文档库 最新最全的文档下载
当前位置:文档库 › 发酵工程 下游工程技术知识点

发酵工程 下游工程技术知识点

发酵工程 下游工程技术知识点
发酵工程 下游工程技术知识点

第十二章发酵工程下游工程技术

第一节发酵液的预处理与固-液分离

1.1 概述

发酵产物的提取与精制属于发酵工程的下游加工技术。

下游加工亦称发酵后处理,是指从发酵液或酶反应中分离纯化目的产物并加工成成品的过程。在多数情况下是从稀的发酵液中回收目的产物,整个过程有多项单元操作组成,其中有许多是经典的化工单元操作。

一、下游加工过程的重要性

1.获得商业产品的关键环节。

2.促进发酵工程上游加工技术或工艺的改进。

3.拥有市场竞争力的重要保证。

二、下游加工过程的特点

1. 发酵液是复杂的多相系统,属非牛顿液体,从中分离所需产品困难大。

2. 发酵产品在培养液中具有浓度低,稳定性差,对酸碱等外界环境十分敏感,容易失活。

3. 下游加工过程代价昂贵,产品回收率不是很高。

4. 发酵过程复杂,要求下游加工工艺应具有相当的适应性,以确保最终产品的纯度和质量。

三、下游加工的原则和要求

原则:1)短时间内处理

2)分离时尽量低温

3)选择生物物质稳定的pH

4)要程序化进行清洗,消毒,包括厂房,设备,管路

要求:1)达到所需的纯度

2)成本要低,得率高

3)工艺过程要简便,对分离物质特性清楚

4)废弃物要易处理,能够做到综合利用(零排放;清洁生产)

5)实验室产品能够放大生产

四、下游加工工程的一般流程

1. 粗分离阶段

(1)发酵液的预处理和固-液分离。

(2)产物的初分离。

2.纯化精制阶段

(3)产物的高度纯化。

(4)成品加工。

1.2 发酵液的预处理与固-液分离

一、发酵液的一般特征

1. 含水量高,一般可达90%~99%,处理体积大。

2. 产品浓度低。

3. 悬浮物颗粒小,密度与液体相差不大。

4. 固体粒子可压缩性大,一压缩就变形。

5. 液体黏度大,大多为非牛顿型流体。易吸附在滤布上。

6. 产物性质不稳定,不耐热、酸碱敏感、易被氧化、易被微生物污染及酶分解。

二、发酵液预处理的目的和要求

1.预处理的目的

(1)改变发酵液的物理性质,促进悬浮液中分离固形物的速度,提高固液分离器的效率;(2)尽可能使产物转入便于后处理的某一相中(多数是液体);

(3)去除发酵液中部分杂质,以利于后续各步操作。

2.发酵液预处理的要求:

(1)菌体的分离

(2)固体悬浮物的去除

(3)蛋白质的去除

(4)重金属离子的去除

(5)色素、热原质、毒性物质等有机杂质的去除

(6)改变发酵液的性质

(7)调节适宜pH值和温度

三、发酵液预处理的方法

1. 降低液体的黏度

2. 絮凝法

3. 重力法

4. 等电点法

5. 加入助滤剂

6. 加入反应剂

1 降低液体黏度

(1)加水稀释法

采用加水稀释法虽然能降低液体黏度,但是会增加发酵液的体积,因此加大后续过程的处理量。

稀释后过滤速率提高的百分比必须大于加水比才算真正有效,即若加水一倍,则稀释后液体的黏度必须下降50%以上,才能有效提高过滤效率。

(2)加热法

升高温度可以降低悬浮液的黏度,除去某些杂蛋白,降低悬浮物的最终体积,破坏凝胶状结构、增加滤饼的空隙度,提高过滤效率。

不适用热敏性的物质,而且要防止加热导致细胞溶解,胞内物质外溢。

(3)添加酶制剂比如:加酶将多糖转化为单糖

2. 凝聚和絮凝法

凝聚和絮凝的概念:

凝聚是在高价无机盐作用下,由于双电层排斥电位的降低,而使胶体体系不稳定的现象。

絮凝是指在某些高分子絮凝剂存在下,基于架桥作用,使胶粒形成粗大的絮凝团的过程,是一种以物理的集合为主的过程。

凝聚原理:电解质将胶体粒子表面上的电荷中和,减少存在于胶体粒子间的静电斥力,使范德华力占优势,这样胶体就会凝聚成较大、较密实的粒子。

(扩散双电层的结构模型图)

常用的凝聚方法:在稀溶液中加入电解质以促进凝聚。试剂包括酸、碱、简单电解质和合成的

高分子电解质。

常用的凝聚剂

Al2(SO4)3.18H2O,AlCl3.6H2O,FeCl3,ZnSO4,MgCl2

阳离子对负电荷的胶粒凝聚能力次序为:

Al3+>Fe3+>H+>Ca2+>Mg2+>K+>Na+>Li+

絮凝原理:在某些高分子絮凝剂存在下,基于架桥作用,使胶粒形成粗大的絮凝团使之更容易过滤。

絮凝剂通过静电引力、范德华引力或氢键的作用,强烈地吸附在胶粒的表面。当一个高分子聚合物的许多链节分别吸附在不同的胶粒表面上,产生桥架连接时,就形成了较大的絮团,这就是絮凝作用。

絮凝剂是一种能溶于水的高分子聚合物,其相对分子质量可高达数万至一千万以上,长链状结构,其链节上含有许多活性官能团,包括带电荷的阴离子(如---COOH)或阳离子(如---NH2)基团以及不带电荷的非离子型基团。

常用的絮凝剂:明胶、甲基纤维素、多聚丙烯酸、聚胺衍生物、氯化钙、磷酸氢二钠

影响絮凝的因素:絮凝剂的添加量;发酵液的pH;絮凝剂的分子量;搅拌转速

;搅拌时间

3. 重力法

在工业上用的较多的主要是离心和过滤。过滤常用板框真空吸滤或电动筛等,离心和过滤能否顺利进行取决于很多因素。一般温度高,压力大,发酵液粘度小,滤布选用适当,助溶剂适宜,搅拌都可以提高过滤速度。

4、等电点法

蛋白质一般以胶体状态存在于发酵液中。胶体粒子的稳定性和其所带电荷有关。

蛋白质在某一pH下,净电荷为零,溶解度最小,称为等电点。因此可利用此特性分离或去除良性物质。

羧基的电离度比氨基大,故蛋白质的酸性性质通常强于碱性,因而很多蛋白质的等电点都在酸性范围内(pH 4.0-5.5)。

5、添加助滤剂:

一般为惰性助滤剂:是一种颗粒均匀、质地坚硬、不可压缩的粒状物质

作用:助滤剂表面具有吸附胶体的能力,并且由此助滤剂颗粒形成的滤饼具有格子型结构,不可压缩,滤孔不会被全部堵塞,可以保持良好的渗透性

使用方法(1):在滤布上预涂,作为过滤介质使用

(2):按一定比例混入待滤的悬浮液中

常用的助滤剂:硅藻土、膨胀珍珠岩、石棉、纤维素、未活化的碳、炉渣、重质碳酸钙

6、添加反应剂:

添加可溶解的盐类,生成不溶解的沉淀。

1.3 固-液分离过程及设备简介

目的:收集胞内产物的细胞或菌体,分离除去液相,或者是收集含生化物质的液相,分离除去固体悬浮物,如细胞、菌体、细胞碎片、蛋白质的沉淀物和它们的絮凝体等。

意义:固-液分离过程下游加工的重要环节,用于发酵液的预处理和生物产品的纯化、精制等环节。

方法:常用的方法有过滤、离心。此外还有膜分离、双水相萃取和扩张床吸附等方法。

影响发酵液固-液分离的主要因素:菌体的大小、形状及发酵液的黏度,还有发酵液的温度、pH值、加热时间等。

1. 过滤

定义:用过滤介质将悬液中的固形颗粒与液体分离的过程。

常用的过滤方式:加压过滤和真空过滤

典型设备主要有:板框压滤机和鼓式真空过滤机

2、离心

定义:基于固体颗粒和周围液体密度存在差异,在离心场中使不同密度的固体颗粒加速沉降的分离过程。

离心分离方法:

(1)差速离心—工业上最常用的离心分离方法

定义:在密度均一的介质中由低速到高速逐级离心,用于分离不同大小的细胞和细胞器。

对象:混合样品中各沉降系数差别较大的组分。

(2)密度梯度离心—多用于生化研究

原理:用一定的介质在离心管内形成一连续或不连续的密度梯度,将细胞混悬液或匀浆置于介质的顶部,通过重力或离心力场的作用使细胞分层、分离。

分类:1)移动区带离心

2)等密度离心

常用密度梯度物质:蔗糖、甘油、CsCl、NaBr

1)移动区带离心

含几个组分的样品在足够高的离心场中离心时,每种颗粒都达到其最大沉降速度,这时样品开始分离。离心管的上层逐渐形成透明的上清液,并形成对应于样品各组分的一系列浓度界面,界面的移动相对于每种组分来说是特征的。

用于分离密度相近而大小不等的细胞或细胞器。此法所采用的介质密度较低,介质的最大密度应小于被分离生物颗粒的最小密度。

2)等密度离心

细胞或细胞器在连续梯度的介质中经足够大离心力和够长时间则沉降或漂浮到与自身密度相等的介质处,并停留在该层达到平衡,从而将不同密度的细胞或细胞器分离。

离心机分类:

离心分离

(1)优点:①分离速度快,效率高,

②操作时卫生条件好等优点,

③适合于大规模的分离过程。

(2)缺点:①投资费用高,

②能耗较大。

3.其他固-液分离方法

(1)膜分离:利用不同组分通过膜的传递速度不同而得以分离的方法。

(2)双水相萃取:利用不同组分在双水相分配系数不同进行分离方法。

(3)扩张床吸附:将固-液分离合目的产物吸附合并成一步进行的一种分离方法。

影响固液分离的因素:

1、微生物种类

真菌的菌体大,固液分离容易,可采用真空转鼓式过滤或板框过滤;

细菌和细胞碎片小,固液分离较难,固液分离前要进行预处理。

2、发酵液黏度

固液分离速度与黏度成反比。

3、其它因素

培养基组成、发酵周期、发酵液的pH值、温度和加热时间等

第二节下游提纯过程

2.1 微生物细胞的破碎

微生物的代谢产物如果是胞内物质(如有些酶制剂、干扰素、胰岛素等),那么首先要收集菌体,进行细胞破碎。

1. 微生物细胞壁的组成与结构:

(1)细菌细胞壁:

(2)酵母菌细胞壁比G+菌稍厚,主要成分是葡聚糖、甘露聚糖和蛋白质等。

(3)其他真菌细胞壁主要由多糖组成,如几丁质或纤维素强度比细菌和酵母菌高。

2. 常用的细胞破碎方法

细胞破碎的方法很多,根据外加作用力的方式可分为机械法和非机械法两大类。亦可按所用方法的属性分为物理法、化学法和生物法三类。

物理破碎法:高压匀浆法、挤压法、高速珠磨法、超声波法;

化学破碎法:渗透冲击法、增溶法。

生物破碎法:酶溶法。

(1)物理破碎法

①高压匀浆法大规模细胞破碎的常用方法

原理:利用高压使细胞悬浮液通过针形阀,由于突然减压和高速冲击撞击环使细胞破碎。

适用范围:适用于酵母菌、大肠杆菌、巨大芽孢杆菌和黑曲霉等。不适用于高度分枝的微生物。特点:在操作方式上,可以采用单次通过匀浆器或多次循环通过等方式,也可连续操作。

②挤压法(X-press法)

将浓缩的菌体悬浮液冷却至-25℃至-30℃形成冰晶体,利用500 MPa以上的高压冲击,冷冻细胞从高压阀小孔中挤出使之破碎。

原理:细胞破碎是由于冰晶体在受压时的相变,包埋在冰中的细胞变形所引起的。主要用于实验室中。

优点:适用的范围广、破碎率高、细胞碎片的粉碎程度低以及活性的保留率高。

缺点:对冷冻-融解敏感的生化物质不适用。

③高速珠磨法

原理:进入珠磨机的细胞悬浮液与极细的玻璃小珠、石英砂、氧化铝等研磨剂(直径小于1mm)一起快速搅拌或研磨,研磨剂、珠子与细胞之间的互相剪切、碰撞,使细胞破碎,释放出内含物。

缺点:破碎中产生的热量,需采用冷却措施。

优点:可连续操作

④超声波破碎法

超声波破碎也是应用较多的一种破碎方法。通常采用的超声波破碎机在15-25千赫(kHz)的频率下操作。

原理:在超声波作用下液体发生空化作用,空化泡的急剧膨胀压缩和内向爆破产生冲击弹性波,将声能转化为机械能,形成粘性消散涡流,如果液体旋涡小于细胞尺寸,产生不同密度移动,当细胞的动能超过细胞壁强度时,至使细胞破碎。

特点:杆菌比球菌易破碎,革兰氏阴性菌细胞比革兰氏阳性菌易破碎,酵母茵效果较差。菌体浓度太高或介质黏度高,均不利于超声波破碎。

最大问题是在超声过程中声波被溶液吸收产生大量热量,不能及时将热量移出,细胞悬浮液的温度急剧升高,导致酶和其它生物活性物质变性失活。因此,在实验室中往往采取间断破碎的方法,即经短时间破碎,冷却降温,再进行破碎,经多次反复达到破碎目的。

因此在细胞破碎过程中,有效冷却是关键。

也因大容量容器的声波传递和散热困难,限制了超声破碎的大规模应用。

(2)化学破碎法

定义:利用化学试剂改变细胞壁或膜的结构或完全破除细胞壁形成原生质体后,在渗透压作用下使细胞膜破裂而释放胞内物质的方法。

优点:对产物的释出选择性好,细胞外形较完整、碎片少、核酸等胞内杂质释放少,便于后步分离等优点,故使用较多。

缺点:容易引起活性物质失活破坏;化学试剂的加入,常会给随后产物的纯化带来困难,并影响最终产物纯度。

①渗透压冲击

原理:将细胞放在高渗透压的介质中(如一定浓度的甘油或蔗糖溶液),达到平衡后,转入到渗透压低的缓冲液或纯水中,介质被突然稀释,或者将细胞转入水或缓冲液中,由于渗透压的突然变化,水迅速进入细胞内,引起细胞壁的破裂。

特点:较温和的一种破碎方法,操作也简单。

应用:仅对细胞壁较脆弱的菌,或者细胞壁预先用酶处理,或合成受抑制而强度减弱时才是合适的。

②增溶法:

原理:利用某些化学试剂如有表面活性剂等,增加细胞壁或膜的通透性,而使细胞破碎的方法。该法取决于化学试剂的类型以及细胞壁膜的结构与组成。

常用的表面活性剂有SDS、EDTA、Triton X-100,有机溶剂有甲苯、乙醇、异丙醇、盐酸胍和尿素。

化学渗透法优点:

对产物释放有一定的选择性,可使一些较小分子量的溶质如多肽和小分子的酶蛋白透过,而核酸等大分子量的物质仍滞留在胞内;

细胞外形完整,碎片少,浆液粘度低,易于固液分离和进一步提取。

缺点:通用性差;时间长,效率低;有些化学试剂有毒。

(3)生物破碎法

常用的生物破碎法主要是酶溶法。利用生物酶分解破坏细胞壁上特殊的键,从而达到破壁的目的。

酶溶法的优点:选择性释放产物,条件温和,核酸泄出量少,细胞外形完整。

缺点:溶酶价格高,溶酶法通用性差(不同菌种需选择不同的酶),产物抑制的存在。

溶菌酶是应用最多的酶,它能专一地分解细胞壁上糖蛋白分子的α-1, 4糖苷键,使脂多糖解离,经溶菌酶处理后的细胞移至低渗溶液中使细胞破裂。

利用溶解细胞壁的酶处理菌体细胞,使细胞壁受到部分或完全破坏后,再利用渗透压冲击等方法破坏细胞膜,进一步增大胞内产物的通透性。

利用溶酶系统处理细胞时必须根据细胞壁的结构和化学组成选择适当的酶,并确定相应的次序。

酶溶法的优点:选择性释放产物,条件温和,核酸泄出量少,细胞外形完整。

酶溶法的缺点:溶酶价格高,溶酶法通用性差,产物抑制的存在。

2.2 浓缩技术

浓缩过程是发酵工业提取与精制过程常用的单元操作。浓缩的目的是将低溶质浓度的溶液通过除去溶质变为高溶质浓度的溶液。它广泛用于有机酸、氨基酸、核苷酸、酶制剂及抗生素等发酵工业产品的提取分离过程。

常用的浓缩技术有蒸发浓缩法、冷冻干燥法、吸收浓缩法。

(1)蒸发浓缩法

蒸发浓缩法概念及原理

蒸发是工业发酵生产过程中常用的发酵产品浓缩方法之一。蒸发的目的是使溶液中的溶剂在一定的温度和压力下加热后汽化除去,从而提高溶液中溶质的浓度。这里所指的溶液是由不挥发的溶质与液体溶剂所组成,蒸发过程只有溶剂汽化而溶质不汽化。

蒸发浓缩装置的设计

蒸发是溶液表面的溶剂分子获得的动能超过了溶液内溶剂分子间的吸引力脱离液面进入空间的过程。蒸发快慢与温度、蒸发面积及液面蒸汽分子密度等因素有关。因此,蒸发浓缩装置常按照加热、扩大液体表面积、减压、和加速空气流动等因素而设计

蒸发浓缩装置的分类

常用的蒸发浓缩过程可分为常压蒸发浓缩和真空减压蒸发浓缩过程。按照结构型式不同,常压蒸发设备有中央循环管式蒸发器、横管式蒸发器、夹套式蒸发器、夹套带搅拌外循环蒸发器、强制循环蒸发器等,真空减压蒸发设备根据二次蒸气的利用的情况,可分为单效蒸发和多效蒸发。

(2)冷冻浓缩法

冷冻浓缩法:是工业发酵中生物大分子和具有生理活性的发酵产品浓缩常用的一种有效方法。冷冻浓缩法原理:在冷冻时水分结成冰,盐类及发酵产品不进入冰内而留在冰外,浓缩时先将待浓缩的溶液冷冻使之变成固态,然后缓慢的融解,利用溶剂与溶质熔点的差别而达到除去大部分溶剂的目的。如酶制剂和蛋白质。

(3) 吸收浓缩法

吸收浓缩法:是一种通过吸收剂直接吸收出去溶液中溶剂分子使溶液浓缩的方法。

应用吸收浓缩法时要求吸收剂不与溶液起化学反应,而且对大分子类的发酵产品不起吸收作用,易于溶液分开,吸收剂除去溶剂后能重复使用。

2.3 沉淀技术

沉淀定义:通过改变条件或加入某种试剂,使发酵产物离开溶液,生成不溶性颗粒而沉降析出的过程。

作用:浓缩作用大于纯化作用,是初步分离的一种手段。

优点:沉淀法具有设备简单、成本低、原料易得、收率高、浓缩倍数高和操作简单等优点。

缺点:过滤困难、产品质量较低、需要重新精制。

1.盐析

原理:高浓度中性盐存在下,使生物分子在水溶液中溶解的溶解度降低而产生沉淀的方法,多用于蛋白质(酶)的分离。

常用的盐类是硫酸铵。

优点:①成本低,不需要特别昂贵的设备。

②操作简单、安全。

③对许多生物活性物质具有稳定作用。

2. 等电点沉淀

原理:利用两性电解质在低离子强度下,调节至等电点,可使各种两性电解质所带净电荷为零,能大大降低其溶解度,形成沉淀。

不同的两性电解质具有不同的等电点,从而将其分离开。

优点:操作简单,试剂消耗少,引入杂质少。

缺点: 不能完全沉淀析出,常与盐析法、有机溶剂沉淀法或其他沉淀剂一起配合使用,以提高沉淀能力和分离效果。

应用:主要用于在分离纯化流程中去除杂蛋白,而不用于沉淀目的物。

等电点操作时要注意:

①溶液中离子的种类和浓度对生物分子等电点的影响。

②等电点附近的盐溶作用。

③目的产物的不稳定性。

3.有机溶剂沉淀

定义:与水互溶的有机溶剂(乙醇、丙酮等)能使蛋白质在水中的溶解度显著降低。多用于生物小分子、多糖、核酸和蛋白质等产品的提取。

机理:降低溶液的介电常数,因为分子间的静电引力和溶剂的介电常数成反比,加入有机溶剂,蛋白质分子间的引力增加,溶解度降低。

常用有机溶剂:乙醇、甲醇、丙酮等。

优点:

①分辨能力比盐析法高,一种溶质只在一个比较窄的有机溶剂范围内沉淀;

②沉淀不需脱盐;

③有机溶剂密度低,与沉淀物密度差大,容易进行固液分离;

④有机溶剂容易蒸发,不会在成品中残留,适用于食品、药品的制备。

缺点:容易引起蛋白质变性失活,并且有机溶剂易燃、易爆,对安全要求较高。

4. 非离子型多聚物沉淀

定义:水溶性的非离子多聚物如聚乙二醇(PEG)、葡聚糖右旋糖酐硫酸钠等,可用于沉淀分离蛋白质(尤其是不稳定的蛋白质)、DNA和RNA等。

应用最多的是PEG。

机制:多聚物与有机溶剂相似,能降低水化度使蛋白质沉淀;与大分子形成复合物,发生共沉淀作用等

优点:其操作条件温和,不易引起生物大分子的变性,沉淀效能高,很少量的沉淀剂就可以使相当多的生物大分子沉淀,且沉淀后的多聚物也容易除去,无毒、不可燃,对大多数蛋白质有保护作用。

应用:广泛用于蛋白质、核酸、细菌和病毒等的分离纯化。

2.4 离子交换层析技术

定义:利用离子交换剂上的可交换离子与周围介质中被分离的各种离子间的亲和力不同,经过交换平衡达到分离的目的的一种柱层析法。

在以离子交换剂为固定相,液体为流动相的系统中进行。

优点:灵敏度高,重复性、选择性好,分析速度快等优点,是当前最常用的层析法之一。(1)离子交换剂的组成结构及其特性

(2)离子交换树脂的形状结构示意图

2.5 凝胶色谱技术

凝胶过滤法又称为分子筛层析,是利用凝胶的网状结构为固定相,根据分子大小进行分离的一种方法。

凝胶过滤所用的介质是由交联葡萄糖、琼脂糖或聚丙烯酰胺形成的凝胶珠。凝胶珠的内部是多孔的网状结构。单个凝胶珠本身象“筛子”,不同类型凝胶的筛孔的大小不同。

凝胶过滤层析过程示意图

典型的凝胶类型

交联葡聚糖凝胶:Sephadex

聚丙烯酰胺凝胶:Sephacryl

琼脂糖凝胶:Sepharose和Bio-Gel

其它:有机凝胶Sepharon,交联聚醚Toyopeal,纤维素凝胶,改性刚性填料等。

2.6 亲和层析技术

定义:利用生物分子物质具有的特异的亲和力而进行分离的一种层析技术。

许多生物大分子具有与其结构相对应的特异分子可逆结合的特性,如抗原与抗体、酶与底物或抑制剂、激素与受体等,这种结合往往是特异的而且是可逆的,生物大分子间的这种结合力称为亲和力。

(1)亲和层析的基本特点

①纯化过程简单、迅速,且分离效率高

②特别适用于分离纯化一些含量低、稳定性差的生物大分子

③纯化倍数大,产物纯度高

④必须针对某一分离对象制备专一的配基及寻求稳定的层析条件

⑤价格相对较昂贵;

⑥在洗脱中,交联在层析介质上的配基可能脱落并进入产品中,从而造成不良影响,如抗体、染料等配基。

选择并制备合适的亲和吸附剂是亲和层析能否取得成功的关键之一。它包括基质和配体的选择、基质的活化、配体与基质的偶联等。

根据配体对待分离物质的亲和性的不同,可以将其分为两类:特异性配体和通用性配体。

特异性配体一般是指只与单一或很少种类的蛋白质等生物大分子结合的配体。

如生物素和亲和素、抗原和抗体、酶和它的抑制剂、激素-受体等,它们结合都具有很高的特异性,用这些物质作为配体都属于特异性配体。

配体的特异性是保证亲和层析高分辨率的重要因素。

通用性配体一般是指特异性不是很强,能和某一类的蛋白质等生物大分子结合的配体,如各种凝集素可以结合各种糖蛋白,核酸可以结合RNA、结合RNA的蛋白质等。

通用性配体对生物大分子的专一性虽然不如特异性配体,但通过选择合适的洗脱条件也可以得到很高的分辨率。

通用配体还具有结构稳定、偶联率高、吸附容量高、易于洗脱、价格便宜等优点,所以在实验中得到了广泛的应用。

基质一般不能直接与配体连接,偶联之前需要活化。

基质的活化是指通过对基质进行一定的化学处理,使基质表面表面上的一些化学基团转变为易于和特定配体结合的活性基团。

不同的基质有不同的活化方法。亲和层析纯化生物大分子通常采用柱层析的方法。

(2)洗脱方法

非特异性洗脱:改变缓冲液的pH、离子强度、介电常数或温度使物质构象改变,浓缩、洗脱后立即中和稀释或透析,使蛋白质迅速恢复到天然结构

特异性洗脱:再次利用生物学特异性只洗脱和配基专一作用的酶,不洗脱由于非专一吸附上去的杂蛋白,特异性强。

(3)再生

亲和层析拄可在一次层析后用大量洗脱剂连续洗涤,然后再用平衡缓冲液平衡,经处理后的层析柱能再次使用。

(4)亲和层析的应用

①分离和纯化

②分辨化学或遗传学上修饰的酶

③纯化亲和标记的活性中心肽段和蛋白质结构研究

④纯化人工合成的多肽和蛋白质

⑤解释酶作用机理

第三节发酵产物的成品加工

3.1 结晶技术

定义:物质从液态或气态形成晶体的过程,是制备高纯度固体物质(特别是小分子物质)的重要方法之一。

结晶是溶质从溶液中析出形成新相的过程,只是同类分子离子才能排列成晶体,具有高度的选择性。

结晶过程成本低、设备简单、操作方便,以广泛应用于氨基酸、抗生素、维生素、味精等制品的精制。

1. 结晶过程的分析

(1)结晶形成的过程:

①过饱和溶液的形成(前提)

②晶核的形成

③晶体的生长(以过饱和度为推动力)

(2)结晶与温度、浓度的关系

饱和曲线:表示物质溶解度与温度的关系

1.稳定区(不饱和区):不会发生结晶

2.不稳定区(过饱和区):结晶能自动生成

3.介稳区:结晶不能自动进行,向处于介稳区的溶

液中加入晶体,能诱导结晶产生,晶体能生长。

2. 结晶的方法

(1)冷却结晶

(2)浓缩结晶

(3)化学反应结晶

(4)盐析结晶

3. 晶核的形成

晶核:过饱和溶液中新生成的微小晶体粒子,是晶体生长过程的核心。成核是一个相变过程,即在母液相中形成固相小晶芽。

晶核的大小粗估为数十纳米至几微米。

晶核形成时需要消耗一定的能量才能形成固-液界面。在过饱和溶液中,能量在某一瞬间、某一区域大于某一能阈值时,才有利于晶核的形成。

4.晶体的生长

一旦晶核形成后,就形成了晶-液界面,在界面上就要进行生长,即组成晶体的原子、离子要按照晶体结构的排列方式堆积起来形成晶体。

5. 决定晶体生长形态的外因

温度;杂质;过饱和度;粘度;结晶速度;涡流

所有这些外因是通过内因起作用的。

3.2 产物的干燥

干燥通常是指将潮湿固体,半固体或浓缩液中的水分(或溶剂)蒸发除去的过程。

目的:除去水分,便于保存、包装和运输。

注意:保持其活性,营养价值及药效。

在干燥系统中,干燥介质与被干燥物质的温度呈动态的平衡关系。

从干燥的这一特点,可得到以下共识:

干燥过程受:传热规律,水分性质,水气运转和转化的影响。

①干燥物料不一定是液态,水分的运动和汽化可能受到物料层的影响。

②水分未达到沸点就汽化,其蒸汽压比周围汽体压强小。蒸汽能否大量排出,要受周围汽体条件的影响。

③干燥是传热和传质相结合的操作,干燥速度由传热速率和传质速率共同控制。

1.影响干燥速率的因素

(1)湿物料的性质和形状

主要是指物料的物理结构(导热性能),化学组成、形状和大小(决定水的存在状况),物料层的厚度、水分的结合方式。

(2)湿物料本身的温度

一般来说,越高,速度越快(温度越高,水分运动速率越快)。

(3)干燥介质的温度

通常:越高,速度越快,不能无限制的提高,应低于物料的变质(分解、焦化、熔融)温度。干燥介质的进出口温差越小,干燥V↑,但热的利用效率下降。

(4)干燥介质和被干燥物料的接触情况和干燥器类型喷雾、沸腾等不同而异。

2.工业发酵中常用的干燥过程

(1)喷雾干燥:物料雾化,水分急速蒸发

特点:

快速优质

自动化,连续化

昂贵,耗能

可得无菌粉末态产品,可通过改变操作条件控制粉末物理性质

常见应用方式:压力喷雾干燥;离心喷雾干燥;气流喷雾干燥

(2)气流干燥

①特点:干燥强度大,时间短;设备简单,生产能力大,可整合多工序

②几种气流干燥器:长管式气流干燥流程;短管式气流干燥流程;旋风式气流干燥流程。(3)沸腾干燥

原理:气流使固液两相脉动或湍动,水分挥发

①特点对物料及其中颗粒的物理特性有一定要求;快速,物料短时受热;传热系数大,生产能力高;设备简单,自动化;可调节物料受热时间;纵向返混;停留时间不均

②设备与应用:根据物料特性选用加料器;单层沸腾干燥流程;喷雾沸腾造粒干燥流程。(4)冷冻干燥

原理:低温低压升华水分

特点:保持产品活性、形态、溶解度;效率低,投入大;

设备结构:冷冻部分;真空部分;去除水汽部分;加热部分。

(5)真空干燥

负压下加热去除水分;低温干燥;快速;可回收溶剂;无空气氧化;设备分为间歇式和连续式

《发酵工程原理与技术》课程复习提纲及习题集

《发酵工程原理与技术》课程复习提纲及部分知识点 [复习提纲] 什么是发酵?发酵工程的发展历程? 发酵的定义在合适的条件下利用生物细胞内特定的代谢途径转变外界底物生成人类所需目标产物或菌体的过程 自然发酵时期 1.发酵工程的诞生 2.通气搅拌液体深层发酵的建立 3.大规模连续发酵以及代谢调控发酵技术的建立 4.现代发酵工程时期 发酵工业常用的微生物及其特点。 ①细菌:枯草芽孢杆菌、醋酸杆菌、棒状杆菌、短杆菌等②放线菌:链霉菌属、小单胞菌属和诺卡均属③酵母菌:啤酒酵母、假丝酵母、类酵母 4.霉菌 菌种的分离及保藏 一稀释涂布和划线分离法二利用平皿中的生化反应进行分离三组织分离法四通过控制营养和培养条件进行分离 一斜面保藏方法二液体石蜡油保藏法三冷冻干燥保藏法四真空干燥法五液氮超低温保藏法六工程菌的保藏 菌种的退化及复壮 菌种退化是指生产菌种或选育过程中筛选出来的较优良菌株,由于进行转移传代或包藏之后,群体中某些生理特征和形态特征逐渐减退或完全丧失的现象退化的原因主要有基因突变连续传代以及不当的培养和保藏条件 菌种的复壮通过人工选择法从中分离筛选出那些具有优良性状的个体使菌种获得纯化服装的方法一纯种分离二淘汰法三宿主体内复壮法 微生物育种的方法有哪些? 自然育种、诱变育种 培养基的主要成分。 水、碳源、氮源、无机盐、生长因子、 碳源及氮源的种类。 碳源种类:1、糖类2、醇类3、有机酸类4、脂肪类5、烃类6、气体 氮源种类:1、无机氮源 2、有机氮源 培养基的设计的基本原则? 一根据生产菌株的营养特性配制培养基二营养成分的配比恰当三渗透压 4ph 值 发酵工业原料的选择原则 一因地制宜就地取材原料产地离工厂要近,便于运输节省费用 二营养物质的组成比较丰富浓度恰当能满足菌种发育和生长繁殖成大量有生理功能菌丝体的需要更重要的是能显示出产物合成的潜力 三原料资源要丰富容易收集

工程测量知识点总结.关键考试知识点

名词解测量复习提要 考试形式:半开卷;开卷范围:手写A4纸一张。 第一章:掌握以下内容(不是名词解释)测量学、水准面、水平面、大地水准面、平面直角坐标、高程、绝对高程、相对高程、高差、测量工作的程序、及遵循的原则、测量的任务、测量的基本工作。 第二章:高程测量的种类、水准原点、水准测量原理、水准仪的使用、、水准点的表示方法、水准路线的种类、水准测量方法{记录(2种)、计算、检核}、水准测量测站的检核方法、闭合、附合水准测量成果计算及精度要求、转点的作用。 第三章:水平角、竖直角测角原理、经纬仪的操作、测回法测水平角的观测、记录、计算方法及精度要求、竖直角仰、俯角代表的意义、竖直角的观测、记录、计算方法。 第四章:测量工作所指距离的内容、直线定线定义及操作、钢尺量距方法、精度要求及计算方法。 第五章:直线定向内容、直线的基本方向、方位角的内容及取值范围、正反方位角的关系、方位角与象限角关系。方位角的计算。 第六章:误差产生原因、分类,评定精度的方法、算术平均数与真值之间的关系。 第七章:控制、控制测量、控制网的内容,平面控制测量的形式,导线布设形式、导线测量的外业内容,闭合、附合导线的内业计算及各自的精度要求,坐标正算、坐标反算。跨河流水准测量内容、三角高程测量的适应范围。 第八章:地形图涵盖内容、比例尺、纸上与地面距离的互换计算、地物的表示方法(4种)、地貌的表示方法(等高线、等高距、等高线平距)、会看典型的地貌、理解等高线的特征。测图前要做哪几项准备工作、视距测量公式、碎步测量测站上要做的工作、地形测量的记录、计算以及测量的原理。地形图的运用(掌握第项) 第九章:拨角法放线其转向角的计算及正负角的意义,纵、横断面图涵盖的主要内容。 第十章:圆曲线及带缓和曲线的圆曲线要素计算、主点测设及里程计算,用偏角法测设2种曲线如何进行碎步测量(内、外业)。 第十一章:测设的基本工作(水平角、高程、点位、坡度)先内业如何计算,后外业如何观测。 桥墩、桥台中心点(直线)测设的内业 抓住教材、作业及回忆实习整个过程(内、外业)去复习。 析 1.水准面:将海洋处于静止平衡状态时的海水面或与其平行的水面,称为水准面。 2.大地体:由地球水准面所包围的地球形体,它代表了地球的自然形状和大小。 3.参考椭球面:与大地水准面非常接近的能用数学方程表示的旋转椭球体相应的规则曲面。4.绝对高程:地面点沿铅垂线至大地水准面的距离。 5.相对高程:地面点沿其铅垂线方向至任意假定的水准面的距离称为相对高程。 6.高差:地面两点间的绝对高程或相对高程之差。

发酵工程总结

1 绪论 1-1何谓发酵?生物化学和工业上的发酵有何不同? 生物化学意义上的发酵是指细胞在无氧条件下,分解葡萄糖或有机物产生能量的过程。 工业意义上的发酵是泛指利用培养细胞(包括动物、植物和微生物)获得产物的任何有氧或无氧的过程。 1-2何谓发酵工程?其主要内容是什么?请简述其与生物技术的关系。 发酵工程是利用生物体为工业化生产服务的一门工程技术,即利用生物体的生命活动产生的酶,对无机或有机原料进行酶加工(生物反应过程),获得产品的工程化技术。 它是研究生物技术产业化的一门学科,其主体包括生物反应工程和产品提取、精制的下游工程。主要研究内容: 1)优良菌种的选育; 2)合适的生物反应工程包括生物反应过程的优化、反应器的选择和下游工程生物技术是应用自然科学和工程学的原理,依靠生物催化剂(酶或细胞)的作用将物料进行加工以提供产品或为社会服务的技术。它包括基因工程、细胞工程、发酵工程、酶工程、生化工程等五大工程。生物技术的核心是基因工程,但又离不开发酵工程。发酵工程是基因工程和酶工程的表达,即大部分生物工程的产品均要通过发酵工程来完成。所以说,发酵工程在生物工程中是最关键的过程。现代发酵工程处于生物技术的中心地位,绝大多数生物技术的目标都是通过发酵工程来实现的。因此生物技术的主要应用领域往往就是发酵工程的研究对象。 1-3请简述发酵工程的发展史。 1)基因工程出现之前的时代(1982年前); 1859年发现发酵原理、设计了便于灭菌的密闭式发酵罐; 1929,1940年发现和分离出青霉素,青霉素发酵、将通气搅拌引入发酵工业; 1956年谷氨酸等氨基酸、核苷酸等发酵成功、代谢控制育种理论的建立; 60年代采用烷烃、乙酸、天然气等为原料的石油发酵; 2)基因工程出现后的时代(1982年后)。 80 年代随着基因工程技术的发展,人们可定向选育高产菌株; 1991年综述代谢工程,在对细胞内代谢网络系统分析的基础上开始运用基因工程技术改造细胞代谢途径,以改进细胞性能或提高产物生产能力。 组学的发展…… 系统工程和合成生物学…… 1-4 何谓初级代谢和次生代谢?举例说明初级代谢产物和次生代谢产物。 初级代谢:微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程称为初级代谢。常见的初级代谢产物有:乙醇、氨基酸、呈味核苷酸、有机酸、多羟基化合物、多糖(黄原胶、结冷胶)、糖类和维生素。

发酵复习重点

发酵复习重点 第一章绪论 1.名词解释:发酵工程 现代发酵工程:采用现代工程技术手段,利用生物细胞的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程中的一种新技术。 2.发酵过程中包括哪些环节? 发酵工程的内容包括了以下的基本步骤: 1.菌种的选育 2.培养基的配置 3.灭菌 4.种子扩大培养和接种 5.发酵过程控制 6.发酵动力学及代谢机理 7.发酵过程的比拟放大 8.分离提纯 3.简述发酵工程的发展历史。 ? 1.传统发酵工业: ●从人类出现到19世纪中期 ? 2.近代发酵工业建立时期 ●19世纪50年代到20世纪40年代 ? 3.近代发酵工业全盛时期 ●从20世纪40年代初到70年代末 ? 4.现代发酵工业建立和发展 ●20世纪70年代末至今 4.发酵工业的研究范围包括哪几个方面? ? 1.微生物菌体发酵 ? 2.微生物酶发酵 ? 3.微生物代谢产物发酵 ? 4.微生物转化发酵 ? 5.生物技术的生物细胞发酵 5.简述发酵工程的主要前沿进展。 主要研究:人工选育和改良菌种 ?高等动植物细胞培养 ?固定化技术广泛应用 ?开发大型节能高效的发酵装置 ?强调代谢机理与调控研究 ?将生物技术广泛地用于环境工程 ?混合菌发酵 前沿进展: ?过程优化技术 ?多尺度生物反应器优化控制技术 ?生物炼制

第二章菌种选育 1.发酵工业对菌种的要求有哪些,菌种的来源有哪些? ?原料廉价,生长迅速,目的产物产量高; ?培养条件易于控制,发酵周期较短; ?抗噬菌体及杂菌污染的能力强; ?菌种不易变异退化; ?对放大设备的适应性强; ?菌种不是病原菌,不产生任何有害的生物活性物质和毒素。 ●从自然界筛选 ●菌种保藏机构 ●从发酵制品中分离 2.常见的菌种选育方法有哪些? 经典育种:自然选育,诱变育种,有一定盲目性。 定向育种:杂交育种,分子育种(DNA重组技术) 如碱基类似物、5—氟尿嘧啶、烷化剂等 4.菌种保藏有哪些主要方法?

高中生物选修1传统发酵技术 知识点总结(经典全面)

选修一知识总结(专题一、二、三、六) (请妥善保存) 专题一 传统发酵技术的应用 课题1 果酒和果醋的制作 广义发酵→有氧发酵和无氧发酵;狭义发酵→微生物的无氧呼吸。发酵≠无氧呼吸 (一) 果酒制作 1.原理:菌种 ,属于 核生物,新陈代谢类型 , 有氧条件下,进行有氧呼吸,大量繁殖。反应式为: ; 无氧条件下,进行无氧呼吸,产生酒精。反应式为: 。 2.控制的发酵条件: 。 3.菌种来源:??? 。:。:菌菌种分离获得得纯净的酵母人工培养型酵母菌附着于葡萄皮上的野生自然发酵 4.实验设计流程图 挑选葡萄→冲洗→______________→_______________→_______________ ↓ ↓ 果酒 果醋 5.实验结果分析与评价:可通过嗅觉和品尝初步鉴定,并用____________检验酒精存在。可观 察到的现象为 。葡萄酒呈红色的原因: 6.注意事项: (1) 在 、 的发酵液中,酵母菌可以生长繁殖,而多数其它微生物都因无法适应这 一环境而受到抑制,从而在不灭菌情况下,使酵母菌成为优势菌种。 (2)新鲜葡萄的处理: 为防止杂菌感染应先 (冲洗/去枝梗),注意不要反复冲洗,否则酵母菌数 量减少,影响发酵。 (3)为防止发酵液被污染,发酵瓶要用 消毒。发酵液装瓶后保留 的空间,目的是 (4)装置各部件作用 ①出料口:___________ ;②___________ :醋酸发酵时连接充气泵;③___________ : 排出酒精发酵时产生的CO2。 ④排气口连接一个长而弯曲胶管的作用是 ___________ 。使用该装置制酒 时,应该______充气口;制醋时,应该充气口连接____________。 (二)果醋的制作: 1.原理:菌种____________,属于________核生物,新陈代谢类型为___ ______ 。 当 、 都充足时,醋酸菌将 分解成醋酸; 当缺少 时,醋酸菌将 变为 ,再将 变为醋酸。 反应式为__________ _________ _________ 。 2.条件:最适合温度为__________,需要充足的______________。 3.菌种来源:可以从食醋中分离醋酸菌,也可以购买。 4.设计实验流程及操作步骤: 果酒制成以后,在发酵液中加入___________或醋曲,然后将装置转移至 _____ 0C 条件下发 酵,适时向发酵液中通入________。如果没有充气装置,可以将瓶盖打开,在瓶盖上纱布,以减 少空气中尘土污染。 5.注意事项: (1)严格控制发酵条件,因为醋酸菌对_______的含量特别敏感,当进行深层发酵时,即使只是短时间中断 通入氧气,也会引起醋酸菌死亡。此外,醋酸菌最适生长温度为_________℃,控制好发酵温度,使发酵时 间缩短,又减少杂菌污染的机会。 (2)有两条途径生成醋酸:直接氧化和以 为底物的氧化。

(完整版)华中科技大学能源学院工程测试技术复习要点配合郑正泉版教材

工程测试技术复习要点 (注意:划线和加粗字体重点关注,未划线内容也需要看一看,以防万一)第一章: 仪器的精度(见课本第5页)(计算题) δ=Δmax/A o×100% 其中,δ是仪器的精度,Δ max 是仪器所允许的最大误差,A o 是仪表的量程。注意, A o 计算时,测量范围不等于量程,考虑一般在正常工作时不能超过上限的70%,所以要用测量范围除以70%得到量程。 例如,δ=0.2%时,仪表的精度等级为0.2级。 仪表的精密度表示测量值随机误差的大小和对同一量测量值的离散程度。(选择题) 多次测量误差的计算:(见课本9~11页,第14页)(计算题) 标准误差:(测量次数足够多时) 实际中, 此时的均方根误差为: 则算数平均值的标准误差为 具体求法参照课本例题(14页例2),此处不具体叙述。 第二章: 热电偶测温原理与计算(中间温度定律):(见课本第22页)(计算题) 当一支热电偶的接点温度分别为T 1,T 2 时,其热电势为E AB(T1,T2)(E1);在接点温 度为T 2和T 3 时,热电势为E AB(T2,T3)(E2);则在接点温度为T1和T3时,该热电偶 的热电势E AB(T1,T3)(E3)为前两者之和,即

E AB(T1,T3) = E AB(T1,T2) + E AB(T2,T3)具体使用方法参考课本例题(22页举例)。 测量锅炉炉膛内的温度(1300度左右)可采用铱铑—铱热电偶、铂铑30—铂铑6热电偶。(选择题) 热电阻温度计计算: 参照课本练习题(55页第7题),需要如下知识点: 铜电阻的电阻与温度关系如下:R t=R0(1+At+Bt2+Ct3),式中R t,R0是铜电阻 的温度分别为t和0°C时的电阻值。若在0~100°C温度范围,则可以用此公式:R t= R0(1+αt),其中α=R100/R0为电阻温度系数。R0的大小根据分度号的下 标来判断,下标带有的数字就是R 0的值,如Cu 50 的R 值为50欧,而分度号为G 的为53欧。根据相关参数即可进行计算。 热电偶电路(串,并,反):(见课本29至30页)(简答题) 测三点平均温度用并联,1000度左右高温选镍铬-镍硅(镍铝)热电偶;测两点间的温差用反接,-100度左右低温用铜-铜镍(康铜)热电偶。 热电阻测温线路(三线制电桥线路、四线制测量线路可以消除引线电阻带来的误差):(电路图和工作原理见课本41页)(简答题) 热电偶冷端温度补偿的原因和方法:(见课本22~26页) 原因:热电偶热电势的大小只在参比端(冷端)温度为恒定和已知时,才能反应测量端的温度。在实际应用时,热电偶的冷端总是放置在温度波动的环境中,或是处于在距热端很近的环境中,因此冷端温度不可能为恒定值,测量的值也就不是正确的。 为消除冷端温度对测量的影响,可采用如下方法: (一)补偿导线法:用补偿导线代替部分热电偶丝作为热电偶的延长部分,使参比端移到离被测介质较远的温度恒定的地方。 (二)计算修正法 (三)冰浴法:将参比端直接置于0°C下而不需进行冷端温度补偿的方法。(四)仪表机械零点调整法:如果参比端温度经常变化,此法不宜采用,一般用于要求不高的测量中。 (五)参比端温度补偿器 (六)多点冷端温度补偿法:利用多点切换开关可把几支甚至几十支同一型号的热电偶接到一块仪表上,这时只需一个公共的冷端补偿器即可。 第三章: 绝对压力和表压力的概念:(见课本第57页) 绝对压力:以绝对真空作为零点压力标准的压力称为绝对压力。 表压力:以大气压作为零点压力标准的压力称为表压力。 差压力:以大气压以外的任意压力为零点压力标准的压力称为差压力。 绝对压力=表压力+大气压力 压力传感器的应用:(见课本第68页) 测量动态压力时,通常是用压力传感器将其转变成电信号来进行测量的。常用的压力传感器有应变式、压电式、压阻式、电感式、电容式等。 高频脉动压力信号应采用压电式压力传感器。(选择题)

发酵工程知识点复习进程

第一章发酵工程概述 一、发酵工程:是利用微生物特定的形状和功能,通过现代化工程技术生产有用物质或直接应用与工业化生产的技术体系,是将传统发酵与现代的DNA重组、细胞融合、分子修饰和改造等新技术结合并发展起来的发酵技术。二、发酵工程简史: 1590 荷兰人詹生制作了显微镜 1665 英国人胡克制作的显微镜观察到了霉菌 近代发酵工程建立初期1864 巴斯德灭菌法 1856 psateur 酵母导致酒精发酵 19世纪末Koch 纯种分离和培养技术 三、发酵工程技术的特点 (1)主体微生物的特点 ①微生物种类繁多,繁殖速度快、代谢能力强,容易通过人工诱变获得有益的突变株; ②微生物酶的种类很多,能催化各种生化反应 ③微生物能够利用有机物、无机物等各种营养源 ④可以用简易的设备来生产多种多样的产品 ⑤不受气候、季节等自然条件的限制等优点 (2)发酵工程技术的特点 ①发酵工程以生命体的自动调节方式进行,数十个反应能够在发酵设备中一次完成 ②反应通常在常温下进行,条件温和,耗能少,设备简单 ③原料通常以糖蜜,淀粉等碳水化合物为主 ④容易生产复杂的高分子化合物 ⑤发酵过程中需要防止杂菌污染 (3)发酵工程反应过程的特点 ①在温和条件下进行的 ②原料来源广泛,通常以糖、淀粉等碳水化合物为主 ③反映以生命体的自动调节形式进行(同(2)①) ④发酵分子通常为小分子产品,但也很容易生产出复杂的高分子化合物 四、发酵工程的一般特征 ①与化学工程相比,发酵工程中微生物反应具有以下特点: 作为生物化学反应,通常在常温常压下进行,没有爆炸之类的危险,不必考虑防爆问题,还有可能使一种设备具有多种用途 ②原料通常以糖蜜、淀粉等碳水化合物为主,加入少量的各种有机或无机氮源,只要不含毒,一般无精制的必要,微生物本身就有选择的摄取所需物质 ③反应以生命体的自动调节方式进行因此数十个反应过程能够像单一反应一样,在称为发酵罐的设备内很容易进行 ④能够容易的生产复杂的高分子化合物,是发酵工业最有特色的领域 ⑤由于生命体特有的反应机制,能高度选择性的进行复杂化合物在特定部位的氧化还原官能团导入等反应

软件测试技术知识点

一、软件测试的定义 软件测试是一个过程或一系列过程,用来确认计算机代码完成了其应该完成的功能,不执行其不该有的操作。 1.软件测试与调试的区别? (1)测试是为了发现软件中存在的错误;调试是为证明软件开发的正确性。 (2)测试以已知条件开始,使用预先定义的程序,且有预知的结果,不可预见的仅是程序是否通过测试;调试一般是以不可知的内部条件开始,除统计性调试外,结果是不可预见的。 (3)测试是有计划的,需要进行测试设计;调试是不受时间约束的。 (4)测试经历发现错误、改正错误、重新测试的过程;调试是一个推理过程。(5)测试的执行是有规程的;调试的执行往往要求开发人员进行必要推理以至知觉的"飞跃"。 (6)测试经常是由独立的测试组在不了解软件设计的条件下完成的;调试必须由了解详细设计的开发人员完成。 (7)大多数测试的执行和设计可以由工具支持;调式时,开发人员能利用的工具主要是调试器。 2.对软件测试的理解?

软件测试就是说要去根据客户的要求完善它.即要把这个软件还没有符合的或者是和客户要求不一样的,或者是客户要求还没有完全达到要求的部分找出来。 (1)首先要锻炼自己软件测试能力,包括需求的分析能力,提取能力,逻辑化思想能力,即就是给你一个系统的时候,能够把整个业务流程很清晰的理出。 (2)学习测试理论知识并与你锻炼的能力相结合。 (3)想和做。想就是说你看到任何的系统都要有习惯性的思考;做就是把实际去做练习,然后提取经验。 总结测试用例,测试计划固然重要,但能力和思想一旦到位了,才能成为一名合格的软件测试工程师。 二、软件测试的分类 1.按照测试技术划分 (1)白盒测试:通过对程序内部结构的分析、检测来寻找问题。检查是否所有的结构及逻辑都是正确的,检查软件内部动作是否按照设计说明的规定正常进行。--结构测试 (2)黑盒测试:通过软件的外部表现来发现错误,是在程序界面处进行测试,只是检查是否按照需求规格说明书的规定正常实现。--性能测试 (3)灰盒测试:介于白盒测试与黑盒测试之间的测试。

最新发酵工程重点总结

发酵工程重点总结

第一章 发酵:通过微生物的生长繁殖和代谢活动,产生和积累人们所需产品的生物反应过程发酵工程:利用微生物(或动植物细胞)的特定性状,通过现代工程技术,在生物反应器中生产有用物质的技术体系。该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术。 发酵工业的特点?(7点) 1.发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。 2.可用较廉价原料生产较高价值产品。 3.反应专一性强。 4.能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修饰。 5.发酵过程中对杂菌污染的防治至关重要。 6.菌种是关键。 7.发酵生产不受地理、气候、季节等自然条件限制。 工业发酵的类型? 厌氧发酵 1. 按微生物对氧的不同需求需氧发酵 兼性厌氧发酵 液体发酵(包括液体深层发酵) 2.按培养基的物理性状浅盘固体发酵 深层固体发酵(机械通风制曲) 分批发酵 按发酵工艺流程补料分批发酵 单级恒化器连续发酵 连续发酵多级恒化器连续发酵 带有细胞再循环的单级恒化器连续发酵 发酵生产的基本工业流程? 1. 用作种子扩大培养及发酵生产的各种培养基的配制; 2. 培养基、发酵罐及其附属设备的消毒灭菌; 3. 扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中; 4. 控制最适发酵条件使微生物生长并形成大量的代谢产物; 5. 将产物提取并精制,以得到合格的产品; 6. 回收或处理发酵过程中所产生的三废物质。

工业发酵的过程的工艺流程图? 第二章 1、发酵工业菌种分离筛选的一般流程? 调查研究(包括资料查阅) 试验方案设计 含微生物样品的采集(如何使样品中所含微生物的可能性大?) 样品预处理(如何在后续的操作中使这种可能性实现) 菌种分离 根据目的菌株及其产物特点分 选择性分离方法随机分离方法 (定向筛选←选择压力) (用筛选方案- 检测系统进行间接分离) 富集液体培养固体培养基条件培养 (初筛) 菌种纯化 复筛 菌种纯化 初步工艺条件摸索再复筛生产性能测试 较优菌株1-3株 保藏及进一步做生产试验某些必要试验和 或作为育种的出发菌株毒性试验等 2、菌种选育改良的具体目标。(4点)? 1.提高目标产物的产量

发酵工程复习题

生物工程课后习题 1、传统发酵工程与现代发酵工程的区别?为什么说发酵工程处于生物技术的核心地位? 传统发酵工程:利用微生物的生长和代谢活动来大量生产人们所需产品的过程理论与工程技术体系。该技术体系主要包括菌种选育与保藏、菌种扩大生产、代谢产物的生物合成与分离纯化制备等技术集成。 现代发酵工程:是将DNA重组及细胞融合技术、酶工程技术、组学及代谢网络调控技术、过程工程优化与放大技术等新技术与传统发酵工程融合,大大提高传统发酵技术水平,拓展传统发酵应用领域和产品范围的一种现代工业生物技术体系(新一代工业生物技术)。 生物技术:应用自然科学和工程学的原理,依靠生物及其细胞的催化作用,将物料进行加工以提供产品或为社会服务的技术。发酵工程是酶工程和基因工程的表达,大部分生物技术的产品均要通过发酵工程来完成,所以说发酵工程处于生物技术的核心地位。 2、发酵工程上、中、下游技术分别主要包括哪些内容? 上游技术:优良种株的选育和保藏(包括菌种筛选、改造,菌种代谢路径改造等)中游技术:发酵过程控制,主要包括发酵条件的调控,无菌环境的控制,过程分析和控制等 下游技术:分离和纯化产品。包括固液分离技术、细胞破壁技术、产物纯化技术,以及产品检验和包装技术等 3、微生物发酵过程优化技术五大目标是什么?可以在哪些水平实现过程优化的目的? 高产量:微生物生理、遗传、营养及环境因素 高转化率:微生物代谢途径和过程条件 高效率:微生物反应动力学和系统优化 低成本:技术综合及产业化技术集成 环境友好:开发清洁生产技术 4、发酵工业的特点及应用范围? 1、发酵过程一般是在常温常压下进行的生化反应,反应安全,要求条件较简单。 2、可用较廉价原料生产较高价值产品。 3、反应专一性强。 4、能够专一性地和高度选择性地对某些较为复杂的化合物进行特定部位的生物转化修 饰。 5、发酵过程中对杂菌污染的防治至关重要。 6、菌种是关键。 7、发酵生产不受地理、气候、季节等自然条件限制。 5、发酵工业的基本生产过程? 1.用作种子扩大培养及发酵生产的各种培养基的配制 2.培养基、发酵罐及其附属设备的消毒灭菌 3.扩大培养出有活性的适量纯种,以一定比例接种入发酵罐中 4. 控制最适发酵条件使微生物生长并形成大量的代谢产物 5. 将产物提取并精制,以得到合格的产品 6. 回收或处理发酵过程中所产生的三废物质

机械工程测试技术基础知识点总结讲课教案

机械工程测试技术基础知识点总结

第一章 信号及其描述 (一)填空题 1、 测试的基本任务是获取有用的信息,而信息总是蕴涵在某些物理量之中, 并依靠它们来传输的。这些物理量就是 信号 ,其中目前应用最广泛的 是电信号。 2、 信号的时域描述,以 时间t 为独立变量;而信号的频域描述,以 频率f 为独立变量。 3、 周期信号的频谱具有三个特点: 离散性 , 谐波性 , 收敛 性 。 4、 非周期信号包括 准周期 信号和 瞬态非周期 信号。 5、 描述随机信号的时域特征参数有 均值 、 均方值 、 方差 。 6、 对信号的双边谱而言,实频谱(幅频谱)总是 偶 对称,虚频谱(相频 谱)总是 奇 对称。 (二)判断对错题(用√或×表示) 1、 各态历经随机过程一定是平稳随机过程。( Y ) 2、 信号的时域描述与频域描述包含相同的信息量。( Y ) 3、 非周期信号的频谱一定是连续的。( X ) 4、 非周期信号幅频谱与周期信号幅值谱的量纲一样。( X ) 5、 随机信号的频域描述为功率谱。( Y ) (三)简答和计算题 1、 求正弦信号t x t x ωsin )(0=的绝对均值μ|x|和均方根值x rms 。 2、 求正弦信号)sin()(0?ω+=t x t x 的均值x μ,均方值2 x ψ,和概率密度函数 p(x)。 3、 求指数函数)0,0()(≥>=-t a Ae t x at 的频谱。 4、 求被截断的余弦函数???≥<=T t T t t t x ||0||cos )(0ω的傅立叶变换。 5、 求指数衰减振荡信号)0,0(sin )(0≥>=-t a t e t x at ω的频谱。 第二章 测试装置的基本特性 (一)填空题 1、 某一阶系统的频率响应函数为121)(+=ωωj j H ,输入信号2 sin )(t t x =,则输出信号)(t y 的频率为=ω ,幅值=y ,相位=φ 。 2、 试求传递函数分别为5.05.35.1+s 和222 4.141n n n s s ωωω++的两个环节串联后组成的系统的 总灵敏度。 3、 为了获得测试信号的频谱,常用的信号分析方法有 傅立叶变换法 、 和 滤波器法 。 4、 当测试系统的输出)(t y 与输入)(t x 之间的关系为)()(00t t x A t y -=时,该系统能实 现 测试。此时,系统的频率特性为=)(ωj H 。 5、 传感器的灵敏度越高,就意味着传感器所感知的 被测量 越小。

发酵工程总结50327复习课程

发酵工程总结50327

1 绪论 1-1何谓发酵?生物化学和工业上的发酵有何不同? 生物化学意义上的发酵是指细胞在无氧条件下,分解葡萄糖或有机物产生能量的过程。 工业意义上的发酵是泛指利用培养细胞(包括动物、植物和微生物)获得产物的任何有氧或无氧的过程。 1-2何谓发酵工程?其主要内容是什么?请简述其与生物技术的关系。 发酵工程是利用生物体为工业化生产服务的一门工程技术,即利用生物体的生命活动产生的酶,对无机或有机原料进行酶加工(生物反应过程),获得产品的工程化技术。 它是研究生物技术产业化的一门学科,其主体包括生物反应工程和产品提取、精制的下游工程。主要研究内容: 1)优良菌种的选育; 2)合适的生物反应工程包括生物反应过程的优化、反应器的选择和下游工程生物技术是应用自然科学和工程学的原理,依靠生物催化剂(酶或细胞)的作用将物料进行加工以提供产品或为社会服务的技术。它包括基因工程、细胞工程、发酵工程、酶工程、生化工程等五大工程。生物技术的核心是基因工程,但又离不开发酵工程。发酵工程是基因工程和酶工程的表达,即大部分生物工程的产品均要通过发酵工程来完成。所以说,发酵工程在生物工程中是最关键的过程。现代发酵工程处于生物技术的中心地位,绝大多数生物技术的目

标都是通过发酵工程来实现的。因此生物技术的主要应用领域往往就是发酵工程的研究对象。 1-3请简述发酵工程的发展史。 1)基因工程出现之前的时代(1982年前); 1859年发现发酵原理、设计了便于灭菌的密闭式发酵罐; 1929,1940年发现和分离出青霉素,青霉素发酵、将通气搅拌引入发酵工业;1956年谷氨酸等氨基酸、核苷酸等发酵成功、代谢控制育种理论的建立; 60年代采用烷烃、乙酸、天然气等为原料的石油发酵; 2)基因工程出现后的时代(1982年后)。 80 年代随着基因工程技术的发展,人们可定向选育高产菌株; 1991年综述代谢工程,在对细胞内代谢网络系统分析的基础上开始运用基因工程技术改造细胞代谢途径,以改进细胞性能或提高产物生产能力。 组学的发展…… 系统工程和合成生物学…… 1-4 何谓初级代谢和次生代谢?举例说明初级代谢产物和次生代谢产物。 初级代谢:微生物从外界吸收各种营养物质,通过分解代谢和合成代谢,生成维持生命活动的物质和能量的过程称为初级代谢。常见的初级代谢产物有:乙醇、氨基酸、呈味核苷酸、有机酸、多羟基化合物、多糖(黄原胶、结冷胶)、糖类和维生素。

最新发酵工程复习资料重点

发酵工程复习资料重 点

发酵工程(Fermentation Engineering)的定义 应用微生物学等相关的自然科学以及工程学原理,利用微生物等生物细胞进行酶促转化,将原料转化成产品或提供社会服务的一门科学。 淀粉质原料进行蒸煮的目的是使植物组织和细胞膜彻底破裂,淀粉成为溶解状态进行液化;同时对进料进行灭菌;排除原料中的一些不良成分及气味。 为了实现这些目的,蒸煮设备必须达到下列要求: (1)能使淀粉细胞完全破裂,淀粉溶解成均匀的糊状物; (2)尽量减少淀粉和糖分的损耗,避免产生其它不必要的有害的化学变 化; (3)节省蒸汽,减少热损失; (4)设备能承受较高的压力,具有耐磨性,能使物料在锅内充分翻动,受 热均匀; (5)结构简单,操作方便,投资少。 连续蒸煮有低温长时间的罐式连续蒸煮,中温的柱式连续蒸煮和高温短时间的管式连续蒸煮 后熟器 在连续蒸煮中,后熟器是利用经加热器或蒸煮锅(罐)加热后的料液余热,在一定压力和温度下维持一定时间的继续蒸煮,因此,后熟器又称维持器。对后熟器的要求是,料液在后熟器中的整个截面上均匀地由下向上推动,力求做到先进先出。

真空冷却指的是醪液在一定的真空度下(即醪液进入负压状态)醪液本身产生大量蒸气(二次蒸气),并被抽出,这样便消耗了醪液大量的热量,因而醪液很快冷到与真空度相应的温度,这种醪液冷却法就称为真空冷却 糖化设备主要是糖化罐,其容积按1m3的糖化醪需要的1.3m3容积来计算。其旋转方向与冷却水在蛇管中水流的方向相反 ?连续糖化罐的作用是连续地把糊化醪与水稀释,并与液体曲或麸曲乳混 合,在一定温度下维持一定时间,保持流动状态,以利于酶的活动。二级真空冷却的连续糖化法。对蒸煮醪的前冷却和后冷却均采用真空冷却的糖化工艺,叫二级真空冷却糖化法 发酵罐的定义:是为一个特定生物化学过程的操作提供良好而满意的环境的容器。 ?1.按微生物生长代谢需要分类: ?好气:抗生素、酶制剂、酵母、氨基酸,维生素等产品是在好气发酵罐 中进行的;需要强烈的通风搅拌,目的是提高氧在发酵液中的传质系 数; ?厌气:丙酮丁醇、酒精、啤酒、乳酸等采用厌气发酵罐。不需要通气。 ? 2. 按照发酵罐设备特点分类: ?机械搅拌通风发酵罐:包括循环式,如伍式发酵罐,文氏管发酵罐,以 及非循环式的通风式发酵罐和自吸式发酵罐等。

机械工程测试技术基础知识点

第一章绪论 1、测试的概念 目的:获取被测对象的有用信息。 测试是测量和试验的综合。 测试技术是测量和试验技术的统称。 2、静态测量及动态测量 静态测量:是指不随时间变化的物理量的测量。动态测量:是指随时间变化的物理量的测量。 3、课程的主要研究对象 研究机械工程中动态参数的测量 4、测试系统的组成 5、量纲及量值的传递 6、测量误差 系统误差、随机误差、粗大误差 7、测量精度和不确定度 8、测量结果的表达 第二章信号分析及处理 一、信号的分类及其描述 1、分类 2、描述 时域描述:幅值随时间的变化 频域描述:频率组成及幅值、相位大小 二、求信号频谱的方法及频谱的特点 1、周期信号 数学工具:傅里叶级数 方法:求信号傅里叶级数的系数

频谱特点:离散性 谐波性 收敛性(见表1-2) 周期的确定:各谐波周期的最小公倍数 基频的确定:各谐波频率的最大公约数 2、瞬变信号(不含准周期信号) 数学工具:傅里叶变换 方法:求信号傅里叶变换 频谱特点:连续性、收敛性 3、随机信号 数学工具:傅里叶变换 方法:求信号自相关函数的傅里叶变换频谱特点:连续性 三、典型信号的频谱 1、δ(t)函数的频谱及性质 △(f)=1 频率无限,强度相等,称为“均匀谱”采样性质: 积分特性: 卷积特性:

2、正、余弦信号的频谱(双边谱) 欧拉公式把正、余弦实变量转变成复指数形式,即一对反向旋转失量的合成。解决了周期信号的傅里叶变换问题,得到了周期信号的双边谱,使信号的频谱分析得到了统一。 3、截断后信号的频谱 频谱连续、频带变宽(无限)

四、信号的特征参数 1、均值:静态分量(常值分量) 正弦、余弦信号的均值? 2、均方值:强度(平均功率) 均方根值:有效值 3、方差:波动分量 4、概率密度函数:在幅值域描述信号幅值分布规律 五、自相关函数的定义及其特点 1、定义: 2、特点 3、自相关图 六、互相关函数的定义及其特点 1、定义

测试技术主要内容

机械工程测试技术主要知识点 绪论 1)测试系统的组成 第一章信号的描述 2)信号的分类什么是确定信号,什么是周期信号什么是非周期信号什么是准周期信号什么是非确定性信号 确定性信号:能用明确的数学关系式或图像表达的信号称为确定性信号 非确定性信号:不能用数学关系式描述的信号 周期信号(period signal):依一定的时间间隔周而复始、重复出现;无始无终。 一般周期信号:(如周期方波、周期三角波等)由多个乃至无穷多个频率成分(频率不同的谐波分量)叠加所组成,叠加后存在公共周期。 准周期信号(quasi-periodic signal):也由多个频率成分叠加而成,但不存在公共周期。(实质上是非周期信号) 3)离散信号和连续信号能量信号和功率信号 什么是能量(有限)信号—总能量是有限的 什么是功率(有限)信号信号在有限区间(t1, t2)上的平均功率是有限的 4)时域信号和频域信号 以时间为独立变量,描述信号随时间的变化特征,反映信号幅值与时间的函数关系 以频率为变量建立信号幅值、相位与频率的函数关系 5)一般周期信号可以利用傅里叶展开成频域信号 6)傅里叶级数展开和傅里叶变换的定义和公式傅里叶变换的主要性质

傅里叶变换: 傅里叶变换: 性质: 对称性:X(t) ? x(-f )尺度改变性 频移特性

7)把时域信号变换为频域信号,也叫做信号的频谱分析。 8)求方波和三角波的频谱,做出频谱图,分别用三角函数展开式和傅里叶级数展开式 傅里叶变换…… 9)非周期信号的频谱分析通过 傅里叶变换 10)周期信号和非周期信号的频谱的主要区别 周期信号的频谱是离散的,非周期信号的频谱是连续的求单边指数衰减函数的傅里叶变换(频谱) 11)随机信号的描述,可分成足什么条件在随机信号的实际测试工作中,为什么要证明随机过程是各态历经的 随机信号必须采用概率和统计的方法进行描述 工程中绝大多数随机过程假定符合各态历经过程,则可用测得的有限样本记录来代表总体过程,否则理论上要测量无穷个样本才能描述该过程 12)脉冲函数的频谱什么是脉冲函数的筛选性质矩形窗函数平稳随机过程和非平稳随机过程,平稳随机过程又可分为各态历经和 非各态历经两类,各态历经随机过程的统计特征参数满的频谱sinc函数的定义单边指数函数的频谱单位阶跃函数的频谱δ函数具有等强度、无限宽广的频谱,这种频谱常称为“均匀谱”。 Sinc(x)=sinx/x

发酵工程(李艳)第三篇发酵工程产物的提取-第一次课概要

第三篇发酵工程产物的提取 第十一章发酵工程下游技术发展及发酵液的预处理 第一节:发酵工程下游技术发展 一、下游技术领域及发酵产物分类(5-8min) 1.引入概念 在前11周,我们学习了菌种选育、种子培养、发酵过程控制等内容,以上为发酵的上游部分,区分上游和下游的关键是判断“发酵结束”,标准为产品质量和经济效益。 2.定义:下游技术(工程)(downstream processing):对于由生物界自然产生的或由微生 物菌体发酵的、动植物细胞组织培养的、酶反应等各种生物工业生产过程获得的生物原料,经提取 分离、加工并精制目的成分,最终使其成为产品的技术。(重点) 3.从工业发酵范畴来看,从发酵液中获得的发酵产物大致可分为三类:菌体、酶、代谢产物。发酵液中的杂质:菌体、蛋白、有机酸 4.举例:酶的分离纯化;葡萄酒的纯化 二、下游加工过程在生物技术中的地位(3min) 1.组成:下游加工过程是生物技术的重要组成部分,发酵液或反应液需要经过下游加工过程才 能成为成品; 2.费用:传统发酵工业中下游部分的费用占整个工厂投资费用的60%,而对重组DNA生产 蛋白质等基因工程产品,下游加工的费用可占整个生产费用的80%-90%; 3.关注程度:英国政府工业部于1983年发起生物分离计划(BIOSEP),专门研究下 游加工过程;1987年英国化学工业会召开了专门讨论下游加工过程的国际会议;我国也于19 89年在济南召开了一次专门会议;近十年来国内外有关生物分离或蛋白质纯化的专著陆续出版。 三、下游加工技术的特点(3min) 1.目的产物在初始原料中的含量较低; 2.含目的产物的初始物料组成复杂,除了目的产物外,还有大量的细胞、代谢、残留培养基、 无机等,特别是产物类似物对目的产物的分离纯化影响很大; 3.目的产物的稳定性差,具有生物活性的物质对 pH、温度、金属离子、有机溶剂、剪切力、 表面张力等十分敏感,容易是其失活、变性; 4.种类繁多,包括大、中、小分子、结构简单或复杂的有机化合物,以及结构复杂又性质各异 的生物活性物质; 5.应用面广,对其质量、纯度要求高,甚至要求无菌、无热源。 四、生物工业下游技术的发展历程(3min) 1.古代酿造业 古代酿造业包括酿酒、制酱(油)、醋、酸奶和干酪等。技术原始、家庭式作坊、产物基本不经过 后处理而直接使用,无下游技术。 2. 第一代生物技术

发酵工程复习知识点.

原料的定义: ?从工艺角度来看,凡是能被生物细胞利用并转化成所需的代谢产物或菌体的物料,都可作为发酵工业生产的原料 ?具体:一般是含有可发酵性糖或可转化为可发酵性糖的物料,还包括前体物质等等 原料选择的原则 1满足生产工艺要求: 适合微生物需要、吸收利用、代谢产物生产对生产中除发酵以外的其他方面,如通气、搅拌、精制、废弃物的处理等所带来的困难最少2满足管理和经济要求: 原料价格低廉(占成本的比例 ?原料资源要丰富,容易收集(60-70‘s,石油烷烃生产谷氨酸 ?因地制宜,就地取材 ?原料要容易贮藏 3满足环保的要求 资源化减少污染 常用原料种类 ?薯类:甘薯、马铃薯、木薯、山药等 ?粮谷类:高粱、玉米、大米、谷子、大麦、小麦、燕麦、黍和稷等(酒用原料 ?野生植物:橡子仁、葛根、土茯苓、蕨根、石蒜、金刚头、香符子等 ?农产品加工副产物:米糠(饼、麸皮、高粱糠、淀粉渣等

?糖蜜 ?非粮食生物质原料:纤维素、木质素、半纤维素等 ?水果类原料:葡萄、苹果、山楂等 常用原料的化学组成 ?碳水化学物:主要是单糖和双糖,发酵微生物的碳源和能源。一些多糖则需转化为单糖或双糖后才被利用 ?蛋白质:蛋白质经蛋白酶分解后产生的多肽或氨基酸,是糖化菌和酵母菌生长繁殖的氮源?脂肪:针对不同的发酵产品其作用有较大差别?灰分:主要是P、Mg、K、S、Ca等元素,是微生物生长和代谢所必需 糖蜜:英文名称:molasses 定义:工业制糖过程中,蔗糖结晶后,剩余的不能结晶,但仍含有较多糖的液体残留物。玉米浆:外文名corn steep liquor,是制玉米淀粉的副产物,原料为玉米糁、水、玉米汁。制造玉米淀粉须将玉米粒先用亚硫酸浸泡,浸泡液浓缩即制成黄褐色的液体,叫玉米浆,含有丰富的可溶性蛋白、生长素和一些前体物质,含大约40%~50%固体物质。味道微咸,是微生物生长很普遍应用的有机氮源,它还能促进 青霉素等抗生素的生物合成。 培养基设计的基本原则 1培养基的组成必需满足细胞的生长和代谢产 物所需的元素,并能提供生物合成和细胞维持 活力所需要的能量 2营养成分恰当的配比

工程测试技术知识点

信号 ω ?1.测试技术:测量技术与实验技术的综合 2. 测试技术的发展:古老测量方法——机械测量方法——非电量的电测方法——计算机测试技(CAT ) 3.测试技术的发展趋势:1)、 量程范围更加宽广2)、传感器向新型、微型、智能型发展3)、测量仪器向高精度和多功能发展4)、参数测量与数据处理项自动5. 要使测量具有普遍科学意义的条件:1)、作比较的标准必须是精确已知的,得到公认的;2)、进行比较的测量系统必须工作稳定,经得起检验。 6. 非电量测量的基本思想:首先要将输入物理量转换成电量,然后再进行必要的调节、转换、运算,最后以适当的形式输出。 7.测量系统的组成: 8.传感器的组成: 敏感元件 : 将被测非电量预先变换为另一种易于变换成电量的非电量,传感元件 : 凡是能将感受到的非电度等)直接变换为电量的器件称为传感元件 10. 展成指数形式的傅里叶 1)幅度谱以成偶对称,相位1)谱线的密度只与周期T ),谐波系数An=0的点,由 τ值决定 )当τ一定时,周4)当T 一定时,脉宽 τ a 、离散性:频谱由一条条不连续的谱线组成,是离散的,相邻谱线的间距是 ;b 、谐波性:各频率分 量符合谐波关系,是基波的整数倍;c 、收敛性:谐波分量的幅值有随其阶数的增高而逐渐减小的总趋势 12. 著名的海森博格“测不准原理”。 13. dt e t x j x t j ωω-∞ ∞ -?=?)()(傅里叶变换 14. 周期信号与时限信号的异同点:1、相同点: 周期信号频谱的包络线与时限信号频谱的包络线相似2、不同点:a. 时限信号的频谱是连续谱,周期信号的频谱是离散谱b. 周期信号用功率谱表示;时限信号用能量谱表示。C.周期信号幅值谱纵坐标表示相应的谐波分量的幅值;时限信号幅值谱纵坐标表示幅值谱密度;d.周期信号采用傅立叶级数(FS )分析; 时限信号采用傅立叶积分分析。 15.平稳随机过程:(自相关函数Rx,均值μx ) 非平稳随机过程: 16. 对于各态历经的随机过程,可以用三方面进行描述。①幅值域: 概率密度,联合概率密度。②时间域:自相关,互相关函数等。③频率域:自功率谱,互功率谱,相干函数等。 17.标定:用已知的标准校正仪器或测量系统的过程称为标定。静态标定:就是将原始基准器,或比被标定系统准确度高的各级标准器或已知输入源作用于测量系统,得出测量系统的激励-响应关系的实验操作。 18. 静态标定的主要作用:①确定仪器或测量系统的输入-输出关系,赋予仪器或测量系统分度值;②确定仪器或测量系统的静态特性指标;③消除系统误差,改善仪器或测量系统的正确度 19.静态特性曲线的参考直线的选用方案:①端点连线 ②端点平移线 ③最小二乘直线 ④过零最小二乘直线 20.静态特性指标:灵敏度S :是仪器在静态条件下响应量的变化△y 和与之相对应的输入量变化△x 的比值。量程:测量上限值与下限值的代数差称为量程。测量范围:测量系统能测量的最小输入量(下限)至最大输入量(上限)之间的范围称为测量范围。 非线性:通常也称为线性度,是指测量系统的实际输入输出特性曲线对于参考线性输入输出特性的接近或偏离程度,用实际输入-输出特性曲线对参考线性输入-输出特性曲线的最大偏差量与满量程的百分比来表示。即 %100ΔFS m ax L ?=Y L δ 迟滞:亦称滞后量、滞后或回程误差,表征测量系统在全量程范围内,输入量由小到大(正行程)或由大到小(反行程)两者静态特性不一致的程度。显然, H δ 越小,迟滞性能越好 % 100max ??= FS H y H δ 重复性:表示测量系统在同一工作条件下,按同一方向作全量程多次(三次以上)测量时,对于同一个激励 量其测量结果的不一致程度。分辨率:是指测量系统能测量到输入量最小变化的能力,即能引起响应量发生变化的最小激励变化量,用△x 表示。漂移:外界干扰下,输出量发生与输入量无关的变化。 21. 线性时不变系统有两个十分重要的性质,即叠加性和频率不变性。根据叠加性质,当一个系统有n 个激励同时作用时,那么它的响应就等于这n 个激励单独作用的响应之和。 频率不变性表明,当线性系统的输入为某一频率时,则系统的稳态响应也为同一频率的信号。 22. 减小动态误差的方法:1) 一阶系统:一般的讲,时间常数 τ越小越好 2)二阶系统:ξ、n ω两参数要正确、合理的选择,一般地, n ω要尽可能大,ξ选择在0.6~0.8之间 23. 无失真测试条件:理想的测量系统的幅频特性应当是常数,相频特性应当是线性关系,否则就要产生失真。幅值失真:)(ωA 不等于常数所引起的失真。相 位失真 : )(ωφ 与ω 不是线性关系所引起的失真。 24. 自动测试系统的组成由五部分组成:①控制器;②程控仪器、设备;③总线与接口;连接控制器与各程控仪器④测试软件;⑤被测对象 25. IEEE-488.1是一种数字式8位并行通信接口,其数据传输速率可达1Mbps 。采用负逻辑,任一根线上都以零逻辑代表“真”条件,这样做的重要原因之一是负逻辑方式能提高对噪声的抗御能力。 26. 1)控者: 控者指明谁是讲者,谁是听者(如PC ) 2) 讲者:产生指令及数据器件,3)听者:接收指令及 数据器件. 26. 产生误差的主要因素:①工具误差:它包括试验 装置、测量仪器所带来的误差;②方法误差:方法引起的,这种误差亦称为原理误差或理论误差;③环境误差:在测量过程中,因环境条件的变化而产生的误差。④人员误差:测量者生理特性和操作熟练程度的优劣引起的误差称为人员误差。 27.误差的分类:随机误差;系统误差;粗大误差 T π ω2=?τ1=f B 1=?τf B x i R t x i t μτ与无关,与无关仅与有关的随机过程x i R t x i t μτ与有关,与及均有关的随机过程 22 ,,x x x u σ?

相关文档
相关文档 最新文档