文档库 最新最全的文档下载
当前位置:文档库 › 《数学建模》 插值

《数学建模》 插值

什么是数学模型与数学建模

1. 什么是数学模型与数学建模 简单地说:数学模型就是对实际问题的一种数学表述。 具体一点说:数学模型是关于部分现实世界为某种目的的一个抽象的简化的数学结构。 更确切地说:数学模型就是对于一个特定的对象为了一个特定目标,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。数学结构可以是数学公式,算法、表格、图示等。 数学建模就是建立数学模型,建立数学模型的过程就是数学建模的过程(见数学建模过程流程图)。数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻划并"解决"实际问题的一种强有力的数学手段。 2.美国大学生数学建模竞赛的由来: 1985年在美国出现了一种叫做MCM的一年一度大大学生数学模型(1987年全称为Mathematical Competition in Modeling,1988年改全称为Mathematical Contest in Modeling,其所写均为MCM)。这并不是偶然的。在1985年以前美国只有一种大学生数学竞赛(The william Lowell Putnam mathematial Competition,简称Putman(普特南)数学竞赛),这是由美国数学协会(MAA--即Mathematical Association of America的缩写)主持,于每年12月的第一个星期六分两试进行,每年一次。在国际上产生很大影响,现已成为国际性的大学生的一项著名赛事。该竞赛每年2月或3月进行。 我国自1989年首次参加这一竞赛,历届均取得优异成绩。经过数年参加美国赛表明,中国大学生在数学建模方面是有竞争力和创新联想能力的。为使这一赛事更广泛地展开,1990年先由中国工业与应用数学学会后与国家教委联合主办全国大学生数学建模竞赛(简称CMCM),该项赛事每年9月进行。

数学建模中常见的十大模型

数学建模常用的十大算法==转 (2011-07-24 16:13:14) 转载▼ 1. 蒙特卡罗算法。该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,几乎是比赛时必用的方法。 2. 数据拟合、参数估计、插值等数据处理算法。比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用MA TLAB 作为工具。 3. 线性规划、整数规划、多元规划、二次规划等规划类算法。建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo 软件求解。 4. 图论算法。这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备。 5. 动态规划、回溯搜索、分治算法、分支定界等计算机算法。这些算法是算法设计中比较常用的方法,竞赛中很多场合会用到。 6. 最优化理论的三大非经典算法:模拟退火算法、神经网络算法、遗传算法。这些问题是用来解决一些较困难的最优化问题的,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用。 7. 网格算法和穷举法。两者都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具。 8. 一些连续数据离散化方法。很多问题都是实际来的,数据可以是连续的,而计算机只能处理离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的。 9. 数值分析算法。如果在比赛中采用高级语言进行编程的话,那些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用。 10. 图象处理算法。赛题中有一类问题与图形有关,即使问题与图形无关,论文中也会需要图片来说明问题,这些图形如何展示以及如何处理就是需要解决的问题,通常使用MA TLAB 进行处理。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 以下将结合历年的竞赛题,对这十类算法进行详细地说明。 2 十类算法的详细说明 2.1 蒙特卡罗算法 大多数建模赛题中都离不开计算机仿真,随机性模拟是非常常见的算法之一。 举个例子就是97 年的A 题,每个零件都有自己的标定值,也都有自己的容差等级,而求解最优的组合方案将要面对着的是一个极其复杂的公式和108 种容差选取方案,根本不可能去求解析解,那如何去找到最优的方案呢?随机性模拟搜索最优方案就是其中的一种方法,在每个零件可行的区间中按照正态分布随机的选取一个标定值和选取一个容差值作为一种方案,然后通过蒙特卡罗算法仿真出大量的方案,从中选取一个最佳的。另一个例子就是去年的彩票第二问,要求设计一种更好的方案,首先方案的优劣取决于很多复杂的因素,同样不可能刻画出一个模型进行求解,只能靠随机仿真模拟。 2.2 数据拟合、参数估计、插值等算法 数据拟合在很多赛题中有应用,与图形处理有关的问题很多与拟合有关系,一个例子就是98 年美国赛A 题,生物组织切片的三维插值处理,94 年A 题逢山开路,山体海拔高度的插值计算,还有吵的沸沸扬扬可能会考的“非典”问题也要用到数据拟合算法,观察数据的

建模与仿真

第1章建模与仿真的基本概念 参照P8例子,列举一个你相对熟悉的简单实际系统为例,采用非形式描述出来。 第2章建模方法论 1、什么是数学建模形式化的表示?试列举一例说明形式化表示与非形式化表示的区别。 模型的非形式描述是说明实际系统的本质,但不是详尽描述。是对模型进行深入研究的基础。主要由模型的实体、包括参变量的描述变量、实体间的相互关系及有必要阐述的假设组成。模型的非形式描述主要说明实体、描述变量、实体间的相互关系及假设等。 例子:环形罗宾服务模型的非形式描述: 实体 CPU,USR1,…,USR5 描述变量 CPU:Who,Now(现在是谁)----范围{1,2,…,5}; Who.Now=i表示USRi由CPU服务。 USR:Completion.State(完成情况)----范围[0,1];它表示USR完成整个程序任务的比例。参变量 X-----范围[0,1];它表示USRi每次完成程序的比率。 i 实体相互关系 (1)CPU 以固定速度依次为用户服务,即Who.Now为1,2,3,4,5,1,2…..循环运行。 X工作。假设:CPU对USR的服务时间固定,不(2)当Who.Now=I,CPU完成USRi余下的 i X决定。 依赖于USR的程序;USRi的进程是由各自的参变量 i 2、何谓“黑盒”“白盒”“灰盒”系统? “黑盒”系统是指系统内部结构和特性不清楚的系统。对于“黑盒”系统,如果允许直接进行实验测量并通过实验对假设模型加以验证和修正。对属于黑盒但又不允许直接实验观测的系统,则采用数据收集和统计归纳的方法来假设模型。 对于内部结构和特性清楚的系统,即白盒系统,可以利用已知的一些基本定律,经过分析和演绎导出系统模型。 3、模型有效性和模型可信性相同吗?有何不同? 模型的有效性可用实际系统数据和模型产生的数据之间的符合程度来度量。它分三个不同级别的模型有效:复制有效、预测有效和结构有效。不同级别的模型有效,存在不同的行为水平、状态结构水平和分解结构水平的系统描述。 模型的可信度指模型的真实程度。一个模型的可信度可分为: 在行为水平上的可信性,即模型是否重现真实系统的行为。 在状态结构水平上可信性,即模型能否与真实系统在状态上互相对应,通过这样的模型可以对未来的行为进行唯一的预测。 在分解结构水平上的可信性,即模型能否表示出真实系统内部的工作情况,而且是惟一表示出来。 不论对于哪一个可信性水平,可信性的考虑贯穿在整个建模阶段及以后各阶段,必须考虑以下几个方面: 1在演绎中的可信性。2在归纳中的可信性。3在目的方面的可信性。 4、基于计算机建模方法论与一般建模方法论有何不同?(P32) 经典的建模与仿真的主要研究思路,首先界定研究对象-实际系统的边界和建模目标,利用已有的数学建模工具和成果,建立相应的数学模型,并用计算装置进行仿真。这种经典的建

数学建模培训课程体系设计

数学建模培训课程体系设计探讨 王茂芝,徐文皙,郭科 (成都理工大学信息管理学院,四川成都 610059) 摘要:数学建模培训的目标是培养学生应用数学解决实际问题的能力.对参与数学建模培训的学生的能力要求主要包括: 对数学学科的宏观驾驭能力,分析和解决问题以及数学建模的能力,数学模型的求解能力以及对计算机工具和数学软件的使 用能力,数学迁移能力和创新能力等.数学建模培训课程体系设计包括以下几个阶段:准备阶段,建模预处理阶段,专题培 训阶段及模拟和实战阶段. 关键词:数学建模;工科数学;数学教学改革 中图分类号: G642.3,O29 文献标识码: A 文章编号:1004–9894(2005)01–0079–03 全国大学生数学建模活动对于全方位提高学生的素质 和能力;提升教师的教学水平、业务能力和科研水平;促进 工科数学的教学改革等方面都起到了积极有效的推动作 用.《数学模型》和《数学实验》课程的开设,数学实验室 的建立等多种教学方式、措施和手段的出现都是数学建模活 动的开展带来的实际教学改革成果.本文作者根据多年来组 织、指导全国大学生数学建模的实际,针对在数学建模培训 过程中所讲授的内容以及开设的专题,从数学学科的角度对 数学建模培训课程体系的设置进行一些探讨. 1 数学建模培训的目标 数学建模是把数学作为一种工具,并应用它解决实际问 题的教学活动方式.由于实际问题背景的复杂性和广泛性, 同时也因为数学学科涵盖范围的广泛性,导致在数学建模培 训过程中相关课程(或专题)的开设既要考虑到点,又要照 顾到面.在点和面相结合的同时,重点培养并提高学生的多

种能力.这样才能达到应用数学解决实际问题的目的 [1~3]. 由于大学生数学建模竞赛的主要参赛对象是大学二、三 年级的学生,所以参与培训的学生一般都具有一定的数学基础(基本都学过《线性代数》《高等数学》《概率论与数理统计》这 3门基础课程).同时,由于数学建模集中培训(集 训)的时间有限,不可能在这么短的时间里把数学的相关基础课程和专业课程进行详尽地讲解.比较现实和可行的方法是:根据数学建模的目标要求以及数学学科的特点,通过开设一些专题讲座,有针对性地提高学生的能力. 1.1 数学建模培训的能力要求 经过多年的实践和探索,我们认为对于参与数学建模培 训的学生的能力要求有以下几个方面. 第一是对数学学科的宏观驾驭能力.也就是通过培训, 使学生对数学的学科划分、专业设置、相关课程设置、学科特点等都有一定的理解和认识.这实际上是一个占领制高点的过程,对于后续课程有一个清晰的脉络和清醒的认识.这 一步的完成在很大程度上可以使整个培训过程达到事半功 倍的效果.但前提是要求参与培训讲解的指导老师需要有较好的数学素养. 第二是对于一个给定的复杂问题背景,要学会理清两个 问题.一是透过问题背景知道告诉了我们什么已知信息;二是要求我们明确做什么,解决什么问题.然后紧密联系上面两个问题,实现两个量化.一是对已知条件的符号化和量化; 二是对需解决问题的转化和量化.最后,再联系自己对数学知识的把握、对数学建模方法的领悟,借助一系列数学工具(方程、函数、矩阵、向量等)把量化后的符号(变量)组 织起来建立数学模型. 第三是数学模型的求解能力,以及对计算机和数学软件

数学建模答案(完整版)

1 建立一个命令M 文件:求数60.70.80,权数分别为1.1,1.3,1.2的加权平均数。 在指令窗口输入指令edit ,打开空白的M 文件编辑器; 里面输入s=60*1.1+70*1.3+80*1.2; ave=s/3 然后保存即可 2 编写函数M 文件SQRT.M;函数()f x = x=567.889与0.0368处的近似值 (保留有效数四位) 在指令窗口输入指令edit ,打开空白的M 文件编辑器; 里面输入syms x1 x2 s1 s2 zhi1 zhi2 x1=567.889;x2=0.368; s1=sqrt(x1);s2=sqrt(x2); zhi1=vpa(s1,4) zhi2=vpa(s2,4) 然后保存并命名为SQRT.M 即可 3用matlab 计算()f x =的值,其中a=2.3,b=4.89. >> syms a b >> a=2.3;b=4.89; >> sqrt(a^2+b^2)/abs(a-b) ans = 2.0864 4用matlab 计算函数()f x = 在x=3π处的值. >> syms x >> x=pi/3; >> sqrt(sin(x)+cos(x))/abs(1-x^2) ans = 12.0962 5用matlab 计算函数()arctan f x x =在x=1.23处的值. >> syms x >> x=1.23; >> atan(x)+sqrt(log(x+1)) ans = 1.7837

6 用matlab 计算函数()()f x f x ==在x=-2.1处的值. >> syms x >> x=-2.1; >> 2-3^x*log(abs(x)) ans = 1.9261 7 用蓝色.点连线.叉号绘制函数[0,2]上步长为0.1的图像. >> syms x y >> x=0:0.2:2;y=2*sqrt(x); >> plot(x,y,'b.-') 8 用紫色.叉号.实连线绘制函数ln 10y x =+在[20,15]--上步长为0.2的图像. >> syms x y >> x=-20:0.2:-15;y=log(abs(x+10)); >> plot(x,y,'mx-') ln 10[20,y x =+--

数学建模常用方法

数学建模常用方法 建模常用算法,仅供参考: 1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必 用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用M a t l a b作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通 常使用L i n d o、L i n g o软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用) 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种 暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计 算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文 中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用M a t l a b进行处理) 一、在数学建模中常用的方法: 1.类比法 2.二分法 3.量纲分析法 4.差分法 5.变分法 6.图论法 7.层次分析法 8.数据拟合法 9.回归分析法 10.数学规划(线性规划、非线性规划、整数规划、动态规划、目标规划) 11.机理分析 12.排队方法

十大经典数学模型

1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟来检验自己模型的正确性,是比赛时必用的方法) 2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具) 3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现) 4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备) 5、动态规划、回溯搜索、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中) 6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)元胞自动机 7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具) 8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的) 9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用) 10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理) 以上为各类算法的大致介绍,下面的内容是详细讲解,原文措辞详略得当,虽然不是面面俱到,但是已经阐述了主要内容,简略之处还望大家多多讨论。 1、蒙特卡罗方法(MC)(Monte Carlo): 蒙特卡罗(Monte Carlo)方法,或称计算机随机模拟方法,是一种基于“随机数”的计算方法。这一方法源于美国在第二次世界大战进行研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 蒙特卡罗方法的基本原理及思想如下: 当所要求解的问题是某种事件出现的概率,或者是某个随机变量的期望值时,它们可以通过某种“试验”的方法,得到这种事件出现的频率,或者这个随机变数的平均值,并用它们作为问题的解。这就是蒙特卡罗方法的基本思想。蒙特卡罗方法通过抓住事物运动的几何数量和几何特征,利用数学方法来加以模拟,即进行一种数字模拟实验。它是以一个概率模型为基础,按照这个模型所描绘的过程,通过模拟实验的结果,作为问题的近似解。 可以把蒙特卡罗解题归结为三个主要步骤: 构造或描述概率过程;实现从已知概率分布抽样;建立各种估计量。 例:蒲丰氏问题 为了求得圆周率π值,在十九世纪后期,有很多人作了这样的试验:将长为2l的一根针任意投到地面上,用针与一组相间距离为2a( l<a)的平行线相交的频率代替概率P,再利用准确的关系式:

管理系统数学建模课程教学大纲

“管理系统数学建模”课程教学大纲 英文名称:Management system mathematic modeling 课程编号:MAGT3776 学时:32 (理论学时:30 实验学时:0上机学时:0课外学时:20)学分:2 适用对象:行政管理,社会保障专业 先修课程:高等数学,线性代数,运筹学、经济博弈论 使用教材及参考书: [1]经济数学模型教改组编.经济数学模型.西安:西安交通大学理学 院,2005. [2]齐欢,代建民,奇翔.公共部门数学建模方法及案例.北京:科学出 版社,2007. [3]高洪深.经济系统分析法.北京:清华大学出版社,2007. [4]谭跃进,陈英武,易进先.系统工程原理.长沙:国防科技大学出版社, 1999. [5]谢识予.经济博弈论.上海:复旦大学出版社,2002. 一、课程性质和目的 性质:专业应用课 目的:使本专业学生掌握数学建模方法,并能应用到专业领域。 二、课程内容简介 本课程通过对初等经济方法模型、微分学模型、线性代数模型、随机决策模型和AHP、博弈论的相关知识、MATLAB的基

本功能和使用等知识的学习,让学生对管理系统数学建模的知识有所掌握,使本专业学生的定量分析能力进一步得到提高,增加学生对所学知识的应用能力和实践能力,把管理学与经济学的相关知识应用到数学建模中去。 三、教学基本要求 1.熟练掌握初等经济方法模型 2.掌握微分学模型 3.熟练掌握线性代数模型 4.掌握随机决策模型和AHP 5. 掌握博弈论的相关知识 6.熟悉MATLAB的基本功能和使用 四、教学内容及安排 第一章:公共部门数学建模概论 1.公共管理与数学建模概况 2. 复杂科学与公共管理 教学安排及教学方式

什么是数学建模

数学建模 当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。 数学 近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。 数学模型 数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。 数学建模应用 数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。 数学建模 数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。

最经典的数学模型

最经典的数学模型 怎样得到最好的女孩子的数学模型 【关键词】怎样得到最好女孩子数学模型 由于老天爷在你的生命中安排的异性并不是同时出现任你挑选,因此无论你在何时选择结婚都是有机会成本的。 人们常常希望能够获得一个最可爱的人作为自己的伴侣。但是,由于老天爷在你的生命中安排的异性并不是同时出现任你挑选,因此无论你在何时选择结婚都是有机会成本的。也许你很早就结婚了,但是结婚之后却又不断发现还有不少更好更适合结婚的异性,这就是结婚太早的机会成本。那么,是不是晚一点结婚就可以避免这个问题呢?不是的!当结婚太晚,你错过最好的异性的可能性也就更大。那么,一个人究竟应采取什么样的策略才能最大可能地遇到最适合的异性,从而使结为伴侣的机会成本最低呢?我们不妨建立一个模型来考察。 假设你是一个男孩子,而老天爷在你20岁到30最之间安排了20位适合你的女孩子。这些女孩子都愿意作为你的伴侣,但是你只能选择其中的一位。对于你来说,这20位女孩子的质量是可以排序的,也就是说事后你可以对她们的质量排名,质量排第一的对你来说就是最好的,排第20的对你来说就是最差的。可惜的是,由于20位女孩不是同时出现在你的生命中,而是按时间先后出现,每出现一个你都要决定是否留下她或拒绝她。如果留下她则她成为你的伴侣,你将再没有权利选择后面的女孩子;如果拒绝她,则你还可以选择后面的女孩子,但是对前面已经拒绝的女孩子将没有机会从头再来。 20个女孩子的排名虽然可以在事后决定,但是在观察完20个女孩子之前,你并不知道全部女孩子的排名,你只知道已经观察过的女孩子谁比谁会更好。而且,上帝是完全随机地安排每个时间段出现的女孩子的,也就是说出现时间的先后与女孩子的质量是完全没有关系的。那么,你应该在什么时候决定接受一个女孩子,并且使得被接受那个女孩子属于最好女孩的概率最大呢? 当然,你完全可以在碰到第一个女孩子时就接受她。她确有可能刚好就是最好的,但也有可能是最差的。当你接触到第二个女孩子,你可以知道她和第一个女孩子谁更好,但却不知道她们与剩下的18个女孩比又如何——前两个分别是最差的、次差的概率当然有,但前两个刚好是最好的、次好的可能性也是存在的,其他的概率情况也是有的。看来,你要尽可能挑到最好的女孩做伴侣还真是费神哦。 现在让我们来设计几种挑选策略,以便在不确定性中尽可能找到最好的女孩子。 策略1:事先抽签,抽到第几个就第几个。比如,抽到第10位,那么第10个在你生命中出现的女孩就事前被确定为你的伴侣。而她刚好是最好的女孩之概率是多少呢?答案是1/20=0.05。这种策略使你有5%的可能性获得最好的女孩。这样的概率显然太小,很难发生。 策略2:把全部女孩分成前后两段,最先出现的10位均不接受,但了解了这10位女孩的质量,然后在后来出现的10位女孩当中,第一次碰到比以前都可爱的女孩子,就立马接受。这是一种等一等、看一看的策略。这样的策略中,你得到最好的女孩子的概率是

数学建模:课程安排优化问题

数学建模:课程安排优化问题

2012年数学建模竞赛 参赛队员 题目 A题:课程安排优化问题 关键词排课问题,优化矩阵,有效矩阵 摘要 每学期的开学初,总有许多老师对阳光校区的课程安排很有意见,本文选取武汉纺织大学机械设计系的师生情况、课程、教室间数为研究对象,以课程与上课时间之间的关系矩阵为目标矩阵,通过用各影响矩阵优化目标矩阵的方法,对机械设计系的课表进行了重排。在具体模型建立过程中采用了0-1矩阵法,矩阵的乘法等数学方法,建立优化类数学模型来求解有效矩阵,根据有效矩阵初排课表,结合多方面因素建立修正矩阵,对初排课表逐层修改,得出最优排课表。 运用我们建立的数学模型,对武汉纺织大学机械设计系的课表进行重排,将所得新课表与现有的课表进行比较,显然新排的课表更加合理化、人性化。根据新课表中每节课对应的相关因素(课程名称、教室、老师、班级)进行分析整合,可衍生出新的安排表(如通过对不同时间段上课老师人数的研究安排校车的接送)。我们以学校、教师和学生对所排课表满意度作为衡量标准,以···大学机械设计系的课表为例,可得学校、教师和学生对我们所排课表的满意度主因素分别为校车接送次数、在阳光校区逗留时间、专业课排在早上,可见对本模型使三方的满意度基本均衡且都超过80%,即做到了三者兼顾的满意最大化。最后,根据我们建立的模型,分析了模型的优缺点。

一、问题重述 我校现有三个校区,有在校学生近25000人,其中阳光校区在校学生人数最多。阳光校区现有四栋教学楼,分别是3号、6号、7号和8号楼,四栋教学楼之间有较大的距离,如从3号楼到8号楼步行需要约10分钟。我校的学生作息时间安排中,一天共有13节课,划分为5个时间段,分别是1-2节、3-5节、6-8节、9-10节、11-13节。按学校的规定同一门课程一天中最多可集中上3节课,一周不得超过6节。同一年级的相同课程可以合班上课,合班一般由各个院系或公共课教学部门给出具体安排。每学期临近结束时,学校教务处根据各个专业的培养计划向各院系下达下一学期的教学任务,由各个专业将教学任务分解到具体的任课教师,然后由教务处排出下一学期的课程表。每学期我校的课程表排出并开始运行后都会受到师生的抱怨。有学生说自己的课程分布不均衡,某天要上10节课,而某天又一节课都没有;有的学生抱怨一天中要在不同的教学楼之间反复奔波;有的教师抱怨自己的课程安排太分散,从南湖跑到阳光路上要花近两个小时,却只上两节课,这样太浪费时间。由此可见,我校的课程安排尚存在一些不太合理的地方,有进一步优化的必要。针对这一问题,请完成以下任务: 一.了解我校师生对课程安排的需求; 二.了解我校课程安排的相关规定; 三.收集与课程安排相关的数据; 四.建立我校课程安排的优化模型,分析模型的优缺点。 二、问题分析 首先,解决班级、课程与教师之间的多对多关系,例如当出现多个班级上同一门课而该由多个教师任教时,课程是否合上,由哪几个班级合上、哪位教师任教的问题。解决上应满足可 手动调整的要求。然后,取出全部班级,求出班级所上课程的优先级总和,按优先级高低排定班级顺序,按此顺序且遵照排课规则为每一个班级的每一门课程安排上课时间与地点。 首先,要进行预排课处理。预排课处理的目的是要解决两个基本问题: 1) 班级与课程之间的多对多关系,即合班上课的问题; 2) 课程与教师之间的多对多关系,即为每门课程安排任课教师。在预排课处理完成后,以班级作为外部大循环、以课程作为内部小

数学模型的定义

一、数学模型的定义 现在数学模型还没有一个统一的准确的定义,因为站在不同的角度可以有不同的定义。不过我们可以给出如下定义:“数学模型是关于部分现实世界和为一种特殊目的而作的一个抽象的、简化的结构。”具体来说,数学模型就是为了某种目的,用字母、数学及其它数学符号建立起来的等式或不等式以及图表、图象、框图等描述客观事物的特征及其内在联系的数学结构表达式。一般来说数学建模过程可用如下框图来表明: 数学是在实际应用的需求中产生的,要解决实际问题就必需建立数学模型,从此意义上讲数学建模和数学一样有古老历史。例如,欧几里德几何就是一个古老的数学模型,牛顿万有引力定律也是数学建模的一个光辉典范。今天,数学以空前的广度和深度向其它科学技术领域渗透,过去很少应用数学的领域现在迅速走向定量化,数量化,需建立大量的数学模型。特别是新技术、新工艺蓬勃兴起,计算机的普及和广泛应用,数学在许多高新技术上起着十分关键的作用。因此数学建模被时代赋予更为重要的意义。 二、建立数学模型的方法和步骤 1. 模型准备 要了解问题的实际背景,明确建模目的,搜集必需的各种信息,尽量弄清对象的特征。 2. 模型假设 根据对象的特征和建模目的,对问题进行必要的、合理的简化,用精确的语言作出假设,是建模至关重要的一步。如果对问题的所有因素一概考虑,无疑是一种有勇气但方法欠佳的行为,所以高超的建模者能充分发挥想象力、洞察力和判断力,善于辨别主次,而且为了使处理方法简单,应尽量使问题线性化、均匀化。 3. 模型构成 根据所作的假设分析对象的因果关系,利用对象的内在规律和适当的数学工具,构造各个量间的等式关系或其它数学结构。这时,我们便会进入一个广阔的应用数学天地,这里在高数、概率老人的膝下,有许多可爱的孩子们,他们是图论、排队论、线性规划、对策论等许多许多,真是泱泱大国,别有洞天。不过我们应当牢记,建立数学模型是为了让更多的人明了并能加以应用,因此工具愈简单愈有价值。 4. 模型求解 可以采用解方程、画图形、证明定理、逻辑运算、数值运算等各种传统的和近代的数学方法,特别是计算机技术。一道实际问题的解决往往需要纷繁的计算,许多时候还得将系统运行情况用计算机模拟出来,因此编程和熟悉数学软件包能力便举足轻重。 5. 模型分析 对模型解答进行数学上的分析。“横看成岭侧成峰,远近高低各不同”,能否对模型结果

系统的描述与数学建模

系统的描述与数学建模 [摘要]数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。 [关键词]系统的建模数学建模 数学建模就是利用数学方法将系统的文字语言描述转化成数学方式表达。由于影响系统的因素多种多样,当用数学表达系统时,我们要求尽可能要使得数学建模既能从本质上反映系统,又能使得系统的数学模型具有简单性。一个极其复杂的数学模型对于分析系统毫无帮助。 为了说明这种数学建模的方法,我们举一个简单的例子。比如我们研究某一地区人口的健康状况。假定在我们的研究时段内没有人口的自然死亡,按照自然规律人口总是以一定的概率,变成亚健康、或者患上某种轻疾病、或者患上重疾病。在一定的环境和医疗条件下,部分亚健康者和患者会得以康复,这是一种简单运算的系统描述,并没有具体地给出定量表达。为了能用数学的方法表达这个描述,我们按照以下方式将人口分类:(1)健康人。(2)亚健康人。(3)患轻病人。(4)患重病人。 根据上面的关系和一些假定条件,我们可以得到相应的微分方程,至于方程的详细导出我们以后再讨论。这里我们需要指出,前面我们只是一种说明性的举例,在实际建模过程中,要依赖于系统所在的环境,按照前面方法得到的应是确定性模型,在随机环境中,上面所述的量应当对应成相应状态的概率。 再比如排队系统,是最常见的一种系统,这类系统主要描述顾客到达,接受服务然后离开这一过程。系统由顾客与服务员两个单元组成。这类问题主要由以下四个因素决定:(1)顾客来到窗口的频率。(2)窗口的个数。(3)排队规则。(4)服务时间分布;所以我们必须对它们作适当的假定。 在单个服务台的排队系统模型M/M/1,即系统只设一个服务台床的情况。假定顾客是相互独立地到达系统,而且顾客到达系统的间隔时间服从负指数分布 F(t)=1-e -λt (输入过程),又服务窗为每一位顾客的服务时间也同时服从负指 数分布H(t)=1-e -μt (运行方式)。对这种最简单的排队模型,我们将依照不同的系统规则确定排队系统所满足的微分方程。 M/M/1损失制排队模型是指系统内只设一个服务窗,系统容量为1(即有一个排队位置而无排队等待位置),顾客到达和窗口服务时间均为负指数分布,且

长安大学排课问题数学建模论文最终版

一、问题的重述 排课问题是高校制定教学计划、安排教学过程中的一项较为复杂的工作,在高校教务管理工作中处于重要地位。高校在每学期末都要根据培养计划和教学资源作出下学期的教学安排, 这主要体现在对课表的编排上。其中涉及的关键要素很多, 包括教师、班级、教室和授课时段等。根据排课总体目标、约束条件、及优先级, 充分利用紧缺资源, 设计并实现高校课表安排系统。我校所面临的问题主要有:第一,渭水校区有包括从大一至大三三个年级的学生,20个学院近700个班级,教学任务繁重,课表安排难度较大;第二,校区地处偏僻,距市区较远,老师上课需乘车来回奔波,如果课表安排不当,就会导致部分老师前往渭水乘车次数过多或在渭水逗留时间过长;第三,基于学生的学习规律与习惯,应根据课程的难度与重要性进行课程时段的安排,若安排不当,会导致学生的学习效果不佳;第四,为节省学校在校车往返方面的开支,安排课表时应尽量减少校车运行车次。为此应根据教学计划和排课要求,综合考虑教师、课程、班级和授课时段等因素,协调合理的编排课表,制作一个系统模型,根据这个模型使老师、同学和学校尽可能满意,并且具有足够的可行性和可变动性。让老师满意,即让每位老师一周前往渭水的乘车次数尽可能少,同时还要使每位老师在渭水逗留的时间尽可能少;让学生满意,即同一班级同一门课程在时间段上尽量间隔开来,另外相对重要的课程应尽量安排在较好的教学时段上;让学校满意,即节约学校开支,使每周派往渭水的车次尽可能少。 二、问题的分析 课表安排的主要任务是把各学院的课程汇总, 然后根据教学计划或教学环

节制订全校各班级的课表。根据学校的实际情况和学校所面临的问题,可以将这类题归为以老师、学生和学校的满意情况为多目标的多约束的规划问题。为了使课表的编排准确、合理、快速、高效, 充分利用学校资源,根据已知条件提出以下可行性要求: 1、课程的优先级:将大学所有课程分为三类,1)公共必修课:多个学院开设的课程,课程重要且开设的班级数最多,这类课尽量安排在最好时段;2)专业必修课:少数学院或一个学院开设的课程,课程重要且开设的班级数较多,这类课尽量安排在较好时段;3)其他如专业选修课或公共选修课等:少数班级开设的课程,课程相对简单,可以任意安排时段授课。 2、课程时段的规定:将每天分为5个时段(上午两个,下午两个,晚上一个),并规定为:1-2节课为第一时段,3-4节课为第二时段……依此类推。根据学生的学习效果及课程难度与重要性,将课程时段按有利程度分为五个等级,即第一时段>第二时段>第三时段>第四时段>第五时段。 3、时间段的分配优先级:周一至周五的白天共20个时段用来安排公共必修课和专业必修课及部分选修课,每天晚上及周六、周日安排其他课程;先安排公共必修课表,在剩余的时间段安排各系专业课程,最后再安排选修课程;将相对重要的课程安排在较好时段。 4、时间段的有效性:1)同一班级同一门课的两次授课时间必须隔天,但相隔天数不宜超过两天;2)一个老师一天的两节课应连排, 即尽量安排在同一天上午或同一天下午, 为教师上课提供方便,同时也减少了派往渭水的车次 5、应避免各种冲突:1)教室不冲突, 同一教室同一时间不能安排两门课程,人数不能超过教室的最大容量;2)学生不冲突, 同一班级学生不能在同一时间

数学建模。

国内COVID-19数据简析 、 摘要:新冠肺炎疫情肆虐全球,这给人们的正常生活和工作秩序造成了非常大的麻烦,甚至带来全球性的经济危机。新冠肺炎对于全球人民来说是一场巨大的灾难,各国在应对疫情中的表现不尽相同,包括政府措施、经济条件以及民族文化等均有关系。虽然影响因素繁多复杂,但已经产生的COVID-19数据在一定程度上能说明问题。 关键词:新冠肺炎政府措施应对疫情 Abstract: CoVID-19 is rampant all over the world, causing great trouble to people's normal life and work order, and even bringing global economic crisis. Covid-19 is a huge disaster for people all over the world. Countries have different responses to the epidemic, including government measures, economic conditions and national culture. Although the factors involved are varied and complex, the coVID-19 data that have been generated tell a certain story.Key words: COVID-19 government response to epidemic 问题一:利用附件1中给的数据,用你的模型分析天津市从国内疫情发展初期到数据采集日期间新冠肺炎数据的变化和重要节点的说明。 解析一 :

数学建模

数学模型数学实验 课 程 设 计 学院: 班级: 姓名学号: 设计时间:

摘要: 本实验建立了奖学金发放方案的优化模型。为了使20万基金能永远利用下去,根据题目提供的原始数据及相关信息,首先立足于让基金得到最合理的利用,让每年发放的奖学金数额达到最大,之后采用将基金分批存入的形式让闲置的资金见到最少,鉴于此提出了四中方案并求解得: 1、部分金额以2年为期存入银行,每年可发放奖学金5565元; 2、部分金额以3年为期存入银行,每年可发放奖学金6613元; 3、(ⅰ)第四年以两年连续存入两次,每年可发奖学金5594元; (ⅱ) 第四年以3年和1年存入,每年可发奖学金6109元; 4、部分金额以5年为期存入银行, 第四年以两年连续存入两次,每年可发奖学金7102元; 第四年以3年和1年存入,每年可发奖学金7116元。 综合比较之下,将部分金额以5年为期存入银行,第四年以3年1年的形式可得最多利息,即第一年存入6960元,第二年存入6735元,第三年存入6450元,第四年存入6308元,剩余的第五年存入可使每年发放的奖学金数额达到最大。 此模型的中心在于怎样使基金得到子合理的利用,即怎样使资金能够存入银行时间更长,享利率最高。解决了这一点,此题也就迎刃而解了。

课题: 某人向学院捐款20万元设立优秀本科生奖学金,学院领导计划将这笔捐款以整存整取一年定期的形式存入银行,第二年一到期就支取,取出一部分作为当年的奖学金,剩下的继续存入银行。 请研究这个问题,向院领导写一份报告。 要求:1、分析方案的合理性 2、给出自己的方案 解: 一、分析 查存款利率可知:定期存款一年的利率为2.25% 即:将20万存入银行一年后可得利息: 200000*2.25% = 4500 (元) ①每年发奖学金不高于4500元的话,可永远持续下去,即用20万本金每年 产生的利息全作为奖学金; ②每年发奖学金高于4500元的话,设为 y , 则:第一年本金减少 ( y - 4500 ) 第二年本金减少 ( y - (200000 - (y - 4500))*2.25% ) ………… 20万本金会不断减少,最终将全部发放完毕。 结论:若每年发奖学金数额不高于4500元时,方案可行; 若每年发奖学金数额高于4500元时,本金最终将发放完毕; 考虑实际情况,每年发4500元奖学金太少,20万本金没有得到充分利用。所以此方案不可行。 二、建模: 1、假设与参数 ⑴设每年发放奖学金数额一定,设为y 元; ⑵设银行存款利率为 a ; ⑶设发放奖学金年限为:s

数学建模 自习室管理系统

一.问题重述: 近年来,大学用电浪费比较严重,集中体现在学生上晚自习上,一种情况是去某个教室上自习的人比较少,但是教室的灯却全部打开,第二种情况是晚上上自习的总人数比较少,但是开放的教室比较多,这要求提供一种最节约、最合理的管理方法。根据题目所给出的数据,有以下问题。数据见表。 1.假如学校有8000名同学,每个同学是否上自习相互独立,上自习的可能性为0.7. 要使需要上自习的同学满足程度不低于95%,开放的教室满座率不低于4/5,同时尽量不超过90%。问该安排哪些教室开放,能达到节约用电的目的。 2.在第一问基础上,假设这8000名同学分别住在10个宿舍区,现有的45个教室分为9个自习区,按顺序5个教室为1个区,即1,2,3,4,5为第1区,…, 41,42,43,44,45为第9区。这10个宿舍区到9个自习区的距离见表2。学生到各教室上自习的满意程度与到该教室的距离有关系,距离近则满意程度高,距离远则满意程度降低。假设学生从宿舍区到一个自习区的距离与到自习区任何教室的距离相同。请给出合理的满意程度的度量,并重新考虑如何安排教室,既达到节约用电目的,又能提高学生的满意程度。另外尽量安排开放同区的教室。3.假设临近期末,上自习的人数突然增多,每个同学上自习的可能性增大为0.85,要使需要上自习的同学满足程度不低于99%,开放的教室满座率不低于4/5,同时尽量不超过95%。这时可能出现教室不能满足需要,需要临时搭建几个教室。 假设现有的45个教室仍按问题2中要求分为9个区。搭建的教室紧靠在某区,每个区只能搭建一个教室,搭建的教室与该区某教室的规格相同(所有参数相同),学生到该教室的距离与到该区任何教室的距离假设相同。问至少要搭建几个教室,并搭建在什么位置,既达到节约用电目的,又能提高学生的满意程度。

相关文档