期望所获得聚类的个数)。而聚类结果通常都与输入参数密切相关;而这些参数常常也很难决定,特别是包含高维对象的数据集。这不仅构成了用户的负担,也使得聚类质量难以控制。

(5)处理噪声数据的能力。大多数现实世界的数据库均包含异常数据、不明数据、数据丢失和噪声数据,有些聚类算法对这样的数据非常敏感并会导致获得质量较差的数据。

(6)对输入记录顺序不敏感。一些聚类算法对输入数据的顺序敏感,也就是不同的数据输入顺序会导致获得非常不同的结果。因此设计对输入数据顺序不敏感的聚类算法也是非常重要的。

(7)高维问题。一个数据库或一个数据仓库或许包含若干维属性。许多聚类算法在处理低维数据时(仅包含二到三个维)时表现很好,然而设计对高维空间中的数据对象,特别是对高维空间稀疏和怪异分布的的数据对象,能进行较好聚类分析的聚类算法已成为聚类研究中的一项挑战。

(8)基于约束的聚类。现实世界中的应用可能需要在各种约束之下进行聚类分析。假设需要在一个城市中确定一些新加油站的位置,就需要考虑诸如:城市中的河流、调整路,以及每个区域的客户需求等约束情况下居民住地的聚类分析。设计能够发现满足特定约束条件且具有较好聚类质量的聚类算法也是一个重要聚类研究任务。

(9)可解释性和可用性。用户往往希望聚类结果是可理解的、可解释的,以及可用的,这就需要聚类分析要与特定的解释和应用联系在一起。因此研究一个应用的目标是如何影响聚类方法选择也是非常重要的。

各种聚类算法介绍

随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。

基于层次的聚类算法

基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。

(1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。

(2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分

基于密度的聚类算法

很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE等

基于划分的聚类算法

给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对象必须属于且只属于一个组。算法先随机创建一个初始划分,然后采用一种迭代的重定位技术,通过将对象根据簇类之间的差异从一个划分移到另一个划分来提高簇类内数据之间的相似程度。一种好的划分的一般

准则是:在同一个类中的对象尽可能“接近”或相似,而不同类中的对象尽可能“远离”或不同。为了达到全局最优,基于划分的聚类会要求穷举所有可能的划分。典型的划包括:K-means,PAM,EM等。划分法收敛速度快,在对中小规模的数据库中发现球状簇很适用。缺点是它倾向于识别凸形分布大小相近、密度相近的聚类,不能发现分布形状比较复杂的聚类,它要求类别数目k可以合理地估计,且初始中心的选择和噪声会对聚类结果产生很大影响。还要求用户预先指定聚类个数。

基于网格的聚类算法

首先将数据空间量化为有限个单元的网格结构,然后对量化后的单个的单元为对象进行聚类。典型的算法有STING,CLIQUE等。网格聚类法处理速度快,处理时间与数据对象的数目无关,一般由网格单元的数目决定。缺点是只能发现边界是水平或垂直的聚类,不能检测到斜边界。该类算法也不适用于高维情况,因为网格单元的数目随着维数的增加而呈指数增长。另外还有下列问题:一是如何选择合适的单元大小和数目,二是怎样对每个单元中对象的信息进行汇总,三是存在量化尺度的问题。

基于模型的聚类算法

基于模型的方法给每一个聚簇假定了一个模型,然后去寻找能够很好满足这个模型的数据集。这个模型可能是数据点在空间中的密度分布函数,它由一系列的概率分布决定,也可能通过基于标准的统计数字自动决定聚类的数目。它的一个潜在假定是:目标数据集是由一系列的概率分布所决定的。一般有2种尝试方向:统计的方案和神经网络的方案。COBWEB是一种流行的简单增量概念聚类算法,以一个分类树的形式来创建层次聚类,它的输入对象用分类属性-值对来描述。COBWEB的优点为:可以自动修正划分中类的数目;不需要用户提供输入参数。缺点为:COBWEB基于这样一个假设:在每个属性上的概率分布是彼此独立的。但这个假设并不总是成立。且对于偏斜的输入数据不是高度平衡的,它可能导致时间和空间复杂性的剧烈变化,不适用于聚类大型数据库的数据。

模糊聚类算法

现实中很多对象没有严格的属性,其类属和形态存在着中介性,适合软划分。恰好模糊聚类具有描述样本类属中间性的优点,因此成为当今聚类分析研究的主

流。常用的模糊聚类有动态直接聚类法、最大树法、FCM等。基本原理为:假设有N个要分析的样本,每个样本有M个可量化的指标,一般步骤为:(1)标准化数据:常用的数据标准化方法有:小数定标规范化,最大最小值规范化,标准差规范化等。(2)建立模糊相似矩阵,标定相似系数。(3)计算多极相似矩阵,计算整体相似关系矩阵,有传递闭包法,动态直接聚类法,最大树法等。(4)给定一个聚类水平,计算绝对相似矩阵,按行列调整绝对相似矩阵,每个分块即为一个分类。

其它聚类算法

(1)基于群的聚类方法

该法是进化计算的一个分支,模拟了生物界中蚁群、鱼群等在觅食或避敌时的行为。可分为蚁群算法ACO和PSO。蚁群聚类算法的许多特性,如灵活性、健壮性、分布性和自组织性等,使其非常适合本质上是分布、动态及又要交错的问题求解中,能解决无人监督的聚类问题,具有广阔的前景。PSO模拟了鱼群或鸟群的行为。在优化领域,PSO可以与遗传算法相媲美,并在预测精度和运行速度方面占优势。对ACO或PSO在数据挖掘中应用的研究仍处于早期阶段,要将这些方法用到实际的大规模数据挖掘的聚类分析中还需要做大量的研究工作。

(2)基于粒度的聚类方法

从粒度的角度看,我们会发现聚类和分类有很大的相通之处:聚类操作实际上是在一个统一粒度下进行计算的;分类操作是在不同粒度下进行的。所以说在粒度原理下,聚类和分类是相通的,很多分类的方法也可以用在聚类方法中。作为一个新的研究方向,虽然目前粒度计算还不成熟,尤其是对粒度计算语义的研究还相当少,但相信随着粒度理论的不断发展,今后几年它必将在聚类算法及其相关领域得到广泛的应用。

(3)谱聚法

谱聚类方法建立在谱图理论基础之上,并利用数据的相似矩阵的特征向量进行聚类,是一种基于两点间相似关系的方法,这使得该方法适用于非测度空间。它与数据点的维数无关,而仅与数据点的个数有关,可以避免由特征向量的过高维数所造成的奇异性问题。它又是一个判别式算法,不用对数据的全局结构作假设,而是首先收集局部信息来表示两点属于同一类的可能性;然后根据某一聚类

判据作全局决策,将所有数据点划分到不同的数据集合中。通常这样的判据可以在一个嵌入空间中得到解释,该嵌入空间是由数据矩阵的某几个特征向量张成的。谱聚类算法成功原因在于:通过特征分解,可以获得聚类判据在放松了的连续域中的全局最优解。与其他算法相比,它不仅思想简单、易于实现、不易陷入局部最优解,而且具有识别非凸分布的聚类能力,非常适合于许多实际问题。目前,该算法已应用于语音识别、VLSI设计、文本挖掘等领域。

(4)多种聚类方法的融合

实际应用的复杂性和数据的多样性往往使得单一的算法无能为力。因此,很多人对多种算法的融合进行了广泛研究并取得了一些成果。大致可分为以下几类:(1)基于传统聚类方法的融合,如CLIQUE、CUBN等。(2)模糊理论与其他聚类法的融合,如遗传+模糊C2均值混合聚类法等。(3)遗传算法与机器学习的融合。(4)传统聚类法与其他学科理论的融合,如谱算法等。总之,很多新算法是以上几类方法中两种或两种以上方法有机结合而得的,它们取长补短,优势明显,这也是我们数据挖掘研究人员要努力的研究方向之一。

各种聚类算法及改进算法的研究

论文关键词:数据挖掘;聚类算法;聚类分析论文摘要:该文详细阐述了数据挖掘领域的常用聚类算法及改进算法,并比较分析了其优缺点,提出了数据挖掘对聚类的典型要求,指出各自的特点,以便于人们更快、更容易地选择一种聚类算法解决特定问题和对聚类算法作进一步的研究。并给出了相应的算法评价标准、改进建议和聚类分析研究的热点、难点。上述工作将为聚类分析和数据挖掘等研究提供有益的参考。 1 引言随着经济社会和科学技术的高速发展,各行各业积累的数据量急剧增长,如何从海量的数据中提取有用的信息成为当务之急。聚类是将数据划分成群组的过程,即把数据对象分成多个类或簇,在同一个簇中的对象之间具有较高的相似度,而不同簇中的对象差别较大。它对未知数据的划分和分析起着非常有效的作用。通过聚类,能够识别密集和稀疏的区域,发现全局的分布模式,以及数据属性之间的相互关系等。为了找到效率高、通用性强的聚类方法人们从不同角度提出了许多种聚类算法,一般可分为基于层次的,基于划分的,基于密度的,基于网格的和基于模型的五大类。 2 数据挖掘对聚类算法的要求(1)可兼容性:要求聚类算法能够适应并处理属性不同类型的数据。(2)可伸缩性:要求聚类算法对大型数据集和小数据集都适用。(3)对用户专业知识要求最小化。(4)对数据类别簇的包容性:即聚类算法不仅能在用基本几何形式表达的数据上运行得很好,还要在以其他更高维度形式表现的数据上同样也能实现。(5)能有效识别并处理数据库的大量数据中普遍包含的异常值,空缺值或错误的不符合现实的数据。(6)聚类结果既要满足特定约束条件,又要具有良好聚类特性,且不丢失数据的真实信息。(7)可读性和可视性:能利用各种属性如颜色等以直观形式向用户显示数据挖掘的结果。(8)处理噪声数据的能力。(9)算法能否与输入顺序无关。 3 各种聚类算法介绍随着人们对数据挖掘的深入研究和了解,各种聚类算法的改进算法也相继提出,很多新算法在前人提出的算法中做了某些方面的提高和改进,且很多算法是有针对性地为特定的领域而设计。某些算法可能对某类数据在可行性、效率、精度或简单性上具有一定的优越性,但对其它类型的数据或在其他领域应用中则不一定还有优势。所以,我们必须清楚地了解各种算法的优缺点和应用范围,根据实际问题选择合适的算法。 3.1 基于层次的聚类算法基于层次的聚类算法对给定数据对象进行层次上的分解,可分为凝聚算法和分裂算法。 (1)自底向上的凝聚聚类方法。这种策略是以数据对象作为原子类,然后将这些原子类进行聚合。逐步聚合成越来越大的类,直到满足终止条件。凝聚算法的过程为:在初始时,每一个成员都组成一个单独的簇,在以后的迭代过程中,再把那些相互邻近的簇合并成一个簇,直到所有的成员组成一个簇为止。其时间和空间复杂性均为O(n2)。通过凝聚式的方法将两簇合并后,无法再将其分离到之前的状态。在凝聚聚类时,选择合适的类的个数和画出原始数据的图像很重要。 [!--empirenews.page--] (2)自顶向下分裂聚类方法。与凝聚法相反,该法先将所有对象置于一个簇中,然后逐渐细分为越来越小的簇,直到每个对象自成一簇,或者达到了某个终结条件。其主要思想是将那些成员之间不是非常紧密的簇进行分裂。跟凝聚式方法的方向相反,从一个簇出发,一步一步细化。它的优点在于研究者可以把注意力集中在数据的结构上面。一般情况下不使用分裂型方法,因为在较高的层很难进行正确的拆分。 3.2 基于密度的聚类算法很多算法都使用距离来描述数据之间的相似性,但对于非凸数据集,只用距离来描述是不够的。此时可用密度来取代距离描述相似性,即基于密度的聚类算法。它不是基于各种各样的距离,所以能克服基于距离的算法只能发现“类圆形”的聚类的缺点。其指导思想是:只要一个区域中的点的密度(对象或数据点的数目)大过某个阈值,就把它加到与之相近的聚类中去。该法从数据对象的分布密度出发,把密度足够大的区域连接起来,从而可发现任意形状的簇,并可用来过滤“噪声”数据。常见算法有DBSCAN,DENCLUE 等。[1][2][3]下一页 3.3 基于划分的聚类算法给定一个N个对象的元组或数据库,根据给定要创建的划分的数目k,将数据划分为k个组,每个组表示一个簇类(<=N)时满足如下两点:(1)每个组至少包含一个对象;(2)每个对

(完整word版)各种聚类算法介绍及对比

一、层次聚类 1、层次聚类的原理及分类 1)层次法(Hierarchical methods)先计算样本之间的距离。每次将距离最近的点合并到同一个类。然后,再计算类与类之间的距离,将距离最近的类合并为一个大类。不停的合并,直到合成了一个类。其中类与类的距离的计算方法有:最短距离法,最长距离法,中间距离法,类平均法等。比如最短距离法,将类与类的距离定义为类与类之间样本的最短距离。 层次聚类算法根据层次分解的顺序分为:自下底向上和自上向下,即凝聚的层次聚类算法和分裂的层次聚类算法(agglomerative和divisive),也可以理解为自下而上法(bottom-up)和自上而下法(top-down)。自下而上法就是一开始每个个体(object)都是一个 类,然后根据linkage寻找同类,最后形成一个“类”。自上而下法就是反过来,一开始所有个体都属于一个“类”,然后根据linkage排除异己,最后每个个体都成为一个“类”。这两种路方法没有孰优孰劣之分,只是在实际应用的时候要根据数据特点以及你想要的“类”的个数,来考虑是自上而下更快还是自下而上更快。至于根据Linkage判断“类” 的方法就是最短距离法、最长距离法、中间距离法、类平均法等等(其中类平均法往往被认为是最常用也最好用的方法,一方面因为其良好的单调性,另一方面因为其空间扩张/浓缩的程度适中)。为弥补分解与合并的不足,层次合并经常要与其它聚类方法相结合,如循环定位。 2)Hierarchical methods中比较新的算法有BIRCH(Balanced Iterative Reducing and Clustering Using Hierarchies利用层次方法的平衡迭代规约和聚类)主要是在数据量很大的时候使用,而且数据类型是numerical。首先利用树的结构对对象集进行划分,然后再利用其它聚类方法对这些聚类进行优化;ROCK(A Hierarchical Clustering Algorithm for Categorical Attributes)主要用在categorical的数据类型上;Chameleon(A Hierarchical Clustering Algorithm Using Dynamic Modeling)里用到的linkage是kNN(k-nearest-neighbor)算法,并以此构建一个graph,Chameleon的聚类效果被认为非常强大,比BIRCH好用,但运算复杂度很高,O(n^2)。 2、层次聚类的流程 凝聚型层次聚类的策略是先将每个对象作为一个簇,然后合并这些原子簇为越来越大的簇,直到所有对象都在一个簇中,或者某个终结条件被满足。绝大多数层次聚类属于凝聚型层次聚类,它们只是在簇间相似度的定义上有所不同。这里给出采用最小距离的凝聚层次聚类算法流程: (1) 将每个对象看作一类,计算两两之间的最小距离; (2) 将距离最小的两个类合并成一个新类; (3) 重新计算新类与所有类之间的距离; (4) 重复(2)、(3),直到所有类最后合并成一类。

基于特征的图像匹配算法毕业设计论文(含源代码)

诚信声明 本人声明: 我所呈交的本科毕业设计论文是本人在导师指导下进行的研究工作及取得的研究成果。尽我所知,除了文中特别加以标注和致谢中所罗列的内容以外,论文中不包含其他人已经发表或撰写过的研究成果。与我一同工作的同志对本研究所做的任何贡献均已在论文中作了明确的说明并表示了谢意。本人完全意识到本声明的法律结果由本人承担。 申请学位论文与资料若有不实之处,本人承担一切相关责任。 本人签名:日期:2010 年05 月20日

毕业设计(论文)任务书 设计(论文)题目: 学院:专业:班级: 学生指导教师(含职称):专业负责人: 1.设计(论文)的主要任务及目标 (1) 了解图象匹配技术的发展和应用情况,尤其是基于特征的图象匹配技术的发展和应用。 (2) 学习并掌握图像匹配方法,按要求完成算法 2.设计(论文)的基本要求和内容 (1)查阅相关中、英文文献,完成5000汉字的与设计内容有关的英文资料的翻译。(2)查阅15篇以上参考文献,其中至少5篇为外文文献,对目前国内外图象匹配技术的发展和应用进行全面综述。 (3)学习图象匹配算法,尤其是基于特征的图象匹配算法。 (4)实现并分析至少两种基于特征的图象匹配算法,并分析算法性能。 3.主要参考文献 [1]谭磊, 张桦, 薛彦斌.一种基于特征点的图像匹配算法[J].天津理工大学报,2006, 22(6),66-69. [2]甘进,王晓丹,权文.基于特征点的快速匹配算法[J].电光与控制,2009,16(2), 65-66. [3]王军,张明柱.图像匹配算法的研究进展[J].大气与环境光学学报,2007,2(1), 12-15.

模式识别(K近邻算法)

K 近邻算法 1.算法思想 取未知样本的x 的k 个近邻,看这k 个近邻中多数属于哪一类,就把x 归于哪一类。具体说就是在N 个已知的样本中,找出x 的k 个近邻。设这N 个样本中,来自1w 类的样本有1N 个,来自2w 的样本有2N 个,...,来自c w 类的样本有c N 个,若c k k k ,,,21 分别是k 个近邻中属于c w w w ,,,21 类的样本数,则我们可以定义判别函数为: c i k x g i i ,,2,1,)( == 决策规则为: 若i i j k x g max )(=,则决策j w x ∈ 2.程序代码 %KNN 算法程序 function error=knn(X,Y ,K) %error 为分类错误率 data=X; [M,N]=size(X); Y0=Y; [m0,n0]=size(Y); t=[1 2 3];%3类向量 ch=randperm(M);%随机排列1—M error=0; for i=1:10 Y1=Y0; b=ch(1+(i-1)*M/10:i*M/10); X1=X(b,:); X(b,:)=[]; Y1(b,:)=[]; c=X; [m,n]=size(X1); %m=15,n=4 [m1,n]=size(c); %m1=135,n=4 for ii=1:m for j=1:m1 ss(j,:)=sum((X1(ii,:)-c(j,:)).^2); end [z1,z2]=sort(ss); %由小到大排序 hh=hist(Y1(z2(1:K)),t); [w,best]=max(hh); yy(i,ii)=t(best); %保存修改的分类结果 end

蚁群聚类算法综述

计算机工程与应用2006.16 引言 聚类分析是数据挖掘领域中的一个重要分支[1],是人们认 和探索事物之间内在联系的有效手段,它既可以用作独立的 据挖掘工具,来发现数据库中数据分布的一些深入信息,也 以作为其他数据挖掘算法的预处理步骤。所谓聚类(clus- ring)就是将数据对象分组成为多个类或簇(cluster),在同一 簇中的对象之间具有较高的相似度,而不同簇中的对象差别大。传统的聚类算法主要分为四类[2,3]:划分方法,层次方法, 于密度方法和基于网格方法。 受生物进化机理的启发,科学家提出许多用以解决复杂优 问题的新方法,如遗传算法、进化策略等。1991年意大利学A.Dorigo等提出蚁群算法,它是一种新型的优化方法[4]。该算不依赖于具体问题的数学描述,具有全局优化能力。随后他 其他学者[5~7]提出一系列有关蚁群的算法并应用于复杂的组优化问题的求解中,如旅行商问题(TSP)、调度问题等,取得 著的成效。后来其他科学家根据自然界真实蚂蚁群堆积尸体分工行为,提出基于蚂蚁的聚类算法[8,9],利用简单的智能体 仿蚂蚁在给定的环境中随意移动。这些算法的基本原理简单懂[10],已经应用到电路设计、文本挖掘等领域。本文详细地讨现有蚁群聚类算法的基本原理与性能,在归纳总结的基础上 出需要完善的地方,以推动蚁群聚类算法在更广阔的领域内 到应用。 2聚类概念及蚁群聚类算法 一个簇是一组数据对象的集合,在同一个簇中的对象彼此 类似,而不同簇中的对象彼此相异。将一组物理或抽象对象分组为类似对象组成的多个簇的过程被称为聚类。它根据数据的内在特性将数据对象划分到不同组(或簇)中。聚类的质量是基于对象相异度来评估的,相异度是根据描述对象的属性值来计算的,距离是经常采用的度量方式。聚类可用数学形式化描述为:设给定数据集X={x 1 ,x 2 ,…,x n },!i∈{1,2,…,n},x i ={x i1 ,x i2 , …,x

KMeans聚类算法模式识别

K-Means聚类算法 1.算法原理 k-means是划分方法中较经典的聚类算法之一。由于该算法的效率高,所以在对大规模数据进行聚类时被广泛应用。目前,许多算法均围绕着该算法进行扩展和改进。 k-means算法以k为参数,把n个对象分成k个簇,使簇内具有较高的相似度,而簇间的相似度较低。k-means算法的处理过程如下:首先,随机地选择k个对象,每个对象初始地代表了一个簇的平均值或中心;对剩余的每个对象,根据其与各簇中心的距离,将它赋给最近的簇;然后重新计算每个簇的平均值。这个过程不断重复,直到准则函数收敛。通常,采用平方误差准则,其定义如下: 这里E是数据库中所有对象的平方误差的总和,p是空间中的点,mi 是簇Ci的平均值。该目标函数使生成的簇尽可能紧凑独立,使用的距离度量是欧几里得距离,当然也可以用其他距离度量。k-means聚类算法的算法流程如下: 输入:包含n个对象的数据库和簇的数目k; 输出:k个簇,使平方误差准则最小。 步骤: (1) 任意选择k个对象作为初始的簇中心; (2) repeat; (3) 根据簇中对象的平均值,将每个对象(重新)赋予最类似的簇; (4) 更新簇的平均值,即计算每个簇中对象的平均值;

(5) 直到不再发生变化。 2.主要代码 主程序: clc; clear; close all; %% 聚类算法测试 nSample = [500, 500, 500]; % 3维情况 dim = 3; coeff = { [-2 0.8; -1 0.9; 2 0.7;], .... [1 0.9; -2 0.7; -2 0.8; ], ... [-2 0.7; 2 0.8; -1 0.9; ], }; data = createSample(nSample, dim , coeff); %% 得到训练数据 nClass = length(nSample); tlabel = []; tdata = []; for i = 1 : nClass

软件学院毕业设计(算法设计类论文)撰写说明

目录 第一部分摘要与关键词 (2) 1 摘要 (2) 2 关键词 (3) 第二部分正文 (3) 1 引言(绪论) (3) 1.1 引言(绪论)的结构 (4) 1.2 研究背景的写法 (4) 1.3 国内外研究现状的写法 (5) 1.4 研究内容的写法 (5) 1.5 论文组织结构的写法 (5) 2相关工作与理论基础 (6) 2.1 相关工作 (6) 2.2 理论基础 (8) 2.3 本章小结 (8) 3 ***算法的设计 (8) 3.1 问题描述 (9) 3.2 ***算法 (11) 4 实验(仿真)分析 (14) 4.1 实验环境 (14) 4.2 实验数据 (14) 4.3 实验结果 (14) 5 结论 (15) 6 参考文献 (16)

算法类论文的写作要求 算法类论文的写作主要是围绕某个科学问题设计解决方案并进行实验验证的过程描述,除摘要外,其正文主要包括引言、相关工作、问题描述、算法设计、实验分析、结论、参考文献7个部分。本文仅对论文写作的结构进行说明,不涉及到论文的排版格式。有关排版格式,请参考其他文献。 第一部分摘要与关键词 1 摘要 (1)需要提供中英文版本。 (2)文章摘要应具有独立性和自明性,拥有同正文同等量的主要信息,其述叙语言应简洁,准确。摘要应附和以下要求: ●四要素要完整,应说明研究工作的目的、实验方法、技术成果和最终结 论,而其重点是成果和结论; ●删除在本学科领域已成为常识的内容,一般不要做自我评价; ●不得简单重复文章题目; ●慎用长句; ●使用第3人称; ●采用规范化术语; ●新术语可使用原文或在译名后加括号注明原文; ●缩略语、略称、代号,在首次出现时也应说明; ●不得出现正文中的图号、表号、公式、章节号以及参考文献等。 (3)摘要的具体写法: 摘要一般分为2-3段,字数在300~500之间。不要出现第一人称我或我们的字样,要从客观的角度来阐述。 第一段:一般以3行为宜,简述你的论文背景,引出为什么要研究该项目(意义)。 第二段:是摘要的主要内容,对全文进行总概。一般按照你论文的顺序进行阐述。 如:本文首先分析了××××方面的国内外研究现状,对×××所存在的主

模式识别感知器算法求判别函数

感知器算法求判别函数 一、 实验目的 掌握判别函数的概念和性质,并熟悉判别函数的分类方法,通过实验更深入的了解判别函数及感知器算法用于多类的情况,为以后更好的学习模式识别打下基础。 二、 实验内容 学习判别函数及感知器算法原理,在MATLAB 平台设计一个基于感知器算法进行训练得到三类分布于二维空间的线性可分模式的样本判别函数的实验,并画出判决面,分析实验结果并做出总结。 三、 实验原理 3.1 判别函数概念 直接用来对模式进行分类的准则函数。若分属于ω1,ω2的两类模式可用一方程d (X ) =0来划分,那么称d (X ) 为判别函数,或称判决函数、决策函数。如,一个二维的两类判别问题,模式分布如图示,这些分属于ω1,ω2两类的模式可用一直线方程 d (X )=0来划分。其中 0)(32211=++=w x w x w d X (1) 21,x x 为坐标变量。 将某一未知模式 X 代入(1)中: 若0)(>X d ,则1ω∈X 类; 若0)(3时:判别边界为一超平面[1]。 3.2 感知器算法 1958年,(美)F.Rosenblatt 提出,适于简单的模式分类问题。感知器算法是对一种分

类学习机模型的称呼,属于有关机器学习的仿生学领域中的问题,由于无法实现非线性分类而下马。但“赏罚概念( reward-punishment concept )” 得到广泛应用,感知器算法就是一种赏罚过程[2]。 两类线性可分的模式类 21,ωω,设X W X d T )(=其中,[]T 1 21,,,,+=n n w w w w ΛW ,[]T 211,,,,n x x x Λ=X 应具有性质 (2) 对样本进行规范化处理,即ω2类样本全部乘以(-1),则有: (3) 感知器算法通过对已知类别的训练样本集的学习,寻找一个满足上式的权向量。 感知器算法步骤: (1)选择N 个分属于ω1和 ω2类的模式样本构成训练样本集{ X1 ,…, XN }构成增广向量形式,并进行规范化处理。任取权向量初始值W(1),开始迭代。迭代次数k=1。 (2)用全部训练样本进行一轮迭代,计算W T (k )X i 的值,并修正权向量。 分两种情况,更新权向量的值: 1. (),若0≤T i k X W 分类器对第i 个模式做了错误分类,权向量校正为: ()()i c k k X W W +=+1 c :正的校正增量。 2. 若(),0T >i k X W 分类正确,权向量不变:()()k k W W =+1,统一写为: ???∈<∈>=21T ,0,0)(ωωX X X W X 若若d

蚁群算法

社会性动物的群集活动往往能产生惊人的自组织行为,如个体行为显得盲目的蚂蚁在组成蚁群后能够发现从蚁巢到食物源的最短路径。生物学家经过仔细研究发现蚂蚁之间通过一种称之为“外激素”的物质进行间接通讯、相互协作来发现最短路径。受其启发,1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。本文阐述了算法的基本原理及特性以及一些优化的蚁群算法,阐述了蚁群算法在数据挖掘中的应用,最后总结了蚁群算法在数据挖掘应用中尚待解决的问题。 关键词: 蚁群算法; 蚁群优化; 数据挖掘 正文文字大小:大中小 1 蚁群算法原理 自1991年由意大利学者 M. Dorigo,V. Maniezzo 和 A. Colorni 通过模拟蚁群觅食行为提出了一种基于种群的模拟进化算法——蚁群优化。该算法的出现引起了学者们的极大关注,蚁群算法的特点: ①其原理是一种正反馈机制或称增强型学习系统; 它通过【最优路径上蚂蚁数量的增加→信息素强度增加→后来蚂蚁选择概率增大→最优路径上蚂蚁数量更大增加】达到最终收敛于最优路径上L ②它是一种通用型随机优化方法, 它吸收了蚂蚁的行为特(内在搜索机制) , 它是使用人工蚂蚁仿真(也称蚂蚁系统) 来求解问题L但人工蚂蚁决不是对实际蚂蚁的一种简单模拟, 它融进了人类的智能L人工蚂蚁有一定的记忆; 人工蚂蚁不完全是瞎的; 人工蚂蚁生活的时空是离散的L ③它是一种分布式的优化方法, 不仅适合目前的串行计算机, 而且适合未来的并行计算机L ④它是一种全局优化的方法, 不仅可用于求解单目标优化问题, 而且可用于求解多目标优化问题L ⑤它是一种启发式算法, 计算复杂性为o (Nc*n2*m) , 其中Nc 是迭代次数, m 是蚂蚁数目, n 是目的节点数目L 蚁群发现最短路径的原理和机制[1] 下面用图 1解释蚁群发现最短路径的原理和机制。 如图 1(a)所示,在蚁巢和食物源之间有两条道路 Nest-A-B-D-Food 和Nest-A-C-D-Food,其长度分别为 4 和 6。单位时间内蚂蚁可移动一个单位长度的距离。开始时所有路径上都没有外激素。 如图 1(b),在 t=0 时刻,20 只蚂蚁从蚁巢出发移动到 A。由于路径上没有外激素,它们以

本科毕业论文---基于bp神经网络的字符识别算法的实现正文

一、原始依据(包括设计或论文的工作基础、研究条件、应用环境、工作目 的等。) 工作基础:了解C++的基本概念和语法,熟练使用Visual C++6.0软件。 研究条件:BP神经网络的基本原理以及图像处理的基本常识。 应用环境:基于BP神经网络的图片图像文件中的字符识别。 工作目的:掌握基于Visual C++6.0应用程序的开发。 了解人工智能的基本概念并掌握神经网络算法的基本原理。 掌握Visual C++6.0中的图片处理的基本过程。 二、参考文献 [1]人工智能原理及其应用,王万森,电子工业出版社,2007. [2]VC++深入详解,孙鑫,电子工业出版社,2006. [3]人工神经网络原理, 马锐,机械工业出版社,2010. [4]Visual C++数字图像处理典型案例详解,沈晶,机械工业出版社,2012. [5]Application of Image Processing to the Characterization of Nanostructures Manuel F. M. Costa,Reviews on Advanced Materials Science,2004. 三、设计(研究)内容和要求(包括设计或研究内容、主要指标与技术参数,并根据课题性质对学生提出具体要求。) 1、掌握C++的基本概念和语法。 2、掌握二维神经网络的基本原理。了解BP神经网络的基本概念。 3、完成Visual C++中对于图像的灰度、二值化等预处理。 4、完成基于样本的神经网络的训练以及图像中数字的识别,并对其性能进 行统计和总结,分析其中的不足。 指导教师(签字) 年月日 审题小组组长(签字) 年月日

模式识别关于男女生身高和体重的神经网络算法

模式识别实验报告(二) 学院: 专业: 学号: 姓名:XXXX 教师:

目录 1实验目的 (1) 2实验内容 (1) 3实验平台 (1) 4实验过程与结果分析 (1) 4.1基于BP神经网络的分类器设计 .. 1 4.2基于SVM的分类器设计 (4) 4.3基于决策树的分类器设计 (7) 4.4三种分类器对比 (8) 5.总结 (8)

1)1实验目的 通过实际编程操作,实现对课堂上所学习的BP神经网络、SVM支持向量机和决策树这三种方法的应用,加深理解,同时锻炼自己的动手实践能力。 2)2实验内容 本次实验提供的样本数据有149个,每个数据提取5个特征,即身高、体重、是否喜欢数学、是否喜欢文学及是否喜欢运动,分别将样本数据用于对BP神经网络分类器、SVM支持向量机和决策树训练,用测试数据测试分类器的效果,采用交叉验证的方式实现对于性能指标的评判。具体要求如下: BP神经网络--自行编写代码完成后向传播算法,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算可以基于平台的软件包); SVM支持向量机--采用平台提供的软件包进行分类器的设计以及测试,尝试不同的核函数设计分类器,采用交叉验证的方式实现对于性能指标的评判; 决策树--采用平台提供的软件包进行分类器的设计以及测试,采用交叉验证的方式实现对于性能指标的评判(包含SE,SP,ACC和AUC,AUC的计算基于平台的软件包)。 3)3实验平台 专业研究方向为图像处理,用的较多的编程语言为C++,因此此次程序编写用的平台是VisualStudio及opencv,其中的BP神经网络为自己独立编写,SVM 支持向量机和决策树通过调用Opencv3.0库中相应的库函数并进行相应的配置进行实现。将Excel中的119个数据作为样本数据,其余30个作为分类器性能的测试数据。 4)4实验过程与结果分析 4.1基于BP神经网络的分类器设计 BP神经网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。其学习规则是使用梯度下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。 在独自设计的BP神经中,激励函数采用sigmod函数,输入层节点个数为5,

蚁群算法聚类分析

蚁群算法聚类分析 摘要: 蚁群算法是今年来才提出的一种基于种群寻优的启发式搜索算法,由意大利学者M.Dorigo等于1991年首先提出。该算法受到自然界中真实蚁群集体行为的启发,利用真实蚁群通过个体间的信息传递、搜索从蚁穴到食物间的最短路径的集体寻优特征,来解决一些离散系统中优化的困难问题。本文就蚁群算法的基本原理、模型特征、聚类分析展开论述。 关键字: 蚁群算法原理模型聚类分析

引言 蚁群算法是最近几年才提出的一种新型的模拟进化算法。蚂蚁是大家司空见惯的一种昆虫,而他们的群体合作的精神令人钦佩。他们的寻食、御敌、筑巢(蚂蚁的筑窝、蜜蜂建巢)之精巧令人惊叹。蚂蚁是自然界中常见的一种生物,人们对蚂蚁的关注大都是因为“蚂蚁搬家,天要下雨”之类的民谚。然而随着近代仿生学的发展,这种似乎微不足道的小东西越来越多地受到学者们的关注。1991年M.DIorigo,V.MaIliezzo等人首先提出了蚁群算法 (Ant Colony Algorithms),人们开始了对蚁群的研究:相对弱小,功能并不强大的个体是如何完成复杂的工作的(如寻找到食物的最佳路径并返回等)。在此基础上一种很好的优化算法逐渐发展起来。 基本蚁群算法的机制原理 模拟蚂蚁群体觅食行为的蚁群算法是作为一种新的计算智能模式引入的,该算法基于如下基本假设: (1)蚂蚁之间通过信息素和环境进行通信。每只蚂蚁仅根据其周围的局部环境做出反应,也只对其周围的局部环境产生影响; (2)蚂蚁对环境的反应由其内部模式决定。因为蚂蚁是基因生物,蚂蚁的行为实际上是其基因的适应性表现,即蚂蚁是反应型适应性主体; (3)在个体水平上,每只蚂蚁仅根据环境做出独立选择;在群体水平上,单只蚂蚁的行为是随机的,但蚁群可通过自组织过程形成高度有序的群体行为; 由上述假设和分析可见,基本蚁群算法的寻优机制包含两个基本阶段:适应阶段和协作阶段。在适应阶段,各候选解根据积累的信息不断调整自身结构,路径上经过的蚂蚁越多,信息量越大,则该路径越容易被选择;时间越长,信息量会越小;在协作阶段,候选解之间通过信息交流,以期望产生性能更好的解,类似于学习自动机的学习机制。 蚁群算法实际上是一类智能多主体系统,其自组织机制使得蚁群算法不需要对所求问题的每一方面都有详尽的认识。自组织本质上是蚁群算法机制在没有外界作用下使系统熵增加的动态过程,体现了从无序到有序的动态演化,其逻辑结构如图1所示。

机器学习在模式识别中的算法研究

机器学习在模式识别中的算法研究 摘要:机器学习是计算机开展智能操作的基础,人工智能的发展依靠机器学习 技术,而机器学习、模式识别与当前人工智能的发展密切相关。本文通过概述机 器学习机制,围绕神经网络、遗传算法、支持向量机、K-近邻法等算法研究当前 机器学习在模拟识别中的应用,为今后模拟识别与人工智能开发与研究提供借鉴。关键词:机器学习;模式识别;人工神经网络 前言: 机器学习技术覆盖了人工智能的各个部分,如自动推理、专家系统、模式识别、智能机器人等。模式识别是将计算机的不同事物划分成不同的类别。人工智 能的模式识别可以利用机器学习算法完善分类能效。因此,机器学习与模式识别 密不可分,本文就机器学习在模式识别领域的学习算法中的应用展开研究。 1、机器学习机制与系统设计 在机器学习模型中,环境可以向系统的学习部件中提供信息,学习部件根据 这些信息调整和修改知识库,提升系统内部执行文件的性能。执行文件再将获得 的信息向学习部件反馈,此过程就是机器学习系统结合外部与内部的环境信息自 动获取知识的过程。机器学习系统设计的构建过程应包含两部分:其一,模型的 选择和构建。其二,学习算法的选择与设计。不同种类的模型具有不同的目标函数,涉及到不同的学习机制,算法的复杂性与能力决定着学习系统的效率与学习 能力。此外,训练样本集的特征与大小的问题也与机器学习系统的性能相关。 2、机器学习在模式识别中的应用 2.1 遗传算法 在机器学习中,特征维数是一大难题,每一种模式中的特征反映出的事物本 质权重均不一致。部分对于分类结果并无积极作用,甚至属于冗余,因此选择特 征尤为关键。遗传算法实际上是寻优算法,可以有效的解决特征选择问题。遗传 算法可以筛选出准确反映出原模式相关信息、影响分类的结果、相互关联性较小 的特征。遗传算法实际是利用达尔文的生物进化思想,在运算领域中巧妙生成一 种寻优算法。该算法是1975年由美国Michigan大学的Holland教授提出的,遗 传算法的主要方法如下:首先,将种群中的个体作为对象,进行一系列的变异、 交叉、选择等操作。其次,利用遗传操作促进群体不断的进化,最终产生最优的 个体,最后,结合个体对于环境的适应程度选择最优良的个体,为其创造机会繁 衍后代。遗传算法程序如下:选择合适的编码策略,确定遗传策略和适应度函数。遗传策略包含种群的选择、大小、交叉概率、变异方法、变异概率等遗传参数; 利用编码策略,将特征集变为位串结构;构建初始化群体;计算整个群体的个体 适应度;结合遗传策略,将交叉、选择等作用在群体中,产生下一代群体;判别 群体性能是否到达某一标准,假若不满足将回到遗传策略阶段。 2.2 k-近邻法 k-nearest neighbor(k-近邻法)被广泛运用在无指导、基于实例的学习方法中, 可以实现线性不可分的样本识别,在之前并不了解待分样本的分布函数。当前被 广泛应用的k-近邻法主要是将待分类样本为重点形成超球体,同时扩展超球的半 径一直到球内包含着K个已知模式的样本,判别k个邻近样本属于哪一种。其主 要分类算法如下:设有c个类别,分别是w1,w2,w3,...,wc,i=1,2,3,...,c.测试样本x

实验三K均值聚类算法实验报告

实验三 K-Means聚类算法 一、实验目的 1) 加深对非监督学习的理解和认识 2) 掌握动态聚类方法K-Means 算法的设计方法 二、实验环境 1) 具有相关编程软件的PC机 三、实验原理 1) 非监督学习的理论基础 2) 动态聚类分析的思想和理论依据 3) 聚类算法的评价指标 四、算法思想 K-均值算法的主要思想是先在需要分类的数据中寻找K组数据作为初始聚类中心,然后计算其他数据距离这三个聚类中心的距离,将数据归入与其距离最近的聚类中心,之后再对这K个聚类的数据计算均值,作为新的聚类中心,继续以上步骤,直到新的聚类中心与上一次的聚类中心值相等时结束算法。 实验代码 function km(k,A)%函数名里不要出现“-” warning off [n,p]=size(A);%输入数据有n个样本,p个属性 cid=ones(k,p+1);%聚类中心组成k行p列的矩阵,k表示第几类,p是属性 %A(:,p+1)=100; A(:,p+1)=0; for i=1:k %cid(i,:)=A(i,:); %直接取前三个元祖作为聚类中心 m=i*floor(n/k)-floor(rand(1,1)*(n/k)) cid(i,:)=A(m,:); cid; end Asum=0; Csum2=NaN; flags=1; times=1; while flags flags=0; times=times+1; %计算每个向量到聚类中心的欧氏距离 for i=1:n

for j=1:k dist(i,j)=sqrt(sum((A(i,:)-cid(j,:)).^2));%欧氏距离 end %A(i,p+1)=min(dist(i,:));%与中心的最小距离 [x,y]=find(dist(i,:)==min(dist(i,:))); [c,d]=size(find(y==A(i,p+1))); if c==0 %说明聚类中心变了 flags=flags+1; A(i,p+1)=y(1,1); else continue; end end i flags for j=1:k Asum=0; [r,c]=find(A(:,p+1)==j); cid(j,:)=mean(A(r,:),1); for m=1:length(r) Asum=Asum+sqrt(sum((A(r(m),:)-cid(j,:)).^2)); end Csum(1,j)=Asum; end sum(Csum(1,:)) %if sum(Csum(1,:))>Csum2 % break; %end Csum2=sum(Csum(1,:)); Csum; cid; %得到新的聚类中心 end times display('A矩阵,最后一列是所属类别'); A for j=1:k [a,b]=size(find(A(:,p+1)==j)); numK(j)=a; end numK times xlswrite('data.xls',A);

一种基于K-Means局部最优性的高效聚类算法

ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.wendangku.net/doc/3316438257.html, Journal of Software, Vol.19, No.7, July 2008, pp.1683?1692 https://www.wendangku.net/doc/3316438257.html, DOI: 10.3724/SP.J.1001.2008.01683 Tel/Fax: +86-10-62562563 ? 2008 by Journal of Software. All rights reserved. ? 一种基于K-Means局部最优性的高效聚类算法 雷小锋1,2+, 谢昆青1, 林帆1, 夏征义3 1(北京大学信息科学技术学院智能科学系/视觉与听觉国家重点实验室,北京 100871) 2(中国矿业大学计算机学院,江苏徐州 221116) 3(中国人民解放军总后勤部后勤科学研究所,北京 100071) An Efficient Clustering Algorithm Based on Local Optimality of K-Means LEI Xiao-Feng1,2+, XIE Kun-Qing1, LIN Fan1, XIA Zheng-Yi3 1(Department of Intelligence Science/National Laboratory on Machine Perception, Peking University, Beijing 100871, China) 2(School of Computer Science and Technology, China University of Mining and Technology, Xuzhou 221116, China) 3(Logistics Science and Technology Institute, P.L.A. Chief Logistics Department, Beijing 100071, China) + Corresponding author: E-mail: leiyunhui@https://www.wendangku.net/doc/3316438257.html, Lei XF, Xie KQ, Lin F, Xia ZY. An efficient clustering algorithm based on local optimality of K-Means. Journal of Software, 2008,19(7):1683?1692. https://www.wendangku.net/doc/3316438257.html,/1000-9825/19/1683.htm Abstract: K-Means is the most popular clustering algorithm with the convergence to one of numerous local minima, which results in much sensitivity to initial representatives. Many researches are made to overcome the sensitivity of K-Means algorithm. However, this paper proposes a novel clustering algorithm called K-MeanSCAN by means of the local optimality and sensitivity of K-Means. The core idea is to build the connectivity between sub-clusters based on the multiple clustering results of K-Means, where these clustering results are distinct because of local optimality and sensitivity of K-Means. Then a weighted connected graph of the sub-clusters is constructed using the connectivity, and the sub-clusters are merged by the graph search algorithm. Theoretic analysis and experimental demonstrations show that K-MeanSCAN outperforms existing algorithms in clustering quality and efficiency. Key words: K-MeanSCAN; density-based; K-Means; clustering; connectivity 摘要: K-Means聚类算法只能保证收敛到局部最优,从而导致聚类结果对初始代表点的选择非常敏感.许多研究 工作都着力于降低这种敏感性.然而,K-Means的局部最优和结果敏感性却构成了K-MeanSCAN聚类算法的基 础.K-MeanSCAN算法对数据集进行多次采样和K-Means预聚类以产生多组不同的聚类结果,来自不同聚类结果的 子簇之间必然会存在交集.算法的核心思想是,利用这些交集构造出关于子簇的加权连通图,并根据连通性合并子 簇.理论和实验证明,K-MeanScan算法可以在很大程度上提高聚类结果的质量和算法的效率. 关键词: K-MeanSCAN;基于密度;K-Means;聚类;连通性 中图法分类号: TP18文献标识码: A ? Supported by the National High-Tech Research and Development Plan of China under Grant No.2006AA12Z217 (国家高技术研究发 展计划(863)); the Foundation of China University of Mining and Technology under Grant No.OD080313 (中国矿业大学科技基金) Received 2006-10-09; Accepted 2007-07-17

蚁群聚类算法研究及应用

-5009- 0引言 俗话说“物以类聚,人以群分”,人们在不知不觉中进行着 聚类活动,它是人们认识和探索事物之间内在联系的有效手段。聚类在数据挖掘中有着重要的地位,它既可以用作独立的数据挖掘工具,来发现数据库中数据分布的一些深入信息,也可以作为其它数据挖掘算法的预处理步骤。因此,聚类算法的研究具有很重要的现实意义。 蚁群算法不依赖于具体问题,具有全局优化能力,因此受 到了广大学者的注意。此后蚁群算法不断被改进并应用于不同领域。在聚类分析方面,Deneubourg等人受蚂蚁堆积尸体和分类它们的幼体启发,最早将蚁群算法用于聚类分析,从此开始了蚁群聚类算法的研究。 本文详细地讨论了现有的蚁群聚类算法的基本原理与性 能,在归纳总结的基础上提出需要完善的地方,以推动蚁群聚类算法的进一步研究及在更广阔的领域内得到应用。 1聚类概念及数学模型 聚类就是把一组个体按照相似性归为若干类或簇,使得 属于同一类或簇的个体之间的差别尽可能的小,而不同类或簇的个体间的差别尽可能大。聚类质量是用对象的相异度来评估,而不同类型变量的相异度的计算方法是不同的,常用的度量方法是区间标度变量中的欧几里得距离。 聚类的数学描述:设样本集={,=1,2,…,},其中为 维模式向量,其聚类问题就是找到一个划分={ 1 , 2 ,…, },满足= =1 ,≠,=,,=1,2,…,,≠,且使 得总的类内离散度和= =1 ,最小,其中为的 聚类中心,=1,2,…,;,为样本到其聚类中心的距 离,即,=‖‖。聚类目标函数为各样本到对应 聚类中心的距离总和,聚类中心=1 ,||为的样 本数目。 2蚁群聚类算法分类及应用 由于现实的蚁群运动过程接近于实际的聚类问题,所以 近年来涌现出大量的蚁群聚类算法。这些算法不仅思想、原理不同,而且算法的特性也根据解决问题的不同而不同,如初始参数及待聚类数据的要求、聚类形状等。

相关文档