文档库 最新最全的文档下载
当前位置:文档库 › 毕业设计--倒立摆

毕业设计--倒立摆

毕业设计--倒立摆
毕业设计--倒立摆

直线一级倒立摆的计算机控制

摘要

倒立摆是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,基于牛顿―欧拉方法建立了直线一级倒立摆系统的数学模型,并分析其稳定性及可控性。

论文中应用的两种控制算法是PID控制和状态反馈极点配置控制:PID控制器结构简单,容易调节,但是PID控制器存在的缺陷是只能单一的对摆杆进行控制而不能对小车进行控制。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,基于极点配置控制器进行了MATLAB仿真,并且结合实物实验完成直线一级倒立摆的控制研究。

关键词:直线一级倒立摆,PID控制,极点配置,MATLAB仿真

Computer control of Linear inverted pendulum

Abstract

The controlled system of the inverted pendulum is an absolutely instability , high time, multivariable, the nonlinear system of strong coupling , mathematical model of Linear inverted pendulum system is established by Newton ―Euler method, and analyzed its stability and controllability.

PID controller its simple structure, easy to adjust, and without needing to build an accurate model of the system, the control application is more extensive. However, defect of PID controller is that it can only control the pendulum and can not control the car. Pole placement will configure closed-loop system’s pole of multivariable system in the desired position, going on the MATLAB simulation based on Pole placement controller, and combined physical experiments to complete Linear Inverted Pendulum Control.

Key words: linear inverted pendulum, PID control, pole placement, MATLAB simulation

目录

第一章绪论 (1)

1.1 课题的背景及意义 (1)

1.2 倒立摆的控制目标 (1)

1.3 倒立摆的控制方法 (1)

1.4 倒立摆系统的发展状况 (2)

1.5 本文研究的主要内容和思路 (3)

第二章直线一级倒立摆数学模型的建立 (5)

2.1 直线一级倒立摆系统运动方程的推导 (5)

2.2 系统的物理参数 (9)

2.3 系统的实际模型 (9)

2.4 直线一级倒立摆系统的分析 (10)

2.5 本章小结 (13)

第三章直线一级倒立摆的PID控制 (14)

3.1 PID控制原理 (14)

3.2 仿真软件MATLAB/Simulink简介 (16)

3.3 PID控制参数设定及仿真 (16)

3.3.1 PID参数整定的基本方法 (16)

3.3.2 采用PID控制的仿真研究 (17)

3.5 本章小结 (22)

第四章状态反馈极点配置控制 (23)

4.1 状态空间分析 (23)

4.2 极点配置及仿真 (25)

4.2.1 反馈矩阵的设计 (25)

4.2.2 状态反馈极点配置仿真 (28)

4.3 极点配置实时控制实验 (29)

4.3.1 实时控制软件简介 (29)

4.3.2 实时控制结果 (30)

4.4 本章小结 (31)

结束语 (32)

参考文献 (33)

致谢 (34)

第一章绪论

1.1 课题的背景及意义

倒立摆系统作为研究控制理论的一种典型的实验装置,具有成本低廉、结构简单、物理参数和结构易于调整的优点。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其控制系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。倒立摆系统是研究变结构控制、非线性控制、目标定为控制和智能控制等多种控制方法的理想实验平台,被誉为:“控制领域中的一颗明珠”。

近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建了一个良好的实验平台,是检验某种控制理论或控制方法的典型方案,促进了控制系统新理论、新思想的发展。由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。

1.2 倒立摆的控制目标

倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有较大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。直线倒立摆控制的目的是:小车和摆组成的系统在受到干扰后,小车处于轨道的中心位置,摆杆将保持垂直位置不倒。旋转倒立摆控制的目的是系统受到干扰后,摆杆在垂直位置倒立不倒。平面倒立摆控制目的是系统受到干扰后,在XY平台上摆杆能够竖立稳定而不倒,达到动态平衡状态。

1.3 倒立摆的控制方法

倒立摆系统的输入为小车的位移(即位置)和摆杆的倾斜角度期望值,计算机在每一个采样周期中采集来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动电机实现倒立摆的实时控制。

电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力平行于轨道的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平导轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使摆杆摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。

因此,倒立摆系统的控制原理可简述如下:用一种强有力的控制方法对小车的速度作适当的控制,从而使摆杆倒置稳定于小车正上方。倒立摆刚开始工作时,首先使小车按摆杆的自由振荡频率摆动,摆杆随之大幅度摆动。经过几次摆动后,摆杆能自动直立起来。这种被控量既有角度,又有位置,且它们之问又有关联,具有非线性、时变、多变量耦合的性质。

1.4 倒立摆系统的发展状况

倒立摆系统的研究具有重要的理论意义和应用价值,对其控制研究是控制领域研究的热门课题之一,国内外的专家学者对此给予了广泛的关注。

倒立摆系统研究最早始于上世纪50年代,麻省理工学院(MIT)机电工程系的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验装置。

1966年Schaefer和Cannon应用Bang—Bang控制理论将一个曲轴稳定于倒置位置。

1976年,Mori etc.首先把倒立摆系统在平衡点附近线性化,利用状态空间方法设计比例微分控制器实现了一级倒立摆的稳定控制。

1993年,Wiklund等人应用基于李亚普诺夫的方法控制了环形一级倒立摆。

1997年,Gordillo比较了LQR方法和基于遗传算法的控制方法,结论是传统控制方法比遗传算法控制效果更好。

国内对倒立摆的研究始于80年代,虽然起步较晚但发展迅速,取得了可喜的成果。对于单级倒立摆和二级倒立摆系统的研究已经历了很长的历程,并且有很多控制成功的报道。在此基础上,三级倒立摆及多级倒立摆的研究也取得了很大进展,不仅在系统仿真方面,而且在实物实验中,都出现了控制成功的范例。1994年,北京航空航天大学教授张明廉将人工智能与自动控制理论相结合,提出“拟人智能控制理论”,实现了用单电动机控制三级倒立摆实物以及后来实现对二维单倒立摆控制。李德毅教授利用反映语言值中蕴涵的模糊性和随机性,给出云发生器的生成算法,解释多条定性推理规则同时被激活时的不确定性推理机制,利用这种智能控制

方法有效地实现了单电机控制的一、二、三级倒立摆的多种不同动平衡姿态,显示其鲁棒性,并给出了详细试验结果。朱江滨等人提出了一种基于专家系统及变步长预测控制的实时非线性系统控制方法,仿真实现了二级倒立摆的摆起及稳定控制侧。2005年国防科学技术大学的罗成教授等人利用基于LQR的模糊插值实现了五级倒立摆的控制。

总之,倒立摆系统是检验各种控制算法、研究控制理论很有效的实验设备。目前应用在倒立摆上的算法主要有以下几类:

(1)经典控制理论:PID控制。通过对倒立摆物理模型的分析,建立倒立摆系统的动力学模型,设计PID控制器实现控制。

(2)现代控制理论:状态反馈。通过对倒立摆系统物理模型的分析,建立系统的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈,实现对倒立摆的控制。常见的方法有:①极点配置,②线性二次型最优控制,③状态反馈控制。

1.5 本文研究的主要内容和思路

本论文的主要工作研究了直线一级倒立摆的稳摆问题。采用了经典控制理论中的PID控制以及现代控制理论中的状态空间极点配置。建立了数学模型并用MATLAB/Simulink对系统进行仿真来设计并整定各方案的控制器参数,然后在固高科技(深圳)公司的实验平台上进行实验验证,通过倒立摆的实物系统的控制证明了仿真控制器的正确性和稳定性。主要内容如下:

第一章主要简述了倒立摆研究的背景及意义,控制目标、控制方法,并且结合国内外的研究现状,详细介绍了倒立摆系统当前存在的问题及研究的若干关键方向。

第二章主要介绍了直线一级倒立摆的数学模型的建立。基于牛顿---欧拉方法推导出直线一级倒立摆的运动方程,将运动方程进行拉普拉斯变换后利用现代控制理论原理得到直线一级倒立摆的状态空间方程的实际模型,并且通过

MATLAB/Simulink仿真结果直观地看到直线一级倒立摆的稳定性、可控性等性质。

第三章简要介绍了直线一级倒立摆的PID控制。通过直线一级倒立摆系统的控制结构框图建立PID控制器的传递函数,经过调节PID控制器的参数,在Simulink/MATLAB仿真软件中得到满意的控制效果,并简要介绍了MATLAB/Simulink仿真环境。

第四章简要介绍了直线一级倒立摆的状态空间极点配置控制。由于在第二章已

经得到了系统的比较精确的状态空间表达式,通过对状态空间的分析进行极点配置以及软件仿真,最后通过实物系统验证试验结果,并简单介绍了固高公司的实时控制软件以及该软件实验平台的主要特点。

第二章直线一级倒立摆数学模型的建立建立控制系统的数学模型是分析和设计控制系统的前提。系统建模可以分为两种:机理建模和实验建模。机理建模是对系统各部分的运动机理进行分析,通过物理、化学的知识和数学手段建立起系统内部的输入-状态关系。实验建模就是通过激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。

对于倒立摆系统,由于其本身是自不稳定的系统,实验建模存在一定的困难。但是忽略掉一些次要的因素后,倒立摆系统就是一个典型的运动的刚体系统,可以在惯性坐标系内应用经典力学理论建立系统的动力学方程。下面我们采用牛顿-欧拉方法建立直线一级倒立摆系统的数学模型。

2.1 直线一级倒立摆系统运动方程的推导

倒立摆系统是一种复杂的要求快速性很高、有很强非线性的系统,为了简化直线一级倒立摆系统分析,在建立实际数学模型过程中,基于以下假设:

(1)忽略空气阻力。

(2)将系统抽象成小车和匀质刚性杆组成的系统。

(3)忽略摆杆与支点之间等的各种次要摩擦阻力。

(4)皮带轮与传送带之间无滑动,传送带无伸长现象。

在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图 2.1 所示。

图2.1直线一级倒立摆模型

图2.2是系统中小车的受力分析图,图2.3是系统中摆杆的受力分析图其中。N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。

我们不妨做以下假设:

M 小车质量

m 摆杆质量

b 小车摩擦系数

l 摆杆转动轴心到杆质心的长度

I 摆杆惯量

F 加在小车上的力

x 小车位置

φ摆杆与垂直向上方向的夹角

θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)

图2.2小车受力分析图

图2.3摆杆受力分析图

注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而 矢量方向定义如图所示,图示方向为矢量正方向。

分析小车水平方向所受的合力,见图2.3,可以得到以下方程:

N x b F x

M --= (2-1) 由摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22

l x dt

d m N += (2-2) 即:

θθθθsin cos 2

ml ml x m N -+= (2-3) 把这个等式代入式(2-1)中,就得到系统的第一个运动方程:

()F ml ml x b x

m M =-+++θθθθsin cos 2 (2-4) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,见图2.3所示,可以得到下面方程:

()θcos 22

l dt

d m mg P =- (2-5) θθθθ

cos sin 2 ml ml mg P --=- (2-6) 力矩平衡方程如下:

θ

θθ I Nl Pl =--cos sin (2-7) 注意:此方程中力矩的方向,由于θ =π +φ ,cos φ = ?cos θ ,sin φ = ?sin θ ,故等式前面有负号。

合并这两个方程,约去 P 和N ,得到第二个运动方程:

()θθθcos sin 2

x ml mgl ml I -=++ (2-8) 设θ =π +φ(φ 是摆杆与垂直向上方向之间的夹角),该系统是明显的非线性系统。为便于控制器的设计,需要将系统在工作点(φ=0)进行线性化处理。当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比很小,即φ <<1时,则可以进行近似处理:

0,sin ,1cos 2

=??

? ??-=-=dt d θφθθ 为了与控制理论的表达习惯相统一,用U 表示被控对象的输入力,经线性化处理

后系统的数学模型成为如下微分方程表达式:

()

()?????=-++=-+u m l x b x m M x m l m gl φφφ 2ml I (2-9)

对式(2-9)进行拉普拉斯变换,得到

()

()()()()()()()()?????=Φ-++=Φ-Φ+s U s s m l s s bX s s X m M s s m lX s m gl s s m l I 22222 (2-10)

注意:推导传递函数时假设初始条件为0。

由于输出为角度φ ,求解方程组的第一个方程,可以得到:

()()

()s s g ml ml I s X Φ??????-+=22 (2-11) 或

()()()

mgl s ml I mls s X s -+=Φ222

(2-12) 如果令v = x ,则有:

()()()

mgl s ml I ml s V s -+=Φ22 (2-13) 把上式代入方程组的第二个方程,得到:

()()()()

()()()s U s s ml s s s g ml

ml I b s s s g ml ml I m M =Φ-Φ??????+++Φ??????-++22222 (2-14) 整理后得到传递函数: ()()()

()s q bmgl s q mgl m M s q ml I b s s q ml s U s -+-++=Φ23242 (2-15)

其中 ()()()[]

22ml ml I m M q -++= 由现代控制理论原理可知,控制系统的状态空间方程可写成如下形式:

Du CX y Bu AX X

+=+= (2-16)

式(2-16)中,u 表示系统控制输入向量,x 表示系统状态变量,y 表示系统的输出向量,A 表示系统的状态矩阵,B 表示系统控制输入矩阵,C 表示系统输出观测矩阵,

D 表示系统输入输出矩阵。方程组对φ ,x

解代数方程,得到解如下: ()()()()

()()()()()?????????+++++++++-==++++++++++-==u Mml m M I ml Mml m M I m M mg x Mml m M I mlb u Mml m M I ml I Mml m M I gl m x Mml m M I b ml I x x x 22222

22222φφφφφ (2-17)

整理后得到系统状态空间方程:

()()()()()()()()u x x x y u Mml m M I ml Mml m M I ml I x x Mml

m M I m M mgl Mml m M I mlb Mml m M I gl m Mml m M I b ml I x x ??????+??????????????????=??????=????????????????++++++????????????????????????????+++++-+++++-=????????????0001000001000010000000102222222

222φφφφφφφ (2-18)

只要将直线一级倒立摆的实际结构参数代入式(2-18)中,便可得到矩阵A 、B 、C 、D 。

2.2 系统的物理参数

实际系统的模型参数如下:

M 小车质量 1.096 K g m 摆杆质量 0.109 K g b 小车摩擦系数 0.1 N/m /s ec l 摆杆转动轴心到杆质心的长度 0.25 m I 摆杆惯量 0.0034 kg*m

2.3 系统的实际模型

把上述参数代入,可以得到系统的实际模型。

摆杆角度和小车位移的传递函数:

()()26705

.00102125.002725.022

-=Φs s s X s (2-19) 摆杆角度和小车加速度之间的传递函数为:

()()26705

.00102125.002725.02-=Φs s V s (2-20) 摆杆角度和小车所受外界作用力的传递函数:

()()30942

.29169.270883167.035655.223--+=Φs s s s s U s (2-21) 以外界作用力作为输入的系统状态方程:

u x x x y u x x x x ??????+?????

?????????????=??????=????????????+????????????????????????--=????????????000100000135655.20883167.0008285

.27235655.0010000629317.00883167.000010φφφφφφφ (2-22)

以小车加速度作为输入的系统状态方程: u x x x y u x x x x ??????+??????????????????=??????=????????????+????????????????????????=????????????0001000001301004.29001000000000

10φφφφφφφ (2-23)

需要说明的是,本文的控制器设计和程序中,采用的都是以小车的加速度作为系统的输入。如果需要也可以采用力矩控制的方法,把外界作用力作为输入。

2.4 直线一级倒立摆系统的分析

若系统由于受到扰动作用而偏离了原来的平衡状态,但扰动去除后,如果能恢

复到原来的平衡状态,则称该系统是稳定的,否则该系统就是不稳定的。

前面已经得到系统的状态方程,对其进行阶跃响应分析,在MATLAB中键入以下命令:

运行程序后得到如下的曲线:

图2.4直线一级倒立摆单位阶跃响应仿真

可以看出,在单位阶跃响应的作用下,小车位置和摆杆角度都是发散的,即:直线一级倒立摆系统是不稳定的系统。

在得到系统的数学模型之后,为进一步了解系统性质,需要对系统的特性进行分析,最主要的是对系统的稳定性、能控性以及能观性的分析。竖直向上位置是直线一级倒立摆系统的不稳定平衡点,可以设计稳定控制器来使直线一级倒立摆系统稳定在这个点。既然需要设计控制器稳定系统,那么就要考虑系统是否能控。我们

所关心的是系统在平衡点附近的性质,因而可以采用线性化模型来分析。

对于连续时间系统:

Du CX y Bu AX X

+=+=

系统状态完全可控的条件为:当且仅当向量组B A AB B n 1,,,- 是线性无关的,或n*n 维矩阵[]B A AB B n 1- 的秩为n 。

系统的输出可控性条件为:当且仅当矩阵

[]D B CA B CA CAB C n 12-

的秩等于输出向量y 的维数。

应用以上原理对系统进行可控性分析,

????

?

?

??????=04.2900100000000010A

????????????=3010B ???

???=01000001C

??????=00D 代入上式,并在MATLAB 中计算:

自动控制原理课程设计——倒立摆系统控制器设计

一、引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

单级倒立摆系统的极点配置与状态观测器设计

单级倒立摆系统的极点配置与状态观测器设计 14122156 杨郁佳 (1)倒立摆的运动方程并将其线性化 选取小车的位移z ,及其速度z g 、摆的角位置θ及其角速度θg 作为状态变量,即T x z z θθ??=??? ?g g 则系统的状态空间模型为 01000100000010()1000mg M M x u M m g Ml Ml x ????????????-????=+????????+-????????????g []1000y x = 设M=2kg ,m=0.2kg ,g=9.81m/2 s ,则单级倒立摆系统的状态方程为 (1010) 01010 01020.500013030 011040.54x x x x u x x x x ??????????????????-????????=+????????????????-???????????? []12100034x x y x x ???? ??=?????? (2)状态反馈系统的极点配置。 首先,使用MATLAB ,判断系统的能控性矩阵是否为满秩。 MATLAB 程序如下:

A=[0 1 0 0; 0 0 -1 0; 0 0 0 1; 0 0 11 0]; B=[0; 0.5; 0; -0.5]; C=[1 0 0 0]; D=0; rct=rank(ctrb(A,B)) [z,p,k]=ss2zp(A,B,C,D) MATLAB程序执行结果如下: 系统能控,系统的极点为 1=0 λ 2=0 λ 3=3.3166 λ 4=-3.3166 λ 可以通过状态反馈来任意配置极点,将极点配置在 1=-3 λ* 2=-4 λ* 3=-5 λ* 4=-6 λ*

基于模糊控制的一级倒立摆控制系统设计【毕业作品】

BI YE SHE JI (20 届) 基于模糊控制的一级倒立摆控制系统设计 所在学院 专业班级自动化 学生姓名学号 指导教师职称 完成日期年月 II

摘要 倒立摆系统是研究控制理论的典型实验装置,具有价格低廉,结构简单,参数易于调整等优点。但是倒立摆同时也是一个典型的快速,非线性,多变量,本质不稳定系统,对于其稳定性的控制绝非易事。也正因为如此,对于倒立摆系统控制方法的研究和开发才具有重要和深远的意义。目前适用此系统的控制理论包括变结构控制,非线性控制,目标定位控制,智能控制等。 本文根据一级直线倒立摆系统,建立了数学模型,依据模糊控制的相关规则设计了模糊控制规则,并从位移和角度观点出发设计了双模糊控制器,经过仿真调试对重要参数进行不断的调试和优化,最终实现了“摆杆不倒,小车稳住”的总体目标。 对于实物实验系统,本文对构成倒立摆运动控制系统的电机,编码器和运动控制模块进行了比较选择,选择了交流伺服电机,增量式光电编码器和基于DSP技术的运动控制器作为主要的硬件组合,该运动控制器具有良好的性能,可以保证控制的精度。 关键词:倒立摆,模糊控制,系统设计,仿真,稳定 II

Abstract Inverted pendulum system is the study of the typical experiment device control theory, which is inexpensive, simple structure and easy to adjust the parameters. But it is also a system that typical rapid, nonlinear, many variables, and its essence is not stable, for its stability control is not going to be easy. Also because of this inverted pendulum system control method of the research and development are important and profound significance. At present the system for the control theory including variable structure control, nonlinear control, the goal positioning control, intelligent control, etc. According to the level of linear inverted pendulum system, this paper established the mathematical model, based on the fuzzy control rules we designed its fuzzy control rules, and from the view point of view design displacement and the dual fuzzy controller, through the simulation test of continuing the important parameters of debugging and optimization, and finally achieved "swinging rod, the car is not steady overall goal. For physical experiment system, this paper constitutes inverted pendulum motion control system of motor, encoder and motion control module are compared choice. Choose the ac servo motor, the solid-axes photoelectric encoder and the motion controller based on DSP technology as the main combination of hardware, this controller has good performance, and can ensure the precision of the control. Key words: inverted pendulum,Fuzzy control,System design ,The simulation,stability II

自动控制原理课程设计-倒立摆系统控制器设计

1 引言 支点在下,重心在上,恒不稳定的系统或装置的叫倒立摆。倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。 1.1 问题的提出 倒立摆系统按摆杆数量的不同,可分为一级,二级,三级倒立摆等,多级摆的摆杆之间属于自有连接(即无电动机或其他驱动设备)。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。 倒立摆的控制问题就是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。 1.2 倒立摆的控制方法 倒立摆系统的输入来自传感器的小车与摆杆的实际位置信号,与期望值进行比较后,通过控制算法得到控制量,再经数模转换驱动直流电机实现倒立摆的实时控制。直流电机通过皮带带动小车在固定的轨道上运动,摆杆的一端安装在小车上,能以此点为轴心使摆杆能在垂直的平面上自由地摆动。作用力u平行于铁轨的方向作用于小车,使杆绕小车上的轴在竖直平面内旋转,小车沿着水平铁轨运动。当没有作用力时,摆杆处于垂直的稳定的平衡位置(竖直向下)。为了使杆子摆动或者达到竖直向上的稳定,

需要给小车一个控制力,使其在轨道上被往前或朝后拉动。 本次设计中我们采用其中的牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型,然后通过开环响应分析对该模型进行分析,并利用学习的古典控制理论和Matlab /Simulink仿真软件对系统进行控制器的设计,主要采用根轨迹法,频域法以及PID(比例-积分-微分)控制器进行模拟控制矫正。 2 直线倒立摆数学模型的建立 直线一级倒立摆由直线运动模块和一级摆体组件组成,是最常见的倒立摆之一,直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件。 系统建模可以分为两种:机理建模和实验建模。实验建模就是通过在研究对象上加上一系列的研究者事先确定的输入信号,激励研究对象并通过传感器检测其可观测的输出,应用数学手段建立起系统的输入-输出关系。这里面包括输入信号的设计选取,输出信号的精确检测,数学算法的研究等等内容。 鉴于小车倒立摆系统是不稳定系统,实验建模存在一定的困难。因此,本文通过机理建模方法建立小车倒立摆的实际数学模型,可根据微分方程求解传递函数。 2.1 微分方程的推导(牛顿力学方法) 微分方程的推导在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。做以下假设: M小车质量m摆杆质量 b小车摩擦系数I 摆杆惯量

直线一级倒立摆控制器设计 自动控制理论课程设计说明书

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书 课程名称:自动控制理论 设计题目:直线一级倒立摆控制器设计院系:电气工程系 班级:0806152 设计者:段大坤 学号:1082710118 指导教师:郭犇 设计时间:2011.6.13-2011.6.20 哈尔滨工业大学教务处

哈尔滨工业大学课程设计任务书

1.1数学模型建立 数学模型的建立过程需要用到以下参数: M 小车质量 m 摆杆质量 b 小车摩擦系数 l 摆杆转动轴心到杆质心的长度 I 摆杆惯量 F 加在小车上的力 x 小车位置 φ摆杆与垂直向上方向的夹角 θ摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下),其中 θπφ=+ 分析小车水平方向所受的合力可得: Mx F bx N =-- (1) 由摆杆水平方向受力分析可得: 2 2(sin )d N m x l dt θ=+ (2) 即 2cos sin N mx ml ml θθθθ=+-(3) 将(3)代入(1)可得系统的第一个运动方程: 2()cos sin M m x bx ml ml F θθθθ+++-= (4) 对摆杆垂直方向的合力进行分析可得: ()2 2cos d P mg m l dt θ-=- (5) 即: 2sin cos P mg ml ml θθθθ-=+(6) 力矩平衡方程如下: sin cos Pl Nl I θθθ--=(7) 将(6)(7)合并可得第二个运动方程:

2()sin cos I ml mgl mlx θθθ++=- (8) 1、微分方程模型 由于θπφ=+,当摆杆与垂直向上方向之间的夹角φ和1(弧度)相比很小时,即1 φ时,可进行如下近似处理:cos 1θ=-,sin θφ=-,2 ( )0d dt θ=。用u 代表被控对象的输入力F ,将模型线性化可得系统的微分方程表达式: 2 ()()I ml mgl mlx M m x bx ml u φφφ?+-=?? ++-=?? (9) 2、传递函数模型 设初始条件为0,,对(9)进行拉普拉斯变换可得: 222 22 ()()()()()()()()() I ml s s mgl s mlX s s M m X s s bX s s ml s s U s ?+Φ-Φ=??++-Φ=??(10) 输出为角度φ,解方程组(10)的第一个方程可得: 22()()[]()I ml g X s s ml s +=-Φ (11) 或2 22(()()s mls X s I ml s mgl Φ= +-)(12) 令小车加速度v x =则有 22()()()s ml V s I ml s mgl Φ=+- 将(11)式代入方程组(10)的第二个方程可得 222 222()()()[]()[]()()()I ml g I ml g M m s s b s s ml s s U s ml s ml s +++-Φ+-Φ-Φ= 以u 为输入量,以摆杆摆角φ为输出的传递函数为: 2 2 432()()()() ml s s q b I ml M m mgl bmgl U s s s s s q q q Φ=+++--

倒立摆控制系统设计报告.doc

控制系统综合设计 倒立摆控制系统 院(系、部): 组长: 组员 班级: 指导教师: 2014年1月2日星期四

目录 摘要----------------------------------------------------------------------------------3 引言----------------------------------------------------------------------------------3 一、整体方案设计--------------------------------------------------------------3 1、需求-----------------------------------------------------------------------------3 2、目标-----------------------------------------------------------------------------3 3、概念设计----------------------------------------------------------------------3 4、整体开发方案设计---------------------------------------------------------3 5、评估----------------------------------------------------------------------------4 二、系统设计--------------------------------------------------------------------4 (一)系统设计-----------------------------------------------------------------4 1、功能分析----------------------------------------------------------------------4 2、设计规范和约束------------------------------------------------------------6 3、详细设计----------------------------------------------------------------------7 (二)机械系统设计-----------------------------------------------------------8 三、理论分析---------------------------------------------------------------------9 1、控制系统建模----------------------------------------------------------------9 2、时域和频域分析------------------------------------------------------------13 3、设计PID或其他控制器---------------------------------------------------21 四、元器件、设备选型--------------------------------------------------------30

倒立摆系统的控制器设计

倒立摆系统的控制器设计

摘 要 倒立摆是一种典型的非线性,多变量,强耦合,不稳定系统,许多抽象的控制概念如系统的稳定性、可控性、系统的抗干扰能力等都可以通过倒立摆直观的反应出来;倒立摆的控制思想在实际中如实验、教学、科研中也得到广泛的应用;在火箭飞行姿态的控制、人工智能、机器人站立与行走等领域有广阔的开发和利用前景。因此,对倒立摆系统的研究具有十分重要的理论和实践意义。 本文首先将直线倒立摆抽象为简单的模型以便于受力分析进行机理建模,然后通过牛顿力学原理进行分析,得出相应的模型,进行拉氏变化带入相应参数得出摆杆角度和小车位移、摆杆角度和小车加速度、摆杆角度和小车所受外界作用力、小车位移与小车所受外界作用力的传递函数,其中摆杆角度和小车加速度之间的传递函数为: 02()0.02725()()0.01021250.26705s G s V s s Φ==- ………… (1) 即我们在本次设计中主要分析的系统的传递函数。 然后从时域角度着手,分析直线一级倒立摆的开环单位阶跃响应和单位脉冲响应,利用Matlab 中的Simulink 仿真工具进行仿真,得出结论该系统的开环响应是发

散的。 最后分别利用根轨迹分析法,频域分析法和PID 控制法对倒立摆系统进行校正。 针对目标一:调整时间0.5(2%)s t s =误差带,最大超调量%10%≤p σ,选取参数利用根轨迹法进行校正,得出利用超前校正环节的传递函数为: 135.1547( 5.0887) ()135.1547c s G s s +=+ ………………………… (2) 针对目标二:系统的静态位置误差常数为10;相位裕量为 50 ;增益裕量等于或大于10 分贝。通过频域法得出利用超前校正环节的传递函数为: 1189.6(8.15) ()99.01c s G s s +=+ …………………………… ……………………(3) 针对目标三: 调整时间误差带)%2(2s t s =,最大超调量,%15%≤p σ,设计或调整PID 控制器参数,得出调整后的传递函数为: 150()21020c G s s s =++ ………………………………………. .(4)

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

倒立摆校正装置的设计

自动控制原理课程设计报告 倒立摆系统的控制器设计 指导教师:谢昭莉 学生:冯莉 学号: 20095099 专业:自动化 班级: 2009 级 3 班 设计日期: 2011.12.12—2011.12.23 重庆大学自动化学院 2011年12月

重庆大学本科学生课程设计任务书

目录 1倒立摆系统的研究背景和意义 (1) 2小车倒立摆系统模型的假设 (1) 3符号说明 (2) 4模型的建立 (2) 4.1牛顿力学法系统分析 (2) 4.2拉氏变换后实际系统的模型 (6) 5开环响应分析 (7) 6根轨迹法设计超前校正装置函数 (9) 6.1校正前倒立摆系统的闭环传递函数的析 (9) 6.2系统稳定性分析 (9) 6.3期望闭环极点的确定 (10) 6.4 超前校正装置传递函数的设计 (11) 6.4.1校正参数计算 (11) 6.4.2控制器的确定 (13) 6.4.3校正装置的改进 (13) 6.4.4Simulink仿真 (15)

7直线一级倒立摆频域法设计 (17) 7.1系统频域响应分析 (17) 7.2频域法控制器设计 (19) 7.2.1控制器的选择 (19) 7.2.2系统开环增益的计算 (19) 7.2.3校正装置的频率分析 (20) 7.2.4控制器转折频域和截止频域的求解 (22) 7.2.5校正装置的确定 (22) 7.2.6Simulink仿真 (24) 8直线一级倒立摆的PID控制设计 (25) 8.1PID简介 (25) 8.2PID控制设计分析 (25) 8.3PID控制器的参数测定 (26) 9总结与体会 (29) 9.1总结 (29) 9.2体会 (29) 10参考文献 (30)

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析 一、倒立摆系统的模型建立 如图1-1所示为一级倒立摆的物理模型 图1-1 一级倒立摆物理模型 对于上图的物理模型我们做以下假设: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆惯量 F:加在小车上的力 x:小车位置 ?:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。其中,N和P为小车与摆

杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图1-2 小车及摆杆受力分析 分析小车水平方向受力,可以得到以下方程: M x?=F-bx?-N (1-1) 由摆杆水平方向的受力进行分析可以得到以下方程: N =m d 2dt (x +l sin θ) (1-2) 即: N =mx?+mlθcos θ?mlθ2sin θ (1-3) 将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )x?+bx?+mlθcos θ?mlθ2sin θ=F (1-4) 为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P ?mg =m d 2dt 2 (l cos θ) (1-5) P ?mg =? mlθsin θ?mlθ2cos θ (1-6) 利用力矩平衡方程可以有:

?Pl sinθ?Nl cosθ=Iθ (1-7) 注意:此方程中的力矩方向,由于θ=π+?,cos?=?cosθ,sin?=?sinθ,所以等式前面含有负号。 合并两个方程,约去P和N可以得到第二个运动方程: (I+ml2)θ+mgl sinθ=?mlx?cosθ (1-8) 设θ=π+?,假设?与1(单位是弧度)相比很小,即?<<1,则 可以进行近似处理:cosθ=?1,sinθ=??,(dθ dt ) 2 =0。用u来 代表被控对象的输入力F,线性化后的两个运动方程如下: {(I+ml2)??mgl?=mlx? (M+m)x?+bx??ml?=u (1-9) 假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到: {(I+ml2)Φ(s)s2?mglΦ(s)=mlX(s)s2 (M+m)X(s)s2+bX(s)s?mlΦ(s)s2=U(s) (1-10) 由于输出为角度?,求解方程组的第一个方程,可以得到: X(s)=[(I+ml2) ml ?g s ]Φ(s) (1-11) 或改写为:Φ(s) X(s)=mls2 (I+ml2)s2?mgl (1-12) 如果令v=x?,则有:Φ(s) V(s)=ml (I+ml2)s2?mgl (1-13) 如果将上式代入方程组的第二个方程,可以得到: (M+m)[(I+ml2) ml ?g s ]Φ(s)s2+b[(I+ml2) ml +g s ]Φ(s)s?mlΦ(s)s2= U(s) (1-14) 整理后可得传递函数: Φ(s) U(s)= ml q s2 s4+b(I+ml 2) q s3?(M+m)mgl q s2?bmgl q s (1-15)

控制系统课程设计---直线一级倒立摆控制器设计

控制系统课程设计---直线一级倒立摆控制器设计

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计说明书(论文) 课程名称:控制系统设计课程设计 设计题目:直线一级倒立摆控制器设计 院系: 班级: 设计者: 学号: 指导教师:罗晶周乃馨 设计时间:2013.9.2——2013.9.13

哈尔滨工业大学课程设计任务书 姓名:院(系):英才学院 专业:班号: 任务起至日期:2013 年9 月 2 日至2013 年9 月13 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5 Kg ;m摆杆质量0.2 Kg ;b小车摩擦系数0.1 N/m/sec ;l摆杆转动轴心到杆质心的长度0.3 m ;I摆杆惯量0.006 kg*m*m ;T采样时间0.005 秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab 进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒;

(2)稳态时摆杆与垂直方向的夹角变化小于0.1 弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为:(1)摆杆角度θ和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)θ的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1. 建立直线一级倒立摆的线性化数学模型; 2. 倒立摆系统的PID控制器设计、MATLAB仿真及 实物调试; 3. 倒立摆系统的极点配置控制器设计、MATLAB仿 真及实物调试。

最新倒立摆系统的控制器设计

目录 摘要.......................................................................................................................................... - 5 - 1 倒立摆系统概述................................................................................................................................ - 6 - 1.1倒立摆的种类......................................................................................................................... - 6 - 1.2系统的组成............................................................................................................................. - 6 - 1.3工程背景................................................................................................................................. - 6 - 2 数学模型的建立................................................................................................................................ - 7 - 2.1牛顿力学法系统分析............................................................................................................. - 7 - 2.2拉氏变换后实际系统的模型............................................................................................... - 10 - 3 开环响应分析.................................................................................................................................. - 11 - 4 根轨迹法设计.................................................................................................................................. - 13 - 4.1校正前倒立摆系统的闭环传递函数的分析....................................................................... - 13 - 4.2系统稳定性分析................................................................................................................... - 13 - 4.3 根轨迹设计.......................................................................................................................... - 14 - 4.4 SIMULINK仿真..................................................................................................................... - 17 - 5 直线一级倒立摆频域法设计........................................................................................................ - 18 - 5.1 系统频域响应分析.............................................................................................................. - 18 - 5.2频域法控制器设计............................................................................................................... - 19 - 5.2.1控制器的选择........................................................................................................... - 19 - 5.2.2系统开环增益的计算............................................................................................... - 20 - 5.2.3校正装置的频率分析............................................................................................... - 20 - 5.3 Simulink仿真..................................................................................................................... - 24 - 6 直线一级倒立摆的PID控制设计................................................................................................ - 25 - 6.1 PID简介............................................................................................................................... - 25 -

单级旋转倒立摆系统

《现代控制理论》课程综合设计 单级旋转倒立摆系统 1 引言 单级旋转倒立摆系统一种广泛应用的物理模型,其物理模型如下:图示为单级旋转倒立摆系统原理图。其中摆的长度1l =1m ,质量1m =0.1kg ,横杆的长度2l =1 m ,质量2m =0.1kg ,重力加速度20.98/g m s =。以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出。控制的目的是当横杆在水平方向上旋转时,将倒立摆保持在垂直位置上。 图1 单级旋转倒立摆系统模型 单级旋转倒立摆可以在平行于纸面3600的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的推动下,摆杆仍然保持竖直向上状态。在横杆静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆微小的扰动下,就会使倒立摆的平衡无法复位,这时必须使横杆在平行于纸面的方向通过位移产生相应的加速度。作用力与物体位移对时间的二阶导数存在线性关系,故单级倒立摆系统是一个非线性系统。 本文综合设计以以在水平方向对横杆施加的力矩M 为输入,横杆相对参考系产生的角位移1θ为输出,建立状态空间模型,在原有系统上中综合带状态观测器状态反馈系统,从而实现当横杆在旋转运动时,将倒立摆保持在垂直位置上。 2 模型建立 本文将横杆和摆杆分别进行受力分析,定义以下物理量:本文将横杆和摆杆

分别进行受力分析,定义以下物理量:M 为加在横杆上的力矩;1m 为摆杆质量; 1l 为摆杆长度;1I 为摆杆的转动惯量;2m 为横杆的质量;2l 为横杆的长度;2I 为横杆的转动惯量;1θ为横杆在力矩作用下转动的角度;2θ为摆杆与垂直方向的夹角;N 和H 分别为摆杆与横杆之间相互作用力的水平和垂直方向的分量。倒立摆模型受力分析如图2所示。 图2 倒立摆模型受力分析 摆杆水平方向受力平衡方程: 2 111222(0sin )2 l d N m l dt θθ=++ (1θ2l —横杆的转动弧长即位移) 摆杆垂直方向受力平衡方程: 211 1122(cos )22 l l d H m g m dt θ-=- 摆杆转矩平衡方程: 22111222sin cos 22 d l l J H N dt θθθ=- 横杆转矩平衡方程: 21 222 d M Nl J dt θ-= N

一阶倒立摆课程设计报告

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系):英才学院专业:自动化班号: 任务起至日期: 2011 年8 月22 日至 2011 年9 月9 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)的超调量小于20度(0.35弧度) (4)稳态误差小于2%。

工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。 工作计划安排: 第3周:(1)建立直线一级倒立摆的线性化数学模型; (2)倒立摆系统的PID控制器设计、Matlab仿真; (3)倒立摆系统的极点配置控制器设计、Matlab仿真。 第4周:实物调试; 撰写课程设计论文。 同组设计者及分工: 各项工作独立完成 指导教师签字 年月日教研室主任意见:

相关文档
相关文档 最新文档