文档库 最新最全的文档下载
当前位置:文档库 › 用数学归纳法证明不等式举例 .知识点梳理

用数学归纳法证明不等式举例 .知识点梳理

用数学归纳法证明不等式举例 .知识点梳理
用数学归纳法证明不等式举例 .知识点梳理

课题:用数学归纳法证明不等式举例

备课教师:沈良宏 参与教师:郭晓芳、龙新荣 审定教师:刘德清

1、教学重点:了解数学归纳法的原理及其使用范围和基本步骤.

2、教学难点:

(1)认识数学归纳法的证明思路;

(2)运用数学归纳法时,在“假设与递推”的步骤中发现具体问题中的递推关系.

3、学生必须掌握的内容:

1.数学归纳法证明不等式

(1)用数学归纳法证明一个与正整数有关的不等式的步骤.

①证明:当n 取第一个值n 0时结论成立;

②假设当n =k (k ∈N +,且k ≥n 0)时结论成立,证明当n =k +1时结论也成立. 由①②可知命题对从n 0开始的所有正整数n 都成立.

(2)用数学归纳法证明不等式的重点.

用数学归纳法证明不等式的重点在第二步(同时也是难点所在),即假设f (k )>g (k )成立,证明f (k +1)>g (k +1)成立.

2.贝努利不等式

(1)定义:如果x 是实数,且x >-1,x ≠0,n 为大于1的自然数,那么有(1+x )n >1+nx .

(2)作用:在数学研究中经常用贝努利不等式把二项式的乘方(1+x )n 缩小为简单的1+nx 的形式,这在数值估计和放缩法证明不等式中有重要应用.例如:当x 是实数,且x >-1,

x ≠0时,由贝努利不等式不难得到不等式? ??

??1-x 1+x n >1-nx 1+x 对一切不小于2的正整数n 成立.

(3)贝努利不等式的一般形式.

(1)当α是实数,并且满足α>1或α<0时,有(1+x )α≥1+αx (x >-1);

(2)当α是实数,并且满足0<α<1时,有(1+x )α≤1+αx (x >-1).

3.归纳—猜想—证明的思想方法

数学归纳法作为一种重要的证明方法,常常体现在“归纳—猜想—证明”这一基本思想方法中.一方面可用数学归纳法证明已有的与自然数有关的结论;更重要的是,要用不完全归纳法去发现某些结论、规律并用数学归纳法证明其正确性,形成“观察—归纳—猜想—证明”的思想方法.

1.关于用数学归纳法证明不等式的四点注意

(1)在从n =k 到n =k +1的过程中,应分析清楚不等式两端(一般是左端)项数的变化,也就是要认清不等式的结构特征.

(2)瞄准当n =k +1时的递推目标,从中分离出n =k 时的相应式子,借助不等式性质用上归纳假设.

(3)明确用上归纳假设后要证明的不等式应是怎样的,然后通过运用放缩法、分析法、比较法、综合法等方法进行证明.

(4)有些不等式先用分析法转化为另一个较为简单的不等式然后再用数学归纳法证明.

2.关于贝努利不等式

(1)(1+x )n >1+nx 成立的两个条件:①n ∈N +且n ≥2;②x 的取值范围是x >-1且x ≠0.

于是有命题:当n ∈N +且n ≥2时不等式(1+x )n >1+nx 对一切x ∈(-1,0)∪(0,+∞)

恒成立.

(2)常用特例:①当x >-1且x ≠0时,(1+x )2>1+2x ;

高二数学归纳法证明不等式

第四讲:数学归纳法证明不等式 数学归纳法证明不等式是高中选修的重点内容之一,包含数学归纳法的定义和数学归纳法证明基本步骤,用数学归纳法证明不等式。数学归纳法是高考考查的重点内容之一,在数列推理能力的考查中占有重要的地位。 本讲主要复习数学归纳法的定义、数学归纳法证明基本步骤、用数学归纳法证明不等式的方法:作差比较法、作商比较法、综合法、分析法和放缩法,以及类比及猜想、抽象及概括、从特殊到一般等数学思想方法。 在用数学归纳法证明不等式的具体过程中,要注意以下几点: (1)在从n=k 到n=k+1的过程中,应分析清楚不等式两端(一般是 左端)项数的变化,也就是要认清不等式的结构特征; (2)瞄准当n=k+1时的递推目标,有目的地进行放缩、分析; (3)活用起点的位置; (4)有的试题需要先作等价变换。 例题精讲 例1、用数学归纳法证明 n n n n n 212111211214131211+++++=--++-+- 分析:该命题意图:本题主要考查数学归纳法定义,证明基本步骤 证明: 1 当n=1时,左边=1-21=21,右边=111+=21 ,所以等式成立。

2假设当n=k 时,等式成立, 即 k k k k k 212111211214131211+++++=--++-+- 。 那么,当n=k+1时, 221121211214131211+-++--++-+- k k k k 221121212111+-+++++++=k k k k k )2 2111(1212131214131211+-+++++++++=++-+-k k k k k k )1(21 121213121+++++++++= k k k k k 这就是说,当n=k+1时等式也成立。 综上所述,等式对任何自然数n 都成立。 点评: 数学归纳法是用于证明某些及自然数有关的命题的一种方法.设要证命题为P (n ).(1)证明当n 取第一个值n 0时,结论正确,即验证P (n 0)正确;(2)假设n=k (k ∈N 且k≥n 0)时结论正确,证明当n=k+1时,结论也正确,即由P (k )正确推出P (k+1)正确,根据(1),(2),就可以判定命题P (n )对于从n 0开始的所有自然数n 都正确. 要证明的等式左边共2n 项,而右边共n 项。f(k)及f(k+1)相比较,左边增加两项,右边增加一项,并且二者右边的首项也不一样,因此 在证明中采取了将11+k 及221 +k 合并的变形方式,这是在分析了f(k) 及f(k+1)的差异和联系之后找到的方法。 练习: 1.用数学归纳法证明3k ≥n 3(n≥3,n∈N)第一步应验证( )

基本不等式知识点和基本题型

基本不等式专题辅导 一、知识点总结 1、基本不等式原始形式 (1)若R b a ∈,,则ab b a 22 2 ≥+(2)若R b a ∈,,则2 2 2b a ab +≤ 2、基本不等式一般形式(均值不等式)若*,R b a ∈,则ab b a 2≥+ 3、基本不等式的两个重要变形 (1)若* ,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则2 2? ? ? ??+≤b a ab 特别说明:以上不等式中,当且仅当b a =时取“=” 5、常用结论 (1)若0x >,则1 2x x +≥(当且仅当1x =时取“=”) (2)若0x <,则1 2x x +≤-(当且仅当1x =-时取“=”) (3)若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) (4)若R b a ∈,,则2 )2(2 22b a b a ab +≤ +≤ (5)若*,R b a ∈,则2 2111 22b a b a ab b a +≤+≤≤+ 特别说明:以上不等式中,当且仅当 b a =时取“=” (1)若,,,a b c d R ∈,则22222()()()a b c d ac bd ++≥+ (2)若123123,,,,,a a a b b b R ∈,则有:22222221231123112233()()()a a a b b b a b a b a b ++++≥++ (3)设1212,,,,,,n n a a a b b ??????与b 是两组实数,则有22212(n a a a ++???+)22212)n b b b ++???+(21122()n n a b a b a b ≥++???+ 二、题型分析 题型一:利用基本不等式证明不等式 1、设b a ,均为正数,证明不等式:ab ≥b a 112 + 2、已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a ++>++2 2 2 3、已知1a b c ++=,求证:2221 3 a b c ++≥ 4、已知,,a b c R +∈,且1a b c ++=,求证:abc c b a 8)1)(1)(1(≥--- 5、已知,,a b c R +∈,且1a b c ++=,求证:1111118a b c ?????? ---≥ ??????????? 6、选修4—5:不等式选讲

基本不等式知识点归纳.

基本不等式知识点归纳 1.基本不等式2 b a a b +≤ (1)基本不等式成立的条件:.0,0>>b a (2)等号成立的条件:当且仅当b a =时取等号. [探究] 1.如何理解基本不等式中“当且仅当”的含义? 提示:①当b a =时,ab b a ≥+2取等号,即.2 ab b a b a =+?= ②仅当b a =时, ab b a ≥+2取等号,即.2 b a ab b a =?=+ 2.几个重要的不等式 ).0(2);,(222>≥+∈≥+ab b a a b R b a ab b a ),(2 )2();,()2(2 222R b a b a b a R b a b a ab ∈+≤+∈+≤ 3.算术平均数与几何平均数 设,0,0>>b a 则b a ,的算术平均数为2 b a +,几何平均数为a b ,基本不等式可叙述为:两个正实数的算术平均数不小于它的几何平均数. 4.利用基本不等式求最值问题 已知,0,0>>y x 则 (1)如果积xy 是定值,p 那么当且仅当y x =时,y x +有最小值是.2p (简记:积定和最小). (2)如果和y x +是定值,p ,那么当且仅当y x =时,xy 有最大值是.4 2 p (简记:和定积最大). [探究] 2.当利用基本不等式求最大(小)值时,等号取不到时,如何处理? 提示:当等号取不到时,可利用函数的单调性等知识来求解.例如,x x y 1 +=在2≥x 时的最小值,利用单调性,易知2=x 时.2 5min = y [自测·牛刀小试] 1.已知,0,0>>n m 且,81=mn 则n m +的最小值为( ) A .18 B .36 C .81 D .243 解析:选A 因为m >0,n >0,所以m +n ≥2mn =281=18.

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

基本不等式知识点归纳.doc

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、 同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R + ∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0).

高中数学必修5基本不等式知识点总结

高中数学必修5基本不等式知识点总结 一.算术平均数与几何平均数 1.算术平均数 设a 、b 是两个正数,则 2 a b +称为正数a 、b 的算术平均数 2.几何平均数 a 、 b 的几何平均数 二基本不等式 1.基本不等式: 若0a >,0b >,则a b +≥,即 2 a b +≥2.基本不等式适用的条件 一正:两个数都是正数 二定:若x y s +=(和为定值),则当x y =时,积xy 取得最大值2 4 s 若xy p =(积为定值),则当x y =时,和x y +取得最小值 三相等:必须有等号成立的条件 注:当题目中没有明显的定值时,要会凑定值 3.常用的基本不等式 (1)()22 2,a b ab a b R +≥∈ (2)()22 ,2 a b ab a b R +≤∈ (3)()20,02a b ab a b +??≤>> ??? (4)()222,22a b a b a b R ++??≥∈ ??? . 三.跟踪训练 1.下列各函数中,最小值为2的是 ( ) A .1y x x =+ B .1sin sin y x x =+,(0,)2x π∈ C .2 y = D .1y x =+ 2.当02x π <<时,函数21cos 28sin ()sin 2x x f x x ++=的最小值是( )。

A. 1 B. 2 C. 4 D. 3.x >0,当x 取什么值,x +1x 的值最小?最小值是多少? 4.用20cm长的铁丝折成一个面积最大的矩形,应该怎样折? 5.一段长为30m的篱笆围成一个一边靠墙的矩形花园,墙长18m,这个矩形的长,宽各为多少时,花园的面积最大?最大面积是多少? 6.设0,0x y >>且21x y +=,求11x y +的最小值是多少? 7.设矩形ABCD(AB>AD)的周长是24,把?ABC沿AC向?ADC折叠,AB折过去后交CD与点P,设AB=x ,求?ADP的面积最大值及相应x 的值

(完整word版)柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等 式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为, 正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 ()() ()2 2222 bd ac d c b a +≥++ 等号成立条件:()d c b a bc ad //== 扩展:( )()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=????? 当或时,和都等于,不考虑 二维形式的证明: ()()() ()()() 2 22222222222 222222222 2 2,,,220=a b c d a b c d R a c b d a d b c a c abcd b d a d abcd b c ac bd ad bc ac bd ad bc ad bc ++∈=+++=+++-+=++-≥+-=等号在且仅在即时成立 三角形式 ad bc =等号成立条件: 三角形式的证明: 222111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

用数学归纳法证明不等式

用数学归纳法证明不等式 在明确数学归纳法本质的基础上,我们来共同研究它在不等式证明中的应用.例1已知x>-1,且x≠0,n∈N,n≥2.求证:(1+x)n>1+nx. 证:(1)当n=2时,左边=(1+x)2=1+2x+x2,右边=1+2x,因x2>0,则原不等式成立.(在这里,一定要强调之所以左边>右边,关键在于x2>0是由已知条件x≠0获得,为下面证明做铺垫) (2)假设n=k时(k≥2),不等式成立,即(1+x)k>1+kx. 师:现在要证的目标是(1+x)k+1>1+(k+1)x,请同学考虑. 师:现将命题转化成如何证明不等式 (1+kx)(1+x)≥1+(k+1)x.显然,上式中“=”不成立.故只需证:(1+kx)(1+x)>1+(k+1)x. 提问:证明不等式的基本方法有哪些? (学生可能还有其他多种证明方法,这样培养了学生思维品质的广阔性,教师应及时引导总结) 师:这些方法,哪种更简便,更适合数学归纳法的书写格式?学生丙用放缩技巧证明显然更简便,利于书写.当n=k+1时,因为x>-1,所以1+x>0,于是左边=(1+x)k+1=(1+x)k(1+x)>(1+x)(1+kx)=1+(k+1)x+kx2;右边=1+(k+1)x.因为kx2>0,所以左边>右边,即(1+x)k+1>1+(k+1)x.这就是说,原不等式当n=k +1时也成立. 根据(1)和(2),原不等式对任何不小于2的自然数n都成立. (通过例1的讲解,明确在第二步证明过程中,虽然可以采取证明不等式的有关方法,但为了书写更流畅,逻辑更严谨,通常经归纳假设后,要进行合理放缩,以达到转化的目的)例2证明:2n+2>n2,n∈N+. 证:(1)当n=1时,左边=21+2=4;右边=1,左边>右边.所以原不等式成立. (2)假设n=k时(k≥1且k∈N)时,不等式成立,即2k+2>k2. 现在,请同学们考虑n=k+1时,如何论证2k+1+2>(k+1)2成立. 师:将不等式2k2-2>(k+1)2,右边展开后得:k2+2k+1,由于转化目的十分明确,所以只需将不等式的左边向k2+2k+1方向进行转化,即:2k2-2=k2+2k+1+k2-2k-3.由此不难看出,只需证明k2-2k-3≥0,不等式2k2-2>k2+2k+1即成立. 师:由于使不等式不成立的k值是有限的,只需利用归纳法,将其逐一验证原命题成立,因此在证明第一步中,应补充验证n=2时原命题成立,那么,n=3时是否也需要论证? 师:(补充板书)当n=2时,左=22+2=6,右=22=4,所以左>右;当n=3时,左=23+2=10,右=32=9,所以左>右.因此当n=1,2,3时,不等式成立.(以下请学生板书) (2)假设当n=k(k≥3且k∈N)时,不等式成立.即2k+2>k2.因为2k+1+2=2·2k+2=2(2k +2)-2>2k2-2=k2+2k+1+k2-2k-3=(k2+2k+1)+(k+1)(k-3)(因k≥3,则k-3≥0,k+1>0) ≥k2+2k+1=(k+1)2.所以2k+1+2>(k+1)2.故当n=k+1时,原不等式也成立.根据(1)和(2),原不等式对于任何n∈N都成立. 师:通过例2可知,在证明n=k+1时命题成立过程中,针对目标k2+2k+1,采用缩小的手段,但是由于k的取值范围(k≥1)太大,不便于缩小,因此,用增加奠基步骤(把验证

基本不等式知识点归纳

向量不等式: 【注意】:同向或有; 反向或有; 不共线.(这些和实数集中类似) 代数不等式: 同号或有; 异号或有. 绝对值不等式: 双向不等式: (左边当时取得等号,右边当时取得等号.) 放缩不等式: ①,则. 【说明】:(,糖水的浓度问题). 【拓展】:. ②,,则; ③,; ④,. ⑤,. 函数()(0)b f x ax a b x =+ >、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ; ②单调递增区间:(,-∞ ,)+∞; 单调递减区间:(0, ,[0). 基本不等式知识点总结 重要不等式

1、和积不等式:(当且仅当时取到“”). 【变形】:①(当a = b 时,) 【注意】: , 2、均值不等式: 两个正数的调和平均数、几何平均数、算术平均数、均方根之间的关系,即“平方平均算术平均几何平均调和平均” *.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ); 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) *.若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 3、含立方的几个重要不等式(a 、b 、c 为正数): (,); *不等式的变形在证明过程中或求最值时,有广泛应用,如:当0>ab 时, ab b a 222≥+同时除以ab 得 2≥+b a a b 或b a a b -≥-11。 *,,b a 均为正数,b a b a -≥22 八种变式: ①222b a ab +≤ ; ②2 )2(b a ab +≤; ③2)2( 222b a b a +≤+ ④)(22 2 b a b a +≤+;⑤若b>0,则b a b a -≥22;⑥a>0,b>0,则b a b a +≥+4 11;⑦若a>0,b>0,则ab b a 4)11( 2≥+; ⑧ 若0≠ab ,则2 22)11(2111b a b a +≥+。 上述八个不等式中等号成立的条件都是“ b a =”。 最值定理 (积定和最小)

高中数学不等式知识点总结

弹性学制数学讲义 不等式(4课时) ★知识梳理 1、不等式的基本性质 ①(对称性)a b b a >?> ②(传递性),a b b c a c >>?> ③(可加性)a b a c b c >?+>+ (同向可加性)d b c a d c b a +>+?>>, (异向可减性)d b c a d c b a ->-?<>, ④(可积性)bc ac c b a >?>>0, bc ac c b a 0, ⑤(同向正数可乘性)0,0a b c d ac bd >>>>?> (异向正数可除性)0,0a b a b c d c d >>< ⑥(平方法则) 0(,1)n n a b a b n N n >>?>∈>且 ⑦(开方法则)0(,1)n n a b a b n N n >>?>∈>且 ⑧(倒数法则) b a b a b a b a 110;110>?<<> 2、几个重要不等式 ①()222a b ab a b R +≥∈,,(当且仅当a b =时取""=号). 变形公式:22 .2a b ab +≤ ②(基本不等式) 2a b ab +≥ ()a b R +∈,,(当且仅当a b =时取到等号). 变形公式: 2a b a b +≥ 2 .2a b ab +??≤ ??? 用基本不等式求最值时(积定和最小,和定积最大),要注意满足三个条件“一正、二定、

三相等”. ③(三个正数的算术—几何平均不等式) 33a b c abc ++≥()a b c R +∈、、(当且仅当a b c ==时取到等号). ④()222a b c ab bc ca a b R ++≥++∈, (当且仅当a b c ==时取到等号). ⑤ 3333(0,0,0)a b c abc a b c ++≥>>> (当且仅当a b c ==时取到等号). ⑥0,2b a ab a b >+≥若则(当仅当a=b 时取等号) 0,2b a ab a b <+≤-若则(当仅当a=b 时取等号) ⑦b a n b n a m a m b a b <++<<++<1,(其中000)a b m n >>>>,, 规律:小于1同加则变大,大于1同加则变小. ⑧220;a x a x a x a x a >>?>?<->当时,或 22. x a x a a x a

高等数学中不等式的证明方法

高等数学中不等式的证明方法 摘要:各种不等式就是各种形式的数量和变量之间的相互比较关系或制约关系,因此, 不等式很自然地成为分析数学与离散数学诸分支学科中极为重要的工具,而且早已成为 专门的研究对象。高等数学中存在大量的不等式证明,本文主要介绍不等式证明的几种 方法,运用四种通法,利用导数研究函数的单调性,极值或最值以及积分中值定理来解 决不等式证明的问题。我们可以通过这些方法解决有关的问题,培养我们的创新精神, 创新思维,使一些较难的题目简单化、方便化。 关键词:高等数学;不等式;极值;单调性;积分中值定理 Abstract: A variety of inequality is the various forms of high-volume and variable comparison between the relationship or constraints. Therefore, Inequality is natural to be a very important tool in Analysis of discrete mathematics and various bran(https://www.wendangku.net/doc/3e12496225.html, 毕业论文参考网原创论文)ches of mathematics .It has been a special study.Today there are a large number of inequalities in higher mathematics .This paper introduces the following methods about Proof of Inequality ,such as the using of several general methods, researching monotone function by derivative, using extreme or the most value and Integral Mean Value Theorem . We can resolve the problems identified through these methods. It can bring up our innovative spirit and thinking and some difficult topics may be more easy and Convenient , Keyword: Higher Mathematics; Inequality; Extreme value Monotonicity; Integral Mean Value Theorem 文章来自:全刊杂志赏析网(https://www.wendangku.net/doc/3e12496225.html,) 原文地址: https://www.wendangku.net/doc/3e12496225.html,/article/16be7113-df3a-4524-a9c3-4ba707524e72.htm 【摘要】不等式证明是高等数学学习中的一个重要内容,通过解答考研数学中出现的 不等式试题,对一些常用的不等式证明方法进行总结。 【关键词】不等式;中值定理;泰勒公式;辅助函数;柯西 施瓦茨;凹凸性 在高等数学的学习过程当中,一个重点和难点就是不等式的证明,大多数学生在遇到不 等式证明问题不知到如何下手,实际上在许多不等式问题都存在一题多解,针对不等式的证 明,以考研试题为例,总结了几种证明不等式的方法,即中值定理法、辅助函数法、泰勒公

归纳法证明不等式

归纳法证明不等式 数学归纳法证明不等式的本质 数学归纳法证明不等式的典型类型是与数列或数列求和有关的问题,凡是与数列或数列求和有关的问题都可统一表述成f(n)?g(n)(n?n?)的形式或近似于上述形式。 这种形式的关键步骤是由n?k时,命题成立推导n?k?1时,命题也成立。为了表示的方便,我们记?左n?f(k?1)?f(k),?右n?g(k?1)?g(k)分别叫做左增量,右增量。那么,上述证明的步骤可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 例1.已知an?2n?1,求证: 本题要证后半节的关键是证 an1a1a2n????n?(n?n?) 23a2a3an?12 2k?1?11?中k??右k即证k?2? 2?12 而此式显然成立,所以可以用数学归纳法证明。 而要证前半节的关键是证 12k?1?1?左k??中k即证?k?2 22?1 而此式显然不成立,所以不能用数学归纳法证明。如果不进行判断就用数学归纳法证前半节,忙乎半天,只会徒劳。 有时,f(n)?g(n)(n?n?)中f(n),g(n)是以乘积形式出现,且f(n)?0,g(n)?0是显然成立的。此时,可记 ?左k?f(k?1)g(k?1),?右k? f(k)g(k) 分别叫做左增倍,右增倍。那么,用数学归结法证明由n?k时,成立推导 n?k?1成立,可表述为 f(k?1)?f(k)??左k?g(k)??左k?g(k)??右k?g(k?1) 和前面所讲相似,上述四步中,两个“=”和“<”都显然成立,而“≤”是否成立,就需要判断和证明了,既“?左k??右k”若成立,既可用数学归纳法证明;若不成立,则不能用数学归纳法证明。因此,可以这样说,此时,数学归纳法证明不等式的本质是证“左增倍≤右增倍”,而判断能否用数学归纳法证明不等式的标准就是看“左增倍≤右增倍”是否成立。 第二篇:归纳法证明不等式

柯西不等式各种形式的证明及其应用

柯西不等式各种形式的证 明及其应用 Prepared on 22 November 2020

柯西不等式各种形式的证明及其应用 柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角 度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz 不等式,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。 柯西不等式非常重要,灵活巧妙地应用它,可以使一些较为困难的问题迎刃而解。 柯西不等式在证明不等式、解三角形、求函数最值、解方程等问题的方面得到应用。 一、柯西不等式的各种形式及其证明 二维形式 在一般形式中,12122,,,,n a a a b b c b d =====令,得二维形式 等号成立条件:()d c b a bc ad //== 扩展:()()()2 2222 2222123123112233n n n n a a a a b b b b a b a b a b a b +++???++++???+≥+++???+ 等号成立条件:1122000::::,1,2,3,,i i i i n n i i a b a b a b a b a b a b i n ==?? ==???= ?=?????当或时,和都等于,不考虑 二维形式的证明: 三角形式 三角形式的证明: 向量形式 向量形式的证明: 一般形式 一般形式的证明: 2 2 2 111n n n k k k k k k k a b a b ===?? ≥ ??? ∑∑∑

证明: 推广形式(卡尔松不等式): 卡尔松不等式表述为:在m*n 矩阵中,各行元素之和的几何平均数不小于各列元素 之积的几何平均之和。 或者: 或者 推广形式的证明: 推广形式证法一: 或者 推广形式证法二: 事实上涉及平均值不等式都可以用均值不等式来证, 这个不等式并不难,可以简单证明如下: 付:柯西(Cauchy )不等式相关证明方法: 等号当且仅当021====n a a a 或i i ka b =时成立(k 为常数,n i 2,1=)现将它的证明介绍如下: 证明1:构造二次函数 ()()()2 2 222 11)(n n b x a b x a b x a x f ++++++= =()()()22 222 121122122n n n n n n a a a x a b a b a b x b b b ++ ++++ ++++ + ()0f x ∴≥恒成立 即()()()2 22 2211221212n n n n n n a b a b a b a a a b b b ++ +≤++ +++ + 当且仅当()01,2i i a x b x i n +== 即 12 12 n n a a a b b b === 时等号成立 证明(2)数学归纳法

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

基本不等式知识点归纳教学内容

基本不等式知识点归 纳

基本不等式知识点总结 向量不等式: ||||||||||||a b a b a b -±+r r r r r r ≤≤ 【注意】: a b r r 、同向或有0r ?||||||a b a b +=+u r u r u r u r ≥||||||||a b a b -=-u r u r u r u r ; a b r r 、反向或有0r ?||||||a b a b -=+u r u r u r u r ≥||||||||a b a b -=+u r u r u r u r ; a b r r 、不共线?||||||||||||a b a b a b -<±<+u r u r u r u r u r u r .(这些和实数集中类似) 代数不等式: ,a b 同号或有0||||||||||||a b a b a b a b ?+=+-=-≥; ,a b 异号或有0||||||||||||a b a b a b a b ?-=+-=+≥. 绝对值不等式: 123123a a a a a a ++++≤ (0)a b a b a b ab -≤-≤+≥时,取等 双向不等式:a b a b a b -±+≤≤ (左边当0(0)ab ≤≥时取得等号,右边当0(0)ab ≥≤时取得 等号.) 放缩不等式: ①00a b a m >>>>,,则b m b b m a m a a m -+<<-+. 【说明】: b b m a a m +<+(0,0a b m >>>,糖水的浓度问题). 【拓展】:,则,,000>>>>n m b a b a n b n a m a m b a b <++<<++<1. ②,,a b c R +∈, b d a c <,则b b d d a a c c +<<+; ③n N +∈ < < ④,1n N n +∈>,211111 11n n n n n - <<-+-. ⑤ln 1x x -≤(0)x >,1x e x +≥()x R ∈. 函数()(0)b f x ax a b x =+>、图象及性质 (1)函数()0)(>+ =b a x b ax x f 、图象如图: (2)函数()0)(>+ =b a x b ax x f 、性质: ①值域:),2[]2,(+∞--∞ab ab Y ;

柯西不等式的证明及其应用

柯西不等式的证明及其应用 赵增林 (青海民族大学,数学学院,青海,西宁,810007) 摘要:柯西不等式是一个非常重要的不等式,本文用五种不同的方法证明了柯西不等式,并 给出了一些柯西不等式在证明不等式、求函数最值、解方程、解三角与几何问题等方面的应用,最后用其证明了点到直线的距离公式,更好的解释了柯西不等式。 关键词:柯西不等式,证明,应用 柯西不等式 定理:如果1212,,,;,,,n n a a a b b b …………为两组实数,则 2222222 11221212()()()n n n n a b a b a b a a a b b b +++≤++++++……………… (*) 当且仅当12211331110n n a b a b a b a b a b a b -=-==-=……时等号成立。 若120,0,,0n b b b ≠≠≠……,则不等式的等号成立的条件是 12 12n n a a a b b b ===……。 我们称不等式(*)为柯西不等式。 柯西不等式的证明: 一)两个实数的柯西不等式的证明: 对于实数1212,,,a a b b ,恒有22222 11221212()()()a b a b a a b b +≤++,当且仅当 12210a b a b -=时等号成立。如果120,0b b ≠≠则等式成立的条件是12 12 a a b b =。 证明:对于任意实数1212,,,a a b b ,恒有 2222 22121211221221()()()()a a b b a b a b a b a b ++=++-,而21221()0a b a b -≥, 故2222211221212()()()a b a b a a b b +≤++。 当且仅当12210a b a b -=时等号成立。 不等式的几何意义如图1所示,在直角坐标系中有 异于原点O 的两点12(,)P a a ,12(,)Q b b ,由距离公式 得:|OP |=,|OQ |=

相关文档
相关文档 最新文档