文档库 最新最全的文档下载
当前位置:文档库 › 利用太阳能分解水制成氢的原理

利用太阳能分解水制成氢的原理

利用太阳能分解水制成氢的原理
利用太阳能分解水制成氢的原理

利用太阳能分解水制成氢的原理

自地球上出现生命以来,就万物生长靠太阳。光合作用是绿色植物和藻类植物在可见光作用下将二氧化碳和水转化成碳水化合物的过程。人类赖以生存的能源和材料都直接地和间接地来自光合作用。石油、煤、天然气等化石燃料就是自然界留给我们的光合作用的产物。

由于世界的飞速发展,大自然留给我们的能源越来越短缺,这就激发了各国的科学家对光合作用及其模拟的研究,只能从能源上考虑,光解水制造氢是太阳能光化学转化与储存的最好途径。因为氢燃烧后只生成水,不污染环境,是便于储存和运输的可再生能源。

如果把太阳能先转化为电能,则光解水制氢可以通过电化学过程来实现。绿色植物的光合作用就是通过叶绿素吸收太阳光,把光能转化为电能借助电子转移过程将水分解的。从太阳能利用角度看,光解水制氢过程主要是利用太阳能而不是它的热能,也就是说,光解水过程中首先应考虑尽可能的利用阳光辐射中的紫外光和可见光部分,据此,太阳能分解水制氢可以通过三种途径来进行。

一、光电化学池:即通过光阳板吸收太阳能并将光能转化为电能。光阳板通常为光半导体材料,受光激发可以产生电子——空穴对,光阳极和对极(阴极)组成光电化学池,在电解质存在下光阳极吸光后在半导体带上产生的电子通过外电路流向对极,水中的质子从对极上接受电子产生氢气。

二、光助络合催化:即人工模拟光合作用分解水的过程。在绿色植物中,吸光物质是一种结构为镁卟啉的光敏络合物,传递电子通过醌类。具有镁卟啉结构的叶绿素分子通过吸收680mm可见光诱发电荷分离,使水氧化分解而释氧,与此同时,质醌发生光还原。从分解水的角度而言,在绿色植物光合作用中,首先是应该通过光氧化水放氧储能,然后才是二氧化碳的同化反应。由于氧化放氧通过电荷转移储存了光能,在二氧化碳同化过程中与质子形成碳水化合物中间体只能是一个暗反应。只从太阳能的光化学转化与储存角度考虑,无疑光合作用过程是十分理想的。

因为它不但通过光化学反应储存了氢,同时也储存了碳。但对于太阳能分解水制氢,所需要的是氢而不是氧,则不必从结构上和功能上去模拟光合作用的全过程,而只需从原理上去模拟光合作用的吸光,电荷转移,储能和氧化还原反应等基本物理化学过程。

三、半导体催化:即将TiO2或cds等光半导体微粒直接悬浮在水中进行光解水反

应。半导体光催化在原理上类似于光电化学池,细小的光半导体颗粒可以被看做是一个个微电极悬浮在水中,它们像太阳极一样在起作用,所不同的是它们之间没有像光电化学池那样被隔开,甚至对级也被设想是在同一粒子上。在半导体微粒上可以担载铂,有人把铂作为阴极来看待,但从铂的作用机制上看更像是催化剂。因为在没有“外电路”只有水作为电解质的情况下,光激发所产生的电子无法像在体系外的导体中一样有序地从“光阳极”流向“阴极”,铂的主要功能是聚集和传递电子促进光还原水放氢反应。和光电化学池比较,半导体光催化分解水放氢的反应大大简化,但通过光激发在同一个半导体微粒上产生的电子---空穴对极易复合。

尽管半导体光催化循环分解水同时放氢放氧未能实现,像络合物催化光解水一样必须在反应体系中加入电子给体或受体分别放氢放氧,但半导体光催化的发展为光催化研究打开了若干新的领域。

硅基太阳能电池的发展及应用

.. 硅基太阳能电池的发展及应用 摘要:太阳能电池是缓解环境危机和能源危机一条新的出路,本文介绍了硅基太阳能电池的原理,综述了硅基太阳电池的优点与不足,以及硅基太阳能电池和其他太阳能电池的横向比较,硅基太阳能电池在光伏产业中的地位,并展望了发展趋势及应用前景等。 关键词:硅基太阳能电池转换效率 1引言 二十一世纪以来,全球经济增长所引发的能源消耗达到了空前的程度。传统的化石能源是人类赖以生存的保障,可是如今化石能源不仅在满足人类日常生活需要方面捉襟见肘,而且其燃烧所排放的温室气体更是全球变暖的罪魁祸首。随着如今全球人口突破70亿,能源的需求也在过去30年间增加了一倍。特别是电力能源从上世纪开始,在总能源需求中的比重增长迅速。中国政府己宣布了其在哥本哈根协议下得承诺,至2020年全国单位国内生产总值二氧化碳排放量比2005年下降40% --45%,非化石能源占一次能源消费的比重提高至少15%左右【6】。 目前太阳能电池主要有以下几种:硅太阳能电池,聚光太阳能电池,无机化合物薄膜太阳能电池,有机化合物薄膜太阳能电池,纳米晶薄膜太阳能电池,叠层薄膜太阳能电池等,其材料主要包括产生光伏效应的半导体材料,薄膜衬底材料,减反射膜材料等【5】。

(图1:太阳能电池的种类) 太阳电池的基本工作原理是:在被太阳电池吸收的光子中,那些能量大于半导体禁带宽度的光子,可以使得半导体中原子的价电子受到激发,在p区、空间电荷区和n区都会产生光生电子左穴对,也称光生载流子。这样形成的光生载流子由于热运动,向各个方向迁移。光生载流子在空间电荷区中产生后,立即被内建电场分离,光生电子被推进n区,光生空穴被推进p区。因此,在p-n结两侧产生了正、负电荷的积累,形成与内建电场相反的光生电场。这个电场除了一部分要抵消内建电场以外,还使p型层带正电,n型层带负电,因此产生了光生电动势,这就是光生伏特效应(简称光伏)。

太阳能热利用技术概述

太阳能热利用技术概述 【摘要】太阳能是一种洁净和可再生的能源,太阳能热利用技术发展迅速。本文对太阳能利用成熟技术、先进技术和当前研究的热点技术进行了简要介绍。在发电过程中使用矿物燃料,从而减轻空气污染及全球暖化的问题,环境保护的发展趋势。成熟技术部分主要包括集热器、热水系统、太阳灶、太阳能暖房等传统的太阳能热利用技术;先进技术部分主要阐述了尚处于研究试验阶段的高品位太阳能热利用技术,包括太阳能空调降温/制冷、太阳能制氢、太阳能热发电等;在当前研究的热点问题部分,主要论述太阳能建筑热利用的技术问题。 【关键词】太阳能热利用;太阳能建筑;太阳能热发电;太阳能集热器 1.引言 太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能热利用是一种较成熟的可再生能源利用方式。太阳能热利用是可再生能源技术领域商业化程度最高、推广应用最普遍的技术之一。现代的太阳能热技术将阳光聚合,并运用其能量产生热水、蒸汽和电力。除了运用适当的科技来收集太阳能外,建筑物亦可利用太阳的光和热能。太阳能资源总量相当于现在人类所利用的能源的一万多倍,太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。但是太阳能有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。太阳能热利用研究和开发方兴未艾,随着常规能源供给的有限性及地球环保压力的增加,世界上许多国家掀起开发利用太阳能的热潮,开发利用太阳能成为各国可持续发展战略的重要内容,太阳能先进技术已成为世界当前及未来研究、开发和利用的主要方向。 2.太阳能热利用技术 太阳能热利用的基本原理是用集热器将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的集热器,主要有平板型集热器、真空管集热器、热管式集热器和聚焦型集热器等4种。通常太阳能热利用可分为:低温(80℃以下)、中温(80-350℃)和高温(350℃以上)三类热利用方式。低温热利用包括最简单的地膜、塑料大棚以及干燥器、蒸馏、供暖、太阳热水器。中温热利用有太阳能建筑、空调制冷、制盐以及其它工业用。热高温热利用有简单的聚焦型太阳灶、焊接机和高温炉。目前应用最广泛的是太阳能热水器、太阳能空调降温/制冷等。 2.1 太阳能集热器

太阳能热水器的组成及工作原理

系统总体结构设计 排气管 图2-1系统结构图

图2-1为系统设计的结构图,该图的系统控制原理图如下图2-2: T3 T2 D F2 图2-2 系统控制原理图 注释:T1:热水箱的温度传感器

T2:循环水管中的温度传感器 T3:集热器中的温度传感器 F1:循环水阀门 F2:冷水阀门 F3:热水阀门 此款热水器利用微机控制主要有以下几种控制功能:晨水加热控制、温水循环控制、冷水集热控制、水箱加热控制。 1.早晨水温控制 由于清晨太阳光较弱,所以太阳能热水器从系统发挥作用。为了提供温度不低于30摄氏度的水,热水器在清晨4-7点之间对水箱进行电加热,具体控制过程如下: 首先,关闭冷水阀门F2和循环水阀门F1,然后微机开始进行水箱的温度采集,同时进行温度的比较,当水箱的温度小于30摄氏度时,电热器D接通进行加热,同时微机继续对热水箱的温度进行采集。当温度加热到大于30摄氏度时电热器断开,如此反复循环保证了温度的稳定。 2.循环水集热过程 早晨水温控制之后(7~9点),设定当日的水箱温度N(由两位BCD次齿轮开关设定),输入微机,再利用微机控制系统,通过太阳光能对热水箱加热以达到理想温度N。具体控制过程如下: 打开循环阀门F1,关闭冷水进水阀门F2,热水阀门F3处于空控状态。然后开始比较温度,若(T3-T1>5摄氏度,T2>T1)为止。如若T1=N,那么循环水集热过程结束,进入冷水集热控制过程。 3.冷水集热控制 此时热水箱温度已达到了N,冷水要进入太阳能集热器,这时温度为T3,和当日的设定温度值相比较,若T3>N则将已加热的水送入热水箱,每天的控制时段大概为9点~20点。具体控制过程如下: 关闭循环水阀门F2,打开冷水阀门F2,热水阀门F3处于可控状态。若T3>N,

太阳能热利用系统 课程设计..

淮海工学院 课程设计报告书 题目:《太阳能热利用系统》课程设计 项目12 学院:理学院 专业:光信息科学与技术 班级:光能101 姓名: X X 学号: 2013年12 月16 日

目录 一、设计资料提供与使用要求 (3) 二、依据标准 (3) 三、我市太阳能资源情况 (3) 四、太阳能系统设计方案 (4) 4.1、系统日耗热量、热水量计算 (4) 4.2、设计小时耗热量、热水量计算 (4) 4.3、太阳能热水系统集热面积的确定 (5) 4.4、太阳能集热器的安装方位和倾角 (5) 4.5、管材和附件 (6) 4.5.1、管材 (6) 4.5.2、附件 (6) 4.5.3 水泵选型 (7) 4.6、保温层厚度计算 (7) 4.7、集热器的连接 (8) 4.8、水箱的设计 (8) 4.9、辅助热源设计 (8) 五、系统运行控制及运行原理 (10) 5.1、运行控制 (10) 5.2、运行原理说明 (10) 5.3、工程保温水箱 (10) 5.4、太阳能热水工程智能控制系统 (11) 六、固件清单 (12)

设计说明 一、设计资料提供与使用要求: 根据图纸的要求,尽量在不影响楼房外观的情况下,合理设计太阳能安装数量,要与整体工程验收标准相匹配,采用楼面太阳能集中集热,分户储能,春、夏、秋、冬晴天以太阳能制热为主,以分户电辅助加热为辅,太阳能外观颜色要与建筑外观颜色保持一致。 二、依据标准 系统严格安照以下国家标准进行设计 1、GB50015-2003《建筑给水排水设计规范》 2、GB47272-92《设备及管道保温技术通则》 3、GB/T20095-2006《太阳能热水系统性能评价规范》 4、GB/T4271-2007 《太阳能集热器性能实验方法》 5、GB/T18713-2002《太阳能热水系统设计、安装及工程验收技术规范》 6、0017-2003《钢结构设计规范》 7、B5009-2001《建筑结构载荷规范》 8、B50207-2002《屋面工程质量验收规范》 9、50205-2001《钢结构工程施工质量验收规范》 10、50242-2002《建筑给水排水及采暖工程施工质量验收规范》 11、50303-2002《建筑电气安装工程施工质量验收规范》 12、50300《建筑工程施工质量验收统一标准》 三、我市太阳能资源情况 太阳能资源情况:江苏省连云港市处于暖温带南部,属于太阳能资源较丰富区,年日照时数在2500小时左右;水平面上太阳能辐照量为4200—5400MJ/㎡.a,年平均温度14.3℃。1月平均温度-0.4℃,极端低温-19.5℃:7月平均温度26.5℃,极端高温39.9℃。历年平均降水量920多毫米,常年无霜期为220天,主导风向为东南风。气象资料显示:连云港四季分明,冬季寒冷干燥,夏季高温多雨,每年大约紧有20-30天处于阳光不足状况状态。

太阳能热利用课程设计

新能源科学与工程学院 太阳能热利用原理与计算机模拟课程设计 学院:新能源科学与工程学院 专业班级:太阳能光热技术及应用 学生姓名:章杜彬 学号: 指导教师:詹长军 实施时间:— 姓名章杜彬课程设计成绩 评语: 指导教师(签名) 摘要

太阳能是太阳内部或者表面的黑子连续不断的核聚变反应过程产生的能量。地球轨道上的平均太阳辐射强度为1,369w/㎡。地球赤道的周长为40,000km,从而可计算出,地球获得的能量可达173,000TW。在海平面上的标准峰值强度为1kw/m2,地球表面某一点24h的年平均辐射强度为0.20kw/㎡,相当于有102,000TW 的能量,人类依赖这些能量维持生存,其中包括所有其他形式的可再生能源(地热能资源除外),虽然太阳能资源总量相当于现在人类所利用的能源的一万多倍,但太阳能的能量密度低,而且它因地而异,因时而变,这是开发利用太阳能面临的主要问题。太阳能的这些特点会使它在整个综合能源体系中的作用受到一定的限制。尽管太阳辐射到地球大气层的能量仅为其总辐射能量的22亿分之一,但已高达173,000TW,也就是说太阳每秒钟照射到地球上的能量就相当于500万吨煤,每秒照射到地球的能量则为499,400,00,000焦。地球上的风能、水能、海洋温差能、波浪能和生物质能都是来源于太阳。 太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。 关键词:太阳能集热器系统设计太阳能集热器面积设备的选型 目录 第一章项目概况 (4) 1.1 建筑概况 (4) 1.2 气象参数 (4)

太阳能电池历史、原理、分类

太阳能电池历史、原理、分类 引言 太阳能作为一种巨量可再生能源,是人类取之不尽、用之不竭的可再生能源,是地球上最直接最普遍也是最清洁的能源。将太阳能转换为电能是大规模利用太阳能的重要技术基础,其转换途径很多,有光电直接转换,有光热电间接转换等。但利用太阳能电池进行光电直接转换是运用最为广泛的方式。 历史: 太阳能电池发展历史可以追溯到1 8 3 9 年,当时的法国物理学家Alexander-Edmond Becquerel发现了光伏特效应(P h o t o v o l t a i ceffect )。直到1883 年,第一个硒制太阳能电池才由美国科学家Charles Fritts 所制造出来。在1930年代,硒制电池及氧化铜电池已经被应用在一些对光线敏感的仪器上,例如光度计及照相机的曝光针上。 而现代化的硅制太阳能电池则直到1946 年由一个半导体研究学者Russell Ohl 开发出来。接着在1954年,科学家将硅制太阳能电池的转化效率提高到6% 左右。随后,太阳能电池应用于人造卫星。1973年能源危机之后,人类开始将太阳能电池转向民用。最早应用于计算器和手表等。1974 年,Haynos 等人,利用硅的非等方性(a n i s o t r o p i c)的蚀刻(etching)特性,慢慢的将太阳能电池表面的硅结晶面,蚀刻出许多类似金字塔的特殊几何形状。有效降低太阳光从电池表面反射损失,这使得当时的太阳能电池能源转换效率达到17%。 1976年以后,如何降低太阳能电池成本成为业内关心的重点。1990年以后,电池成本降低使得太阳能电池进入民间发电领域,太阳能电池开始应用于并网发电。 世界太阳能电池发展的主要节点: 1839年法国科学家贝克勒尔发现“光生伏特效应”,即“光伏效应”。 1876年亚当斯等在金属和硒片上发现固态光伏效应。 1883年制成第一个“硒光电池”,用作敏感器件。 1930年肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首次提出用“光伏效应”制造“太阳电池”,使太阳能变成电能。 1931年布鲁诺将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。1932年奥杜博特和斯托拉制成第一块“硫化镉”太阳电池。 1941年奥尔在硅上发现光伏效应。 1954年恰宾和皮尔松在美国贝尔实验室,首次制成了实用的单晶太阳电池,效率为6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。 1955年吉尼和罗非斯基进行材料的光电转换效率优化设计。同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。 1957年硅太阳电池效率达8%。 1958年太阳电池首次在空间应用,装备美国先锋1号卫星电源。 1959年第一个多晶硅太阳电池问世,效率达5%。 1960年硅太阳电池首次实现并网运行。 1962年砷化镓太阳电池光电转换效率达13%。 1969年薄膜硫化镉太阳电池效率达8%。 1972年罗非斯基研制出紫光电池,效率达16%。 1972年美国宇航公司背场电池问世。 1973年砷化镓太阳电池效率达15%。

太阳能利用技术模拟试题

《太阳能利用技术》模拟试卷 命题人:代术华 一、单项选择题(本大题共20小题,每小题1分,共20分)在每小题列出的备选项中只有一个是符合题目要求的,请将其代码填写在空格内。错选、多选或未选均无分。 1.太阳的主要成份是( )和氦。 A.氧 B.氮 C.氢 D.氯 2.太阳常数为( )/㎡。 A.367±7W B.1000±7W氮 C.1367±7W D.3000±7W 3.在任何时刻,从日轮中心到观测点间所连的直线和通过观测点的( )之间的夹角叫太阳高度角。 A.地面 B.正南 C.垂直面 D.水平面 4.选择性吸收面主要是对太阳光的( )辐射吸收性能更好。 A.短波 B.中波 C.长 D.所有 5.利用物质温度升高时吸热,降低时放热的特性来实现的太阳能储热为( )。 A.显热储热 B.潜热储热 C.不可逆化学反应储热 D.可逆化学反应储热 6.太阳灶能够烹饪食物是利用( )。 A.柴火 B.通电 C.太阳辐射 D.液化气 7.反射聚光镜一般采用( )反射镜。 A.平面 B.球面 C.抛物面 D.凸面 8.安装分体式太阳能热水器的多高层住宅,集热器要安装在( )立面墙上。 A.东 B.南 C.西 D.北 9.热水器的集热器安装方向为斜面朝向( ) +10°。 A.正东 B.正南 C.正西 D.正北 10.太阳能集热器安装角度为40°(与水平面),集热器上的太阳能辐量约为水平面上的( )。 A.1倍 B.1.3倍 C.2倍 D.3倍 11.结合水分存在于( )。 A.空气中 B.细胞壁 C.较大孔隙中 D.物料表面 12.太阳房与( )面建筑之间应保持一定间距, 以确保冬季不挡光为原则。 A.东 B.南 C.西 D.北 13.房间多了不能全部兼顾采暖可将一些主要房间(如起居室、卧室、餐厅等)沿( )墙布置。 A.东 B.西 C.南 D.北 14.太阳电池是将太阳能直接转变为( )的最基本器件。 A.热能 B.电能 C.风能 D.动能 15. 自然循环式热水器为保证正常运行和防止夜间无辐射时热水倒循环,水箱底部必须高于

太阳能电池工作原理和应用

太阳能电池的分类简介 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为24.7%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降 低其成本很困难,为了节省硅材料,发展了多晶硅 薄膜和非晶硅薄膜做为单晶硅太阳能电池的替代 产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10%(截 止2011,为17%)。因此,多晶硅薄膜电池不久 将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换效率较高,便于大规模生产,有极大的潜力。但受制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

2)多晶体薄膜电池 多晶体薄膜电池硫化镉、碲化镉多晶薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代产 品。 砷化镓(GaAs)III-V化合物电池的转换效率 可达28%,GaAs化合物材料具有十分理想的光学 带隙以及较高的吸收效率,抗辐照能力强,对热 不敏感,适合于制造高效单结电池。但是GaAs 材料的价格不菲,因而在很大程度上限制了用 GaAs电池的普及。 (3)有机聚合物电池 以有机聚合物代替无机材料是刚刚开始的一个太阳能电池制造的研究方向。由于有机材料柔性好,制作容易,材料来源广泛,成本低等优势,从而对大规模利用太阳能,提供廉价电能具有重要意义。但以有机材料制备太阳能电池的研究仅仅刚开始,不论是使用寿命,还是电池效率都不能和无机材料特别是硅电池相比。能否发展成为具有实用意义的产品,还有待于进一步研究探索。 (5)有机薄膜电池 有机薄膜太阳能电池,就是由有机材料构成核心部分的太阳能电池。大家对有机太阳能电池不熟悉,这是情理中的事。如今量产的太阳能电池里,95%以上是硅基的,而剩下的不到5%也是由其它无机材料制成的 6)染料敏化电池 染料敏化太阳能电池,是将一种色素附着在TiO2粒子上,然后浸泡在一种电解液中。色素受到光的照射,生成自由电子和空穴。自由电子被TiO2吸收,从电极流出进入外电路,再经过用电器,流入电解液,最后回到色素。染料敏化太阳能电池的制造成本很低,这使它具有很强的竞争力。它的能量转换效率为12%左右。 (7)塑料电池 塑料太阳能电池以可循环使用的塑料薄膜为原料,能通过“卷对卷印刷”技术大规模生产,其成本低廉、环保。但塑料太阳能电池尚不成熟,预计在未来5年到10年,基于塑料等有机材料的太阳能电池制造技术将走向成熟并大规模投入使用。 太阳能工作原理 太阳能电池是通过光电效应或者光化学效应直接把光能转化成电能的装置。太阳能发电有两种方式,一种是光一热一电转换方式,另一种是光一电直接转换方式。其中,光一电直接转换方式是利用光电效应,将太阳辐射能直接转换成电能,光一电转换的基本装置就是太阳能电池。太阳能电池是一种大有前途的新型

太阳能热利用论文:太阳能热利用技术概述

太阳能热利用论文:太阳能热利用技术概述【摘要】太阳能是一种洁净和可再生的能源,太阳能热利用技术发展迅速。本文对太阳能利用成熟技术、先进技术和当前研究的热点技术进行了简要介绍。在发电过程中使用矿物燃料,从而减轻空气污染及全球暖化的问题,环境保护的发展趋势。成熟技术部分主要包括集热器、热水系统、太阳灶、太阳能暖房等传统的太阳能热利用技术;先进技术部分主要阐述了尚处于研究试验阶段的高品位太阳能热利 用技术,包括太阳能空调降温/制冷、太阳能制氢、太阳能热发电等;在当前研究的热点问题部分,主要论述太阳能建筑热利用的技术问题。 【关键词】太阳能热利用;太阳能建筑;太阳能热发电;太阳能集热器 1.引言 太阳能的利用已日益广泛,它包括太阳能的光热利用,太阳能的光电利用和太阳能的光化学利用等。太阳能的利用有被动式利用(光热转换)和光电转换两种方式。太阳能热利用是一种较成熟的可再生能源利用方式。太阳能热利用是可再生能源技术领域商业化程度最高、推广应用最普遍的技术之一。现代的太阳能热技术将阳光聚合,并运用其能量产生热水、蒸汽和电力。除了运用适当的科技来收集太阳能外,

建筑物亦可利用太阳的光和热能。太阳能资源总量相当于现在人类所利用的能源的一万多倍,太阳能既是一次能源,又是可再生能源。它资源丰富,既可免费使用,又无需运输,对环境无任何污染。为人类创造了一种新的生活形态,使社会及人类进入一个节约能源减少污染的时代。但是太阳能有两个主要缺点:一是能流密度低;二是其强度受各种因素(季节、地点、气候等)的影响不能维持常量。这两大缺点大大限制了太阳能的有效利用。太阳能热利用研究和开发方兴未艾,随着常规能源供给的有限性及地球环保压力的增加,世界上许多国家掀起开发利用太阳能的热潮,开发利用太阳能成为各国可持续发展战略的重要内容,太阳能先进技术已成为世界当前及未来研究、开发和利用的主要方向。 2.太阳能热利用技术 太阳能热利用的基本原理是用集热器将太阳辐射能收集起来,通过与物质的相互作用转换成热能加以利用。目前使用最多的集热器,主要有平板型集热器、真空管集热器、热管式集热器和聚焦型集热器等4种。通常太阳能热利用可分为:低温(80℃以下)、中温(80-350℃)和高温(350℃以上)三类热利用方式。低温热利用包括最简单的地膜、塑料大棚以及干燥器、蒸馏、供暖、太阳热水器。中温热利用有太阳能建筑、空调制冷、制盐以及其它工业用。热高温热

太阳能热利用原理与技术导师-上海交通大学机械与动力工程学院

1

2

《太阳能热利用原理与技术》课程教学大纲 课程名称:太阳能利用原理与技术 课程代码:新能源工程(New Energy Engineering)400 学分/学时:3学分/51学时 开课学期:秋季学期 适用专业:新能源、热能与动力工程、核工程、建筑环境与设备及相关专业先修课程:工程热力学,传热学,流体力学,能源材料 开课单位:机械与动力工程学院 一、课程性质和教学目标(需明确各教学环节对人才培养目标的贡献,专业人才培养目标中的知识、能力和素质见附表) 课程性质:太阳能热利用原理与技术是机械工程、热能动力工程、新能源转换利用专业的一门重要专业课,是能源动力及新能源利用类专业骨干课程。 教学目标:太阳能热利用原理与技术是研究太阳能高效利用以及太阳能转换规律的一门学科。本课程不仅为学生掌握太阳能利用原理和技术提供必要的基础理论知识,还提供实验室支撑锻炼学生将所学知识应用于实际的动手能力,通过实验报告的撰写培养学生分析解决问题以及总结表达的能力,同时为从事太阳能利用专业技术工作、科学研究工作及管理工作提供重要的理论基础。(A1, A2, A5, B1, B2, C4)本课程由太阳辐射基础、太阳能集热器、太阳能热发电、系统技术及应用四部分组成。通过本课程教学,可使学生在太阳能转换和利用,特别是太阳能与热能及电能转换和合理利用方面树立正确的概念,同时使学生掌握太阳能转换应用的基础理论和技术,进一步强化自觉应用太阳能建设低碳社会的意识。具体来说:(1)掌握太阳辐射基础知识,了解太阳辐射测量和资源情况; (2)掌握各类太阳能集热器原理,学习太阳能-热能转换的基本规律; (3)初步掌握太阳能热发电技术路线和工作原理,掌握太阳光伏电站原理和工作特性; (4)初步掌握太阳能供热空调、太阳能海水淡化、太阳能建筑、太阳能养殖、干燥、光化学转换应用等; (5)能够运用太阳能-热能及电能转换基本理论,进行太阳能利用系统和装 3

太阳能电池工作原理与应用

太阳能电池工作原理及应用 摘要:太阳能电池又称为“太阳能芯片”或光电池,是一种利用太阳光直接发电的光电半导体薄片。它只要被光照到,瞬间就可输出电压及电流。在物理学上称为太阳能光伏(Photovoltaic,photo光,voltaics伏特,缩写为PV),简称光伏。 当太阳光照射p-n结时,在半导体内的电子由于获得了光能而释放电子,相应地便产生了电子——空穴对,并在势垒电场的作用下,电子被驱向rt型区,空穴被驱向P型区,从而使rt区有过剩的 电子,P区有过剩的空穴。于是,就在p-n结的附近形成了与势垒电场方向相反的光生电场。关键词:太阳能;光伏发电;半导体;电池 太阳能电池的分类简介 太阳能电池根据所用材料的不同,太阳能电池还可分为:硅太阳能电池、多元化合物薄膜太阳能电池、聚合物多层修饰电极型太阳能电池、纳米晶太阳能电池、有机太阳能电池、塑料太阳能电池,其中硅太阳能电池是发展最成熟的,在应用中居主导地位 (1)硅太阳能电池 硅太阳能电池分为单晶硅太阳能电池、多晶硅薄膜太阳能电池和非晶硅薄膜太阳能电池三种。 单晶硅太阳能电池转换效率最高,技术也最为成熟。在实验室里最高的转换效率为%,规模生产时的效率为15%(截止2011,为18%)。在大规模应用和工业生产中仍占据主导地位,但由于单晶硅成本价格高,大幅度降低其成 本很困难,为了节省硅材料,发展了多晶硅薄膜和 非晶硅薄膜做为单晶硅太阳能电池的替代产品。 多晶硅薄膜太阳能电池与单晶硅比较,成本低 廉,而效率高于非晶硅薄膜电池,其实验室最高转 换效率为18%,工业规模生产的转换效率为10% (截止2011,为17%)。因此,多晶硅薄膜电池 不久将会在太阳能电池市场上占据主导地位。 非晶硅薄膜太阳能电池成本低重量轻,转换 效率较高,便于大规模生产,有极大的潜力。但受 制于其材料引发的光电效率衰退效应,稳定性不高,直接影响了它的实际应用。如果能进一步解决稳定性问题及提高转换率问题,那么,非晶硅太阳能电池无疑是太阳能电池的主要发展产品之一。

太阳能热水系统方案书(6吨)

节能工程项目 太阳能设计方案 方案设计单位:某某新能源科技股份有限公司日期: 2020年3月27日

目录 1. 方案原理说明 (2) 2. 产品介绍 (4) 3.1太阳能热水器性能描述 (4) 3.2水箱 (9) 3.4支架 (9) 3.6 控制系统 (10) 6.1类似项目汇总表 (11) 6.2部分项目业绩图片 (13) 3. 方案图纸(见CAD文件) (14) 4. 报价文件 (15) 5、企业简介 (17) 1、中国节能产品认证证书 (17) 2、节能产品政府采购清单 (19) 3、中国环保产品认证证书 (21) 4、中国环境标志产品认证证书 (22) 5、中国驰名商标 (24) 6、中国太阳能工程联盟理事单位 (25) 7、资信等级评估“AAA”级证书 (26) 8、消费者满意单位 (27) 9、重合同守信用企业 (28)

1.方案原理说明 根据《建筑给水排水设计规范》GB50015-2003中规定的热水用水定额标准:

1、太阳能集热系统设计计算 集热器总面积的确定: A 、直接式集热器采光面积的计算: ) 1()(L cd T i end r w w c J f t t C Q A ηηρ--= 式中: A C —直接系统集热器采光面积,㎡; Q W —日平均用热水量,6吨/天; C —水的定压比热容,4.18kJ/(kg.℃); ρr —水的密度,1kg/L ; t end —水的终止设计温度,以55℃计算; t i —水的初始温度,年平均冷水计算温度10℃; J T —当地集热器总面积上的年平均日太阳辐照量,11.817 MJ/㎡; f —太阳能保证率,55%; ηcd —集热器年或月平均集热效率,45%~63%;取值50% ηL —管路及储水箱热损失率,10%~20%;取值20%

太阳能利用技术常考题目及答案

0、太阳常数的定义:太阳常数是指在日地平均距离处,地球大气层外(大气上界)垂直于太阳光线的平面上,单位时间、单位面积内所接受的所有波长的太阳总辐射能量值,它基本上是一个常数,所以这个辐照度称为太阳常数。 1、太阳赤纬角的定义:太阳光线与地球赤道面的交角就是太阳的赤纬角。 2、太阳高度角和太阳方位角的定义:高度角:太阳中心直射到地面的光线与当地水平面间夹角(h),表示太阳的高度。方位角:太阳光线在地平面上的投影与当地正南方的夹角,向西为正,向东为负,变化范围正负180;它表示太阳的方位,决定太阳光的入射方向。 3、大气质量和大气透明系数的定义:太阳光线通过的大气路程与太阳在天顶时太阳光线通过的大气路程之比;表征大气对于太阳光线透过程度的一个参数 4、大气对太阳辐射的影响,详细了解答:大气辐射具有削弱作用,太阳光线在大气中经过的路程越长能量损失的就越多,大气对太阳辐射的作用一共有三种方式:吸收反射散射作用。具体来说,吸收作用变现在平流层的臭氧吸收紫外线,水汽,二氧化碳吸收红外线。反射作用:较大的颗粒尘埃,还有云层对阳光的反射。散射:主要是大气分子还有微小的尘埃对波长较短的可见光,还有颗粒较大的尘埃,雾粒,小水滴对各种波长的散射。 5、太阳辐射产生的物理机制是什么?答:太阳辐射分为两种:一种是从光球表面发射出来的光辐射,因为它以电磁波的形式传播光热,所以又叫做电磁辐射。另外一种是微粒辐射,它是由正电荷的质子和大致等量的带负电荷的电子以及其他粒子做组成的粒子流。 6、什么是太阳辐射年总量:一年内地面所接受的太阳辐射短波总辐射量,是衡量一个地方太阳能资源丰富的重要标志。 7、什么是春分秋分夏至冬至:上半年,太阳从低纬度到高纬度逐日升高,春分指春天昼夜均分的一天,随后昼长夜短,直到夏至,太阳走到北回归线,白昼时间最长的一天,随后白粥时间慢慢变短,到秋天,昼夜均分的一天是为秋分,随后昼短夜长直至冬至,太阳走到南回归线,白天最短的一天。 8、太阳光谱的特点:太阳光谱包括紫外区、可见区、红外区,其中,波长小雨0.4um的紫外区占大约8.03%和波长大于0.76um的红外区占45.54%,是人眼看不见的紫外线和红外线,波长为0.4~~0.76um的可见区是我们能见的可见光区46.43%. 9、太阳房的定义以及它的分类:太阳房是利用太阳能进行采暖和空调的环保型生态建筑。太阳房可分为三类:主动太阳房,被动太阳房和热泵式太阳能采暖系统。 10、被动式太阳房的特点是什么以及被动太阳房建筑设计的几个基本原则分别是什么?答:特点:根据当地的气象条件,在基本上不添臵附加设备的条件下,只在建筑物构造和材料性能上下功夫,使房屋达到一定采暖效果的方法。原则:构造简单,造价便宜。 11、太阳能储热的方式及原理:方式:自然循环集热,强制循环集热,定温放水集热。原理:冷水经过补冷水系统,进入循环水箱达设定水位后,之后不冷水系统停止工作,低温水进入集热器阵,受太阳能辐射加热水温升高,当集热器上循环管内水温与储热水箱底部水温之温差达到设定值时,启动强制循环泵,将水箱中低温水送到集热器阵,同时将集热器阵中热水送到储热水箱,当上述温差等于和地于设定值时,强制循环泵停止工作。低温水在集热器中继续吸收太阳能辐射,加热。如此循环,是储热水箱中水温不断升高。 12、太阳灶的原理:太阳灶是利用太阳辐射能,通过聚光传热储热等方式获得热量,进行炊事烹饪食物的一种装臵。 13、利用太阳能进行海水淡化的常用方法:1被动式太阳能蒸馏系统,如单级或多级倾斜式太阳能蒸馏器,回热式,球面聚光式太阳能蒸馏器等。2主动式太阳能蒸馏系统,有单级或多级附加集热器的盆式,自然或强迫循环式太阳能蒸馏器。3利用太阳能发电进行反渗透法进行海水淡化,此外,还有太阳能多级闪蒸,太阳能多级沸腾蒸馏技术。 14、太阳能热水器的主要组成部分包括那几个部分:集热器,储热水箱,循环水泵,管道,支架,控制系统及相关附件组成。 15、太阳能利用按地域划分的几类地区,按+··················+接受太阳能辐射量的大小,全国大致上可分为五类:一类地区,主要包括青藏高原,甘肃北部,宁夏北部,新疆南部等地。二类地区:包括河北西北部,山西北部,内蒙古南部,宁夏南部,甘肃中部,青海东部,西藏东南部和新疆南部等地。三类地区,包括:山东河南河北东南部,山西南部,新疆北部,吉林辽宁云南陕西北部,甘肃东南部,广东南部,福建南部,苏北,皖北,台湾西南。四类地区,包括湖南湖北广西江西浙江福建北部广东北部陕西南部江苏北部安徽南部以及黑龙江台湾东北等地。五类地区,包括:四川重庆贵州。 16、什么是太阳能制冷,根据不同的能量转换方式,太阳能驱动制冷主要有以下两种方式,一是先实现光─电转换,再以电力制冷;二是进行光─热转换,再以热能制冷。

太阳能热利用方案

一、背景概述 石林彝族自治县位于云南省东部,昆明市东南部,海拔1500m —1900m之间,年平均气温18℃,年降雨量913.9mm,属亚热带低纬度高原山地季风气候,太阳能资源丰富,年平均日辐照量15551kJ/㎡。针对贵公司生产车间中热风滚筒式干燥机、电热干燥箱、多功能动态提取/升膜浓缩机组、制酒设备等工序,充分利用太阳能资源,综合集成太阳能热利用技术、计算机技术、自动控制技术、网络技术,实现设备最大化的节能减排,同时降低设备运行成本。 二、系统介绍 我公司根据长期太阳能热利用系统的设计安装经验,针对工业环境及条件,为贵公司设计实施符合工业应用的太阳能热利用系统,在原有设备的基础上,实现节能减排。 热风系统所用的空气集热器采用我公司自主设计研发的真空管式空气集热器,具有风温高、集热强的特点,与传统空气集热器相比,利于日常维护,二次升级扩容方便及集热效率高的特点。 系统采用目前应用于工业环境的PLC可编程控制器,控制程序根据用户实际情况“个性化”定制,可满足复杂的程序编写,实现复杂的自动化控制。控制器稳定性、抗干扰性强,配合高精度的温度、压力传感器,实现系统的精确控制。同时,我公司对控制器进行功能扩展及远端计算机软件支撑,实现整个系统的远程监控操作,无需到现场,即可查看系统运行情况,并进行操作调整。 本着“系统与建筑结合”的理念,在集热器列阵设计方面,系统对集热器列阵支架采用一体化设计,即支架根据屋面实际场地情况及建筑风格,进行整体的设计制作,整个列阵支架为一个整体结构,力求达到与建筑的协调、统一。 三、设计方案 1、热风滚筒式干燥机太阳能热风系统 按提供设备参数,电加热干燥产量为100kg/h,而电加热功率为20KW,即每小时要达1000kg/h,制热功率应达到200KW,根据石林年平均日辐照量15551kJ/㎡计算,每天日照时间按7小时计算,每小时平均日辐照量为2221.57 kJ/㎡,集热效率按55%,系统热损按20%,由此计算,每平方米每小时热量输出977.49 kJ。 每小时制热功率达200kw,即200kwh热量,200kwh= 720000kJ 720000kJ÷977.49 kJ/㎡=736.58㎡ 由此可知,集热面积应为736.58㎡,折合真空管4492支。由于可安装面积所限,可安装真空管数量为4000支,折合面积656㎡。 即安装太阳能功率为(656㎡×977.49 kJ/㎡)÷3600=178.12kw 其中的电热干燥箱由于可安装面积所限,设计与热风滚筒式干燥

有机太阳能电池的原理和应用

有机太阳能电池的原理和应用 一、结构和基本原理 目前的有机太阳能电池可以分为三类。 1.1 肖特基型有机太阳能电池 第一个有机光电转化器件是由Kearns 和Calvin在1958 年制备的,其主要材料为镁酞菁(MgPc)染料,染料层夹在两个功函数不同的电极之间。在这种有机半导体器件中,电子在光照下被从HOMO 能级激发到LUMO能级,产生一对电子和空穴。电子被低功函数的电极提取,空穴则被来自高功函数电极的电子填充,由此在光照下形成光电流。理论上,有机半导体膜与两个不同功函数的电极接触时,会形成不同的肖特基势垒。这是光致电荷能定向传递的基础。因而此种结构的电池通常被称为“肖特基型有机太阳能电池”。在这个器件上,他们观测到了200 mV的开路电压,光电转化效率很低。此后二十多年间,有机太阳能电池领域内创新不多,所有报道的器件之结构都类似于1958 年版,只不过是在两个功函数不同的电极之间换用各种有机半导体材料。由于肖特基型有机太阳能电池是单纯由一种纯有机化合物夹在两层金属电极之间制成的,因此效率比较低,现在已经被淘汰。 1.2 双层膜异质结型有机太阳能电池 在肖特基型有机太阳能电池的基础上,1986 年,行业内出现了一个里程碑式的突破。 实现这个突破的是柯达公司的邓青云博士。这个时代的有机太阳能电池所采用的有机材料主要还是具有高可见光吸收效率的有机染料。邓青云的器件之核心结构是由四羧基苝的一种衍生物(又称作PV)和铜酞菁(CuPc)组成的双层膜。这种太阳能电池又叫做p-n 异质结型有机太阳能电池。在双层膜结构中,p-型半导体材料(电子给体(Donor),以下简记为D)和n-型半导体材料(电子受体(Acceptor),以下简记为A)先后成膜附着在正负极上(下图)。D 层或者 A 层受到光的激发生成激子,激子扩散到 D 层和 A 层界面处发生点电荷分离生成载流子,然后电子经A层传输到电极,空穴经D层传输到对应的电极。1992 年,土耳其人Sariciftci 在美国发现,激发态的电子能极快地从有机半导体分子注 入到C60 分子中,而反向的过程却要慢得多。也就是说,在有机半导体材料与C60 的界面上,激子可以以很高的速率实现电荷分离,而且分离之后的电荷不容易在界面上复合。这是由于C60的表面是一个很大的共轭结构,电子在由60个碳原子轨道组成的分子轨道上离域,可以对外来的电子起到稳定作用。因此C60 是一种良好的电子受体材料。1993 年,Sariciftci在此发现的基础上制成PPV/C60 双层膜异质结太阳能电池。PPV通常叫作“聚对苯乙烯撑”,是一种导电聚合物,也是一种典型的P 型有机半导体材料。此后,以C60 为电子受体的双层膜异质结型太阳能电池层出不穷。 1.3 混合异质结型有机太阳能电池 随后,研究人员在此类太阳能电池的基础上又提出了一个重要的概念:混合异质结(Bulk Heterojunction)。混合异质结概念主要针对光电转化过程中激子分离和载流子传输这两方面的限制。双层膜太阳能电池中,虽然两层膜的界面有较大的面积,但激子仍只能在界面区域分离,离界面较远处产生的激子往往还没移动到界面上就复合了。而且有机材料的载流子迁移率通常很低,在界面上分离出来的载流子在向电极运动的过程中大量损失。这两点限制了双层膜电池的光电转化效率。 而所谓“混合异质结”,就是将给体材料和受体材料混合起来,通过共蒸或者旋涂的方法制成一种混合薄膜。其给体和受体在混合膜里形成一个个单一组成的区域,在任何位置产生的激子都可以通过很短的路径到达给体与受体的界面(即结面),电荷分离的效率得到了提高。同时,在界面上形成的正负载流子亦可通过较短的途径到达电极,从而弥补载流子迁移率的不足。2008 年3 月,大阪大学和大阪市立研究所宣布,成功开发出了单元转换效率高

太阳能热水系统设计范例

螂1 、术语和定义 莈太阳sun 太阳系的中心天体。可视其为K的全辐射体。它是地球上光和热的源泉。 太阳能solar energy 从太阳发射、传播或接收的辐射能。 高度角altitude 从地平圈沿某天体所在地平经圈量至该天体的角距离。以地平圈为零,向上为正,向下为负。单位为度(°)。 太阳高度角solar altitude 膆日面中心的高度角,即从观测点地平线沿太阳所在地平线圈量至日面中心的角距离。方位角azimuth 从天球子午圈沿地平圈量至某天体所在地平线圈的角距离。以南点为零点,向西为正,向东 为负。单位为度(°)。 太阳方位角(2)solar azimuth 日面中心的方位角,即从观测点天球子午圈沿地平圈量至太阳所在地平经圈的角距离。 莃赤纬declination 赤道坐标系中,天赤道与某天体沿所在时圈量度的角距离。以天赤道为零,向北为正,向南为负。单位为度(°)。 太阳赤纬(S)solar decli natio n 日面中心的赤纬,即从天赤道沿太阳所在时圈量至日面中心的角距离。春(秋)分时为°,一年之内在土90°'之间变化。 时角hour angle 从天球子午圈沿天赤道量至某天体所在时圈的角距离。以天球子午圈为零,向西为正向东为负。单位既可为时(h),也可为度(°)。 (3)solar hour an gle 袂太阳时角 日面中心的时角,即从观测点天球子午圈沿天赤道量至太阳所在时圈的角距离。真太阳日apparent solar day 日面中心连续两次上中天所经历的时间。 真太阳时apparent solar time 由日面中心的时角量度的计时系统。平太阳连续两次下中天所经历的时间。 辐射radiation 能量以电磁波或粒子形式的发射或传播。辐〔射〕能(Q)radiant energy 以辐射形式发射、传播或接收的能量。单位为焦〔耳〕(J)。 蝿光谱辐照度(E入)spectral irradia nee 在无穷小波长范围内的辐照度除以该波长范围。单位为瓦〔特〕每立方米(W/m)。 辐照量(H)irradiation 辐照度对时间的积分。单位为焦〔耳〕每平方米( J/m)。 太阳辐射solar radiation 太阳能以电磁波或粒子形式的发射或传播。其能量主要集中在短波辐射范围内。地外日射extraterrestrial solar radiation 地球大气层外的太阳辐射。 太阳常数(Esc)solar constant 地球位于日地平均距离处,在大气层外垂直于太阳辐射束平面上形成的太阳辐照度。

太阳能光热光电综合利用

本文由hpshu贡献 pdf文档可能在WAP端浏览体验不佳。建议您优先选择TXT,或下载源文件到本机查看。 2009 年第 1 期 上海电力 可再生能源发电 太阳能光热光电综合利用 倪明江 ,骆仲泱 ,寿春晖 ,王 ,赵佳飞 ,岑可法涛 ( 浙江大学能源清洁利用国家重点实验室 ,浙江杭州 310027) 摘 : 太阳能光热光电的综合利用技术是将聚光、要分光、热电联用等技术集成 ,通过对太阳能全波段能量进行一体化地利用 ,可极大地提高太阳能的利用效率 ,降低成本 ,具有重要的研究价值和市场应用价值。文章介绍了太阳能光热光电综合利用系统的技术情况 ,分别对集中式和分布式两种技术路线作了阐述 ,分析了聚光 PV/ T 系统以及与建筑一体化设计的 PV/ T 系统的未来发展方向。最后 , 结合各类太阳能利用系统的特点 , 比较分析了各种光热光电技术存在的问题 ,提出了综合利用各种光热光电技术来提高应用效果的理念。关键词 : 太阳能利用技术 ; 热发电 ; 聚光热电联用 ; 光热光电综合利用中图分类号 : T K513 文献标识码 :A 基金项目 : 国家自然科学基金资助项目(50676082) 1 引言 传统化石能源的大量使用 , 不仅造成了化石能源本身的短缺 , 也给世界环境带来了极大的危害 ,给人类生存空间造成了严重威胁。寻求可再生能源的高效清洁利用成了目前人类面临的共同问题 [ 1 ,2 ] 发展。而以现今的发展趋势来看 , 太阳能热力发电和光伏发电将是世界各国在太阳能利用领域研究的新重点。 2. 1 热利用 太阳能热利用方面 , 中国已成为世界上最大的太阳能热利用产品的生产、应用和出口的国家。 2007 年 ,集热器总保有量约为 10 800 万 m2 。热 。太阳能作为可再生清洁能源蕴藏着巨 15 大能量 ,被普遍认为是理想的新能源。太阳辐射到达地球表面的能量高达 4 ×1 0 5 利用形式多样 , 包括了太阳能热水器、太阳能空调、太阳能干燥和太阳能海水淡化等。 ( 1 ) 太阳能热水器太阳能热水器是太阳能热利用中最常见的一种装置。其基本原理是将太阳辐射能收集起来 , 通过与物质的相互作用转换成热能供生产和生活利用。我国是世界上最大的太阳能热水器制造中心 , 由我国生产的集热器推广面积约占世界的 76 % 。随着太阳能热水器的发展 ,出现了闷晒式、 M W , 相当于 每年 3. 6 ×亿 t 标准煤 ,约为全球能耗的 2000 10 倍。太阳能可以免费使用 ,又不需要运输 ,对环境无任何污染。在传统化石能源储备减少、价格快速上升 ,在温室气体排放引发的气候环境问题愈来愈显著的今天 , 太阳能作为可再生能源和新能源的代表 , 得到越来越多的关注 , 太阳能的利用、太阳能材料及相关技术的开发在世界范围内引起了重视

相关文档
相关文档 最新文档