文档库 最新最全的文档下载
当前位置:文档库 › 高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案

高中物理磁场经典习题(题型分类)含答案
高中物理磁场经典习题(题型分类)含答案

磁场补充练习题

题组一

1.如图所示,在xOy 平面内,y ≥ 0的区域有垂直于xOy 平面向里的匀强磁场,磁感应强度为B ,一质量为m 、带电量大小为q 的粒子从原点O 沿与x 轴正方向成60°角方向以v 0射入,粒子的重力不计,求带电粒子在磁场中运动的时间和带电粒子离开磁场时的位置。

2.如图所示,abcd 是一个正方形的盒子,在cd 边的中点有一小孔e ,盒子中存在着沿ad 方向的匀强电场,场强大小为E ,一粒子源不断地从a 处的小孔沿ab 方向向盒内发射相同的带电粒子,粒子的初速度为v 0,经电场作用后恰好从e 处的小孔射出,现撤去电场,在盒子中加一方向垂直于纸面的匀强磁场,磁感应强度大小为B (图中未画出),粒子仍恰好从e 孔射出。(带电粒子的重力和粒子之间的相互作用均可忽略不计) (1)所加的磁场的方向如何?

(2)电场强度E 与磁感应强度B 的比值为多大?

题组二

3.长为L 的水平极板间,有垂直纸面向里的匀强磁场,磁感应强度为B ,板间距离也为L ,极板不带电。现有质量为m ,电荷量为q 的带正电粒子(重力不计),从左边极板间中点处垂直磁场以速度v 水平射入,如图所示。为了使粒子不能飞出磁场,求粒子的速度应满足的条件。

4.如图所示的坐标平面内,在y 轴的左侧存在垂直纸面向外、磁感应强度大小B 1 = 0.20 T 的匀强磁场,在y 轴的右侧存在垂直纸面向里、宽度d = 0.125 m 的匀强磁场B 2。某时刻一质量m = 2.0×10-8 kg 、电量q = +4.0×10-4 C 的带电微粒(重力可忽略不计),从x 轴上坐标为(-0.25 m ,0)的P 点以速度v = 2.0×103 m/s 沿y 轴正方向运动。试求: (1)微粒在y 轴的左侧磁场中运动的轨道半径;

(2)微粒第一次经过y 轴时速度方向与y 轴正方向的夹角; (3)要使微粒不能从右侧磁场边界飞出,B 2应满足的条件。

5.图中左边有一对平行金属板,两板相距为d ,电压为U ;两板之间有匀强磁场,磁场应强度大小为B 0,方向平行于板面并垂直于纸面朝里。图中右边有一边长为a 的正三角形区域EFG (EF 边与金属板垂直),在此区域内及其边界上也有匀强磁场,磁感应强度大小为B ,方向垂直于纸面朝里。假设一系列电荷量为q 的正离子沿平行于金属板面,垂直于磁场的方向射入金属板之间,沿同一方向射出金属板之间的区域,并经EF 边中点H 射入磁场区域。不计重力。

(1)已知这些离子中的离子甲到达磁场边界EG 后,从边界EF 穿出磁场,求离子甲的质量。

(2)已知这些离子中的离子乙从EG 边上的I 点(图中未画出)穿出磁场,且GI 长为3a /4,求离子乙的质量。

(3)若这些离子中的最轻离子的质量等于离子甲质量的一半,而离子乙的质量是最大的,问磁场边界上什么区域内可能有离子到达。

题组三

6.如图所示,在以直角坐标系xOy 的坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直xOy 所在平面的匀强磁场。一带电粒子由磁场边界与x 轴的交点A

处,以速度v 0沿x 轴负方向射入磁场,粒子恰好能从磁场边界与y 轴的交点C 处,沿y 轴正方向飞出磁场,不计带电粒子所受重力。 (1)求粒子的比荷。 (2)若磁场的方向和所在空间的范围不变,而磁感应强度的大小变为B ′,该粒子仍从A 处以相同的速度射入磁场,粒子飞出磁场时速度的方向相对于入射方向改变了θ角,求磁感应强度B ′的大小。

7.如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布

在以直径A 2A 4为边界的两个半圆形区域I 、II 中,A 2A 4与A 1A 3的夹角为60°。一

质量为m 、带电荷量为+q 的粒子以某一速度从I 区的边缘点A 1处沿与A 1A 3成

30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入II 区,最后再从A 4处射出磁场。已知该粒子从射入到射出磁场所用的时间为t ,求I 区

和II 区中磁感应强度的大小(忽略粒子重力)。

8.如图所示,在以O 为圆心,内外半径分别为R 1和R 2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U 为常量,R 1=R 0,R 2=3R 0,一电荷量为+q ,质量为m 的粒子从内圆上的A 点进入该区域,不计重力。 (1)已知粒子从外圆上以速度1v 射出,求粒子在A 点的初速度0v 的大小; (2)若撤去电场,如图(b ),已知粒子从OA 延长线与外圆的交点C 以速度2v 射出,方向与OA 延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间;

(3)在图(b )中,若粒子从A 点进入磁场,速度大小为3v ,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少?

A 3

题组四

9.利用电场和磁场,可以将比荷不同的离子分开,这种方法在化学分析和原子核技术等领域有重要的应用。如图所示的矩形区域ACDG (AC 边足够长)中存在垂直于纸面的匀强磁场,A 处有一狭缝。离子源产生的离子,经静电场加速后穿过狭缝沿垂直于GA 边且垂直于磁场的方向射入磁场,运动到GA 边,被相应的收集器收集。整个装置内部为真空。已知被加速的两种正离子的质量分别是m 1和m 2(m 1>m 2),电荷量均为q 。加速电场的电势差为U ,离子进入电场时的初速度可以忽略。不计重力,也不考虑离子间的相互作用。

(1)求质量为m 1的离子进入磁场时的速率v 1;

(2)当磁感应强度的大小为B 时,求两种离子在GA 边落点的间距s ;

(3)在前面的讨论中忽略了狭缝宽度的影响,实际装置中狭缝具有一定宽度。若狭缝过宽,可能使两束离子在GA 边上的落点区域交叠,导致两种离子无法完全分离。设磁感应强度大小可调,GA 边长为定值L ,狭缝宽度为d ,狭缝右边缘在A 处。离子可以从狭缝各处射入磁场,入射方向仍垂直于GA 边且垂直于磁场。为保证上述两种离子能落在GA 边上并被完全分离,求狭缝的最大宽度。

10.如图所示,abcd 是长为2L 、宽为L 的长方形区域,该区域内存在垂直于纸面向里匀强磁场,磁感应强度的大小为B 。在ab 边中点M 有一粒子源,该粒子源能不断地向区

域内发出质量为m 、电量大小为q 的带负电的粒子,粒子速度的大小恒定,沿纸面指向各个方向,不计粒子重力。其中垂直于ab 边入射

的粒子恰能从ad 边中点N 射出磁场。求: (1)粒子入射的速度大小;

(2)bc 边有粒子射出的宽度。

11.如图所示,在xOy 坐标系的第I 象限内存在垂直纸面向外的匀强磁场,磁感应强度为B ,在x >0轴上有

一平面荧光屏,在y 轴上距坐标原点O 为L 的S 处有一粒子源,在某时

刻同时发射大量质量为m ,电荷量为q 的带正电粒子,它们的速度大小相

同,速度方向均在xy 平面内,与y 轴正方向的夹角分布在0~180°范围

内。观察发现:荧光屏OP 之间发光,P 点右侧任何位置均不发光,在PQ 之间的任一位置会先后两次发光;OQ 之间的任一位置只有一次发光,测出OP

,不考虑粒子间的相互作用和粒子所受重力,求:

(1)粒子发射时的速度大小; (2)Q 点先后发光的时间间隔。

题组五

12.图为可测定比荷的某装置的简化示意图,在第一象限区域内有垂直于纸面向里的匀强磁场,磁感应强度大小B =2.0×10-3T,在y 轴上距坐标原点L =0.50m 的P 处为离子的入射口,在y

上安放接收器,现将一

y x

P

Q S O

B

带正电荷的粒子以v =3.5×104m/s 的速率从P 处射入磁场,若粒子在y 轴上距坐标原点L =0.50m 的M 处被观测到,且运动轨迹半径恰好最小,设带电粒子的质量为m ,电量为q ,不记其重力。 (1)求上述粒子的比荷;

(2)如果在上述粒子运动过程中的某个时刻,在第一象限内再加一个匀强电场,就可以使其沿y 轴正方向做匀速直线运动,求该匀强电场的场强大小和方向,并求出从粒子射入磁场开始计时经过多长时间加这个匀强电场;

(3)为了在M 处观测到按题设条件运动的上述粒子,在第一象限内的磁场可以局

限在一个矩形区域内,求此矩形磁场区域的最小面积,并在图中画出该矩形。

13.一匀强磁场,磁场方向垂直于xy 平面,在xy 平面上,磁场分布在以O

为中心的一个圆形区域内,一个质量为m 、电荷量为q 的带电粒子,由原点O 开始运动,初速度为v ,方向沿x 轴正方向。后来,粒子经过y 轴

上的P 点,此时速度方向与y 轴正方向的夹角为30°,P 到O 的距离为L ,如图所示,不计重力的影响,求磁场的磁感应强度B 的大小和xy 平面上磁场区域的半径R 。

若磁场仍是圆形,但圆心不一定在O 点,则磁场区域的最小半径是多少?

题组六

14.如图所示,一带电微粒质量为m =2.0×10-11

kg 、电荷量q =+1.0×10-5C 电压为U 1=100V 电场时的偏转角θ=30o,并接着进入一个方向垂直纸面向里、宽度为D =34.6cm 的匀强磁场区域。已知偏转电场中金属板长L =20cm ,两板间距d =17.3cm ,重力忽略不计。求:

(1)带电微粒进入偏转电场时的速率v 1;

(2)偏转电场中两金属板间的电压U 2;

(3)为使带电微粒不会由磁场右边射出,该匀强磁场的磁感应强度B

15.在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B 。一质量为m 、电量为q 的带正电的粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示。不计粒子重力。求: (1)M 、N 两点间的电势差U MN ; (2)粒子在磁场中运动的轨道半径r ; (3)粒子从M 点运动到P 点的总时间t 。

16.如图所示,真空中有以(r,0)为圆心、r 为半径的圆形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y =r 的虚线上方足够大的范围内,有方向水平向左的匀强电场,电场强度的大小

v 0

B

P v

O

x

E

y P

O x

y

v

v

为E 。从O 点向不同方向发射速率相同的质子,质子的运动轨迹均在纸面内,且质子在磁场中偏转的半径也为r 。已知质子的电荷量为q ,质量为m ,不计重力、质子间的相互作用力和阻力。求:

(1)质子射入磁场时速度的大小;

(2)沿x 轴正方向射入磁场的质子,到达y 轴所需的时间; (3)与x 轴正方向成30°角(如图中所示)射入的质子,到达y 轴的位置坐标。

题组七

17.如图1所示,宽度为d 的竖直狭长区域内(边界为L 1、L 2),存在垂直纸面向里的匀强磁场和竖直方向上的周期性变化的电场(如图2所示),电场强度的大小为E 0,E >0表示电场方向竖直向上。t =0时,一带正电、质量为m 的微粒从左边界上的N 1点以水平速度v 射入该区域,沿直线运动到Q 点后,做一次完整的圆周运动,再沿直线运动到右边界上的N 2点。Q 为线段N 1N 2的中点,重力加速度为g 。上述d 、E 0、m 、v 、g 为已知量。

(1)求微粒所带电荷量q 和磁感应强度B 的大小; (2)求电场变化的周期T ;

(3)改变宽度d ,使微粒仍能按上述运动过程通过相应宽度的区域,求T 的最小值。

18.如图所示,两块水平放置、相距为d 的长金属板接在电压可调的电源上。两板之间的右侧区域存在方向垂直纸面向里的匀强磁场。将喷墨打印机的喷口靠近上板下表面,从喷口连续不断喷出质量均为m 、水平速度均为v 0、带相等电荷量的墨滴。调节电源电压至U ,墨滴在电场区域恰能沿水平向右做匀速直线运动;进入电场、磁场共存区域后,最终垂直打在下板的M 点。 (1)判段墨滴所带电荷的种类,并求其电荷量;

(2)求磁感应强度B 的值;

(3)现保持喷口方向不变,使其竖直下移到两板中间的位置。

为了使墨滴仍能到达下板M 点,应将磁感应强度调至B ′,则B ′的大小为多少?

19.有人设计了一种带电颗粒的速率分选装置,其原理如图所示,两带电金属板间有匀强电场,方向竖直向上,其中PQNM 矩形区域内还有方向垂直纸面向外的匀强磁场。一束比荷(电荷量与质量之比)均为1/k 的带正电颗粒,以不同的速率沿着磁场区域的水平中心线O ’O 进入两金属板之间,其中速率为v 0的颗粒刚好从Q 点处离开磁场,然后做匀速直线运动到达收集板。重力

加速度为g ,PQ =3d ,NQ =2d ,收集板与NQ 的距离为l ,不计颗粒间相互作用。求 (1)电场强度E 的大小;

集板

(2)磁感应强度B 的大小;

(3)速率为λv 0(λ>1)的颗粒打在收集板上的位置到O 点的距离。

题组八

20.如图所示,在直角坐标系的第一象限中存在沿y 轴负方向的匀强电场,电场强度大小为E ,在第四象

限中存在着垂直纸面的匀强磁场,一质量为m 、带电量为q 的粒子(不计

重力)在y 轴上的A 点以平行x 轴的初速度v 0射入电场区,然后从电场区

进入磁场区,又从磁场区进入电场区,并通过x 轴上P 点和Q 点各一次,已知P 点坐标为(a ,0),Q 点坐标为(b ,0),求磁感应强度的大小和方向。

21.如图所示,x 轴上方有一磁感应强度为B 的匀强磁场,下方有一场强为E 的匀强电场,两个场的方向图中已经标出。在x 轴上有一个点M (L ,0),要使带电量为q 、质量为m 、重力不计的粒子在y 轴上由静止释放后能到达M 点。求:

(1)带电粒子应带何种电荷?粒子释放点离O 点的距离应满足什么条件? (2)粒子从静止出发到M 点,经历的时间是多少? (3)粒子从静止出发到M 点,所经历的路程是多少?

22.如图所示,L 1、L 2为两平行的直线,间距为d 。L 1下方和L 2上方的空间有垂直于纸面向里的匀强磁场,且磁感应强度均为B 。现有一质量为m 、电荷量为+q 的粒子,以速度v 从L 1上的M 点入射两线之间的真空区域,速度方向与L 1成30°角。不计粒子所受的重力,试求: (1)粒子从M 点出发后,经过多长时间第一次回到直线L 1上?

(2)试证明:改变粒子的速度大小,发现无论入射速度v 多大(远小于

光速),粒子从M 点出发后第二次回到L 1上时,必经过同一点,并求出此点离M 点的距离。 (3)v 满足什么条件时,粒子恰好能回到M 点?

题组九

23.自由电子激光器是利用高速电子束射人方向交替变化的磁场,使电子在磁场中摆动着前进,进而产生激光的一种装置。在磁场中建立与磁场方向垂直的平面坐标系xoy ,如图甲所示。方向交替变化的磁场随x 坐标变化的图线如图乙所示,每个磁场区域的宽度

l=m ,磁场的磁感应强度大小

B 0=3.75×10-4

T ,规定磁场方向垂直纸面向外为正方向。现将初速度为零的电子经电压U =4.5×103V 的电场加速后,从坐标原点沿轴正方向射入磁场。电子电荷量e 为1.6×10-19C ,电子质量m 取9×10-31kg 不计电子的重力,不考虑电子因高速运动而产生的影响。 (1)电子从坐标原点进入磁场时的速度大小为多少?

(2)请在图甲中画出x =0至x =4L 区域内电子在磁场中运动的轨迹,计算电子通过图中各磁场区域边界时位置的纵坐标并在图中标出;

B

(3)从x =0至x =NL (N 为整数)区域内电子运动的平均速度大小为多少?

24.图(a )所示的xoy 平面处于匀强磁场中,磁场方向与xoy 平面(纸面)垂直,磁感应强度B 随时间t 变化的周期为T ,变化图线如图(b )所示。当B 为+B 0时,磁感应强度方向指向纸外。在坐标原点O 有一

带正电的粒子P ,其电荷量与质量恰好等于2π/TB 0。不

计重力。设P 在某时刻t 0以某一初速度沿y 轴正向O 点开始运动,将它经过时间T 到达的点记为A 。 (1)若t 0=0,则直线OA 与x 轴的夹角是多少? (2)若t 0=T /4,则直线OA 与x 轴的夹角是多少? (3)为了使直线OA 与x 轴的夹角为π/4,在0

题组十

25.如图所示,x 轴正方向水平向右,y 轴正方向竖直向上。在xOy 平面内有与y 轴平行的匀强电场,在半径为R 的圆内还有与xOy 平面垂直的匀强磁场。在圆的左边放置一带电微粒发射装置,它沿x 轴正方向发射出一束具有相同质量m 、电荷量q (q >0)和初速度v 的带电微粒。发射时,这束带电微粒分布在0

(1)从A 点射出的带电微粒平行于x 轴从C 点进入有磁场区域,并从坐标原点O 沿y 轴负方向离开,求点场强度和磁感应强度的大小和方向。 (2)请指出这束带电微粒与x 轴相交的区域,并说明理由。

(3)若这束带电微粒初速度变为2v ,那么它们与x 轴相交的区域又在哪里?并说明理由。

26.如图,ABCD 是边长为a 的正方形。质量为m 、电荷量为e 的电子以大小为0v 的初速度沿纸面垂直于BC 变射入正方形区域。在正方形内适当区域中有匀强磁场。

电子从BC 边上的任意点入射,都只能从A 点射出磁场。不计重力,求: (1)次匀强磁场区域中磁感应强度的方向和大小;

(2)此匀强磁场区域的最小面积。

题组十一

27.对铀235的进一步研究在核能的开发和利用中具有重要的意义。如图所示,质量为m 、电荷量为q 的铀235离子,从容器A 下方的小孔S 1不断飘入加速电场,其初速度可视为零,然后经过小孔S 2垂直与磁场方向进入磁感应强度为B 的均强磁场中,做半径为R 的均速圆周运动,离子行进半个圆周后离开磁场并被收集,离开磁场时离子束的等效电流I 。

不考虑离子重力及离子间的相互作用。

(1)求加速电场的电压U ; (2)求出在离子被收集的过程中任意间t 内收集到离子的质量M ;

(3)实际上加速电压的大小在U ±ΔU 范围内微小变化。若容器A 中有电荷量相同的铀235和铀238两种离子,如前述情况它们经电场加速后进入磁场中发生

O P x y

图(a )

A

分离,为使这两种离子在磁场中运动的轨迹不发生交叠,U

U

?应小于多少?(结果用百分数表示,保留两位有效数字)

28.1932年,劳伦斯和利文斯设计出了回旋加速器。回旋加速器的工作原理如图所示,置于高真空中的D 形金属盒半径为R ,两盒间的狭缝很小,带电粒子穿过的时间可以忽略不计。磁感应强度为B 的匀强磁场与盒面垂直。A 处粒子源产生的粒子,质量为m 、电荷量为+q ,在加速器中被加速,加速电压为U 。加速过程中不考虑相对论效应和重力作用。

(1)求粒子第2次和第1次经过两D 形盒间狭缝后轨道半径之比; (2)求粒子从静止开始加速到出口处所需的时间t ;

(3)实际使用中,磁感应强度和加速电场频率都有最大值的限制。若某一加速器磁感应强度和加速电场频率的最大值分别为B m 、f m ,试讨论粒子能获得的最大动能E km 。

29.回旋加速器在核科学、核技术、核医学等高新技术领域得到了广泛应用,有力地推动了现代科学技术的发展。

(1)回旋加速器的原理如图,D 1和D 2是两个中空的半径为R 的半圆金属盒,它们接在电压一定、频率为f 的交流电源上,位于D 1圆心处的质子源A 能不断产生质子(初速度可以忽略,重力不计),它们在两盒之间被电场加速,D 1、D 2置于与盒面垂直的磁感应强度为B 的匀强磁场中。若质子束从回旋加速器输出时的平均功率为P ,求输出时质子束的等效电流I 与P 、B 、R 、f 的关系式(忽略质子在电场中运动的时间,其最大速度远小于光速)

(2)试推理说明:质子在回旋加速器中运动时,随轨道半径r 的增大,同一盒中相邻轨道的半径之差 r ?是增大、减小还是不变?

1.

4πm 3qB (-3mv 0qB ,0)或2πm 3qB (3mv 0

qB ,0) 2.(1)垂直于纸面向外(2)5v 0 3.

qBL 4m <v <5qBL

4m

4.(1)r 1=0.5m (2)θ=60°(3)B 0≥0.4T

5. (1)

04qadBB m V =

(2

)03)2qadBB m V =(3)离

H 的距离为3)a

到3

)2a

间的EF 边界上有离子穿出磁场。

6. (1)0v q m Br =(2)

'tan

2

B B θ=

7.

qt m

B qt m B 35,6521ππ==

8. (1)v 0=

m Uq v 22

1-

(2)B 1= )(2122R R q mv - t =r v 22π(3)B 2<)(2123R R q mv +

9.

1v =

1222())

s R R =-=

m d =

10. (1)

m

qBL

v 45=

(2)x ?=

L 4

121-

11.(1)qBL

m (2)m qB π

12.(1)4.9×107C/kg (2)7.9×10-

6s (3)0.25m 2

13. 3mv qL

,L

14. 6. ⑴1.0×104m/s ⑵U 2 =100V ⑶0.1T

15. (1)2

032mv q (2)02mv Bq (3

)2)3m

Bq π

16. (1)qBr m (2)πm

2qB +

2mr

qE (3)(0,r +Br 3qr mE

) 17.(1)

0mg q E =

,0

2E B v =

(2)2d v v g π+(3)(21)2v g π+

18.(1)

mgd q U =

负电荷。(2)

02v U B gd =(3)02

45v U B gd '= 19. (1)E=kg (2)

5kv B d =

(3

(5y d λ=

20. 若先到P 点:02()Ea B b a v =

-,方向垂直纸面向里 若先到Q 点:02()Eb

B b a v =

-,方向垂直纸面

向外

21. (1)负电荷,22

2

8qB L y n mE =-(n=1,2,3…)(2)

(21)2n BL n m t nE qB π±=+(n=1,2,3…)

(3)

222

(21)82n qB L L s n mE π±=+(n=1,2,3…) 22.(1)453d m v qB π+(2)略(3

)1,2,3...)n =

23.(1)3m qBL v m

qBL 0>

≥ (2)3qB m 5t π=,在O 点上方L /3范围内 24.①0②π/2③T/8

25.(1)mv

qR ;方向垂直于纸面向外;(2)见解析;(3)与x 同相交的区域范围是x>0。 26.(1)0mv ea (2)2

22a π-

27.(1)22

2qB R U m =(2)MIt M q =(3)0.63%

U m m U m m '?-<='+

28. 21

:r r =(2)

2

2BR t U π=

(3)当Bm f ≤m f 时, 2222m km q B R E m =当Bm f ≥m f 时,2222km m E mf R π=

29.(1)

2

P

BR f π(2)减小

(完整版)高中物理经典选择题(包括解析答案)

物理 1.一中子与一质量数为A(A>1)的原子核发生弹性正碰。若碰前原子核静止,则碰撞前与碰撞后中子的速率之比为( ) A. B. C. D. [解析] 1.设中子质量为m,则原子核的质量为Am。设碰撞前后中子的速度分别为v0、v1,碰后原子核的速度为v2,由弹性碰撞可得mv0=mv1+Amv2,m=m+Am,解得v1=v0,故=,A正确。 2.很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒。一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐。让条形磁铁从静止开始下落。条形磁铁在圆筒中的运动速率( ) A.均匀增大 B.先增大,后减小 C.逐渐增大,趋于不变 D.先增大,再减小,最后不变[解析] 2.对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C。 3.(2014大纲全国,19,6分)一物块沿倾角为θ的斜坡向上滑动。当物块的初速度为v时, 上升的最大高度为H,如图所示;当物块的初速度为时,上升的最大高度记为h。重力加速度大小为g。物块与斜坡间的动摩擦因数和h分别为( )

A.tan θ和 B.tan θ和 C.tan θ和 D.tan θ和 [解析] 3.由动能定理有 -mgH-μmg cos θ=0-mv2 -mgh-μmg cos θ=0-m()2 解得μ=(-1)tan θ,h=,故D正确。 4.两列振动方向相同、振幅分别为A1和A2的相干简谐横波相遇。下列说法正确的是( ) A.波峰与波谷相遇处质点的振幅为|A1-A2| B.波峰与波峰相遇处质点离开平衡位置的位移始终为A1+A2 C.波峰与波谷相遇处质点的位移总是小于波峰与波峰相遇处质点的位移 D.波峰与波峰相遇处质点的振幅一定大于波峰与波谷相遇处质点的振幅 [解析] 4.两列振动方向相同的相干波相遇叠加,在相遇区域内各质点仍做简谐运动,其振动位移在0到最大值之间,B、C项错误。在波峰与波谷相遇处质点振幅为两波振幅之差,在波峰与波峰相遇处质点振幅为两波振幅之和,故A、D项正确。

高中物理经典试题库1000题

《物理学》基础题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

高中物理平抛运动的典型例题

平抛运动典型题目 1、从水平匀速飞行的直升机上向外自由释放一个物体,不计空气阻力,在物体下落过程中,下列说法正确的是() A.从飞机上看,物体静止B.从飞机上看,物体始终在飞机的后方 C.从地面上看,物体做平抛运动D.从地面上看,物体做自由落体运动 2、飞机距离地面高H=500m,水平飞行速度为v1=100m/s,追击一辆速度为v2=20m/s 同向行驶的汽车,欲使投弹击中汽车,则飞机应在距汽车水平距离x=m远处投弹.(g=10m/s2) 3、把物体以一定速度水平抛出。不计空气阻力,g取10,那么在落地前的任意一秒内() A.物体的末速度大小一定等于初速度大小的10倍 B.物质的末速度大小一定比初速度大10 C.物体的位移比前一秒多10m D.物体下落的高度一定比前一秒多10m 平抛运动“撞球”问题——判断两球运动的时间是否相同(h是否相同);类比追击问题,利用撞上时水平位移、竖直位移相等的关系进行解决 4、如图所示,甲乙两球位于同一竖直线上的不同位置,甲比乙高h,将甲乙两球分别以v1.v2的速度沿同一水平方向抛出,不计空气阻力,下列条件中有可能使乙球击中甲球的是(? ) A.同时抛出,且v1< v2? B.甲后抛出,且v1> v2 C.甲先抛出,且v1> v2? ? D.甲先抛出,且v1< v2

5、从高H 处以水平速度v 1平抛一个小球1,同时从地面以速度v 2竖直向上抛出一个小球2,两小球在空中相遇则:( ) A .从抛出到相遇所用时间为 H v 1 B .从抛出到相遇所用时间为H v 2 C .抛出时两球的水平距离是v H v 12 D .相遇时小球2上升高度是H gH v 1212 -?? ? ? ? 6.物体做平抛运动时,它的速度的方向和水平方向间的夹角α的正切tan α随时间t 变化的图像是下( ) 7、子弹从枪口射出,在子弹的飞行途中,有两块相互平行的竖直挡板A 、B (如图所示),A 板距枪口的水平距离为s 1,两板相距s 2,子弹穿过两板先后留下弹孔C 和D ,C 、D 两点之间的高度差为h ,不计挡板和空气阻力,求子弹的初速度v 0. () 2h S S 2S g 2 221+ 8、从高为h 的平台上,分两次沿同一方向水平抛出一个小球。如右图第一次小球落地在a 点。第二次小球落地在b 点,ab 相距为d 。已知第一次抛球的初速度为,求第二次抛 球的初速度是多少—————2h 2gh d V 1+

高中物理《磁场》典型题(经典推荐含答案)

高中物理《磁场》典型题(经典推荐) 一、单项选择题 1.下列说法中正确的是( ) A .在静电场中电场强度为零的位置,电势也一定为零 B .放在静电场中某点的检验电荷所带的电荷量q 发生变化时,该检验电荷所受电场力F 与其电荷量q 的比值保持不变 C .在空间某位置放入一小段检验电流元,若这一小段检验电流元不受磁场力作用,则该位置的磁感应强度大小一定为零 D .磁场中某点磁感应强度的方向,由放在该点的一小段检验电流元所受磁场力方向决定 2.物理关系式不仅反映了物理量之间的关系,也确定了单位间的关系。如关系式U=IR ,既反映了电压、电流和电阻之间的关系,也确定了V (伏)与A (安)和Ω(欧)的乘积等效。现有物理量单位:m (米)、s (秒)、N (牛)、J (焦)、W (瓦)、C (库)、F (法)、A (安)、Ω(欧)和T (特) ,由他们组合成的单位都与电压单位V (伏)等效的是( ) A .J/C 和N/C B .C/F 和/s m T 2? C .W/A 和m/s T C ?? D .ΩW ?和m A T ?? 3.如图所示,重力均为G 的两条形磁铁分别用细线A 和B 悬挂在水平的天 花板上,静止时,A 线的张力为F 1,B 线的张力为F 2,则( ) A .F 1 =2G ,F 2=G B .F 1 =2G ,F 2>G C .F 1<2G ,F 2 >G D .F 1 >2G ,F 2 >G 4.一矩形线框置于匀强磁场中,线框平面与磁场方向垂直,先保持线框的面积不变,将磁感应强度在1s 时间内均匀地增大到原来的两倍,接着保持增大后的磁感应强度不变,在1s 时间内,再将线框的面积均匀地减小到原来的一半,先后两个过程中,线框中感应电动势的比值为( ) A .1/2 B .1 C .2 D .4 5.如图所示,矩形MNPQ 区域内有方向垂直于纸面的匀强磁场,有5个带电粒子从图中箭头所示位置垂直于磁场边界进入磁场,在纸面内做匀速圆周运动,运动轨迹为相应的圆弧,这些粒子的质量,电荷量以及速度大小如下表所示,由以上信息可知,从图中a 、b 、c 处进入

高中物理电磁学经典例题

高中物理典型例题集锦 (电磁学部分) 25、如图22-1所示,A、B为平行金属板,两板相距为d,分别与电源两极相连,两板 的中央各有小孔M、N。今有一带电质点,自A板上方相距为d的P点由静止自由下落(P、M、N三点在同一竖直线上),空气阻力不计,到达N点时速度恰好 为零,然后按原路径返回。若保持两板间的电压不变,则: A.若把A板向上平移一小段距离,质点自P点下落仍能返回。 B.若把B板向下平移一小段距离,质点自P点下落仍能返回。 C.若把A板向上平移一小段距离,质点自P点下落后将穿过 N孔继续下落。 图22-1 D.若把B板向下平移一小段距离,质点自P点下落后将穿过N 孔继续下落。 分析与解:当开关S一直闭合时,A、B两板间的电压保持不变,当带电质点从M向N 运动时,要克服电场力做功,W=qU AB,由题设条件知:带电质点由P到N的运动过程中,重力做的功与质点克服电场力做的功相等,即:mg2d=qU AB 若把A板向上平移一小段距离,因U AB保持不变,上述等式仍成立,故沿原路返回, 应选A。 若把B板下移一小段距离,因U AB保持不变,质点克服电场力做功不变,而重力做功 增加,所以它将一直下落,应选D。 由上述分析可知:选项A和D是正确的。 想一想:在上题中若断开开关S后,再移动金属板,则问题又如何(选A、B)。 26、两平行金属板相距为d,加上如图23-1(b)所示的方波形电压,电压的最大值为U0,周期为T。现有一离子束,其中每个 离子的质量为m,电量为q,从与两板 等距处沿着与板平行的方向连续地射 入两板间的电场中。设离子通过平行 板所需的时间恰为T(与电压变化周图23-1 图23-1(b)

高中物理经典题库_力学计算题49个

四、力学计算题集粹(49个) 1.在光滑的水平面,一质量m=1kg的质点以速度v0=10m/s沿x轴正方向运动,经过原点后受一沿y轴正方向的恒力F=5N作用,直线OA与x轴成37°角,如图1-70所示,求: 图1-70 (1)如果质点的运动轨迹与直线OA相交于P点,则质点从O点到P点所经历的时间以及P的坐标;(2)质点经过P点时的速度. 2.如图1-71甲所示,质量为1kg的物体置于固定斜面上,对物体施以平行于斜面向上的拉力F,1s末后将拉力撤去.物体运动的v-t图象如图1-71乙,试求拉力F. 图1-71 3.一平直的传送带以速率v=2m/s匀速运行,在A处把物体轻轻地放到传送带上,经过时间t=6s,物体到达B处.A、B相距L=10m.则物体在传送带上匀加速运动的时间是多少?如果提高传送带的运行速率,物体能较快地传送到B处.要让物体以最短的时间从A处传送到B处,说明并计算传送带的运行速率至少应为多大?若使传送带的运行速率在此基础上再增大1倍,则物体从A传送到B的时间又是多少? 4.如图1-72所示,火箭平台上放有测试仪器,火箭从地面起动后,以加速度g/2竖直向上匀加速运动,升到某一高度时,测试仪器对平台的压力为起动前压力的17/18,已知地球半径为R,求火箭此时离地面的高度.(g为地面附近的重力加速度) 图1-72 5.如图1-73所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素μ=0.02.在木楔的倾角θ为30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2) 图1-73 6.某航空公司的一架客机,在正常航线上作水平飞行时,由于突然受到强大垂直气流的作用,使飞机在10s高度下降1700m造成众多乘客和机组人员的伤害事故,如果只研究飞机在竖直方向上的运动,且假定这一运动是匀变速直线运动.试计算: (1)飞机在竖直方向上产生的加速度多大?方向怎样? (2)乘客所系安全带必须提供相当于乘客体重多少倍的竖直拉力,才能使乘客不脱离座椅?(g取10m/s2) (3)未系安全带的乘客,相对于机舱将向什么方向运动?最可能受到伤害的是人体的什么部位? (注:飞机上乘客所系的安全带是固定连结在飞机座椅和乘客腰部的较宽的带子,它使乘客与飞机座椅

高一物理必修1典型例题

高一物理必修1典型例题 例l. 在下图甲中时间轴上标出第2s末,第5s末和第2s,第4s,并说明它们表示的是时间还是时刻。 甲乙 例2. 关于位移和路程,下列说法中正确的是 A. 在某一段时间内质点运动的位移为零,该质点不一定是静止的 B. 在某一段时间内质点运动的路程为零,该质点一定是静止的 C. 在直线运动中,质点位移的大小一定等于其路程 D. 在曲线运动中,质点位移的大小一定小于其路程 例3. 从高为5m处以某一初速度竖直向下抛出一个小球,在与地面相碰后弹起,上升到高为2m处被接住,则在这段过程中 A. 小球的位移为3m,方向竖直向下,路程为7m B. 小球的位移为7m,方向竖直向上,路程为7m C. 小球的位移为3m,方向竖直向下,路程为3m D. 小球的位移为7m,方向竖直向上,路程为3m 例4. 判断下列关于速度的说法,正确的是 A. 速度是表示物体运动快慢的物理量,它既有大小,又有方向。 B. 平均速度就是速度的平均值,它只有大小没有方向。 C. 汽车以速度1v经过某一路标,子弹以速度2v从枪口射出,1v和2v均指平均速度。 D. 运动物体经过某一时刻(或某一位置)的速度,叫瞬时速度,它是矢量。 例5. 一个物体做直线运动,前一半时间的平均速度为1v,后一半时间的平均速度为2v,则全程的平均速度为多少?如果前一半位移的平均速度为1v,后一半位移的平均速度为2v,全程的平均速度又为多少? 例6. 打点计时器在纸带上的点迹,直接记录了 A. 物体运动的时间 B. 物体在不同时刻的位置 C. 物体在不同时间内的位移 D. 物体在不同时刻的速度 例7.如图所示,打点计时器所用电源的频率为50Hz,某次实验中得到的一条纸带,用毫米刻度尺测量的情况如图所示,纸带在A、C间的平均速度为m/s,在A、D间的平均速度为m/s,B点的瞬时速度更接近于m/s。 例8. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零

全国高中物理磁场大题(超全)

高中物理磁场大题 一.解答题(共30小题) 1.如图甲所示,建立Oxy坐标系,两平行极板P、Q垂直于y轴且关于x轴对称,极板长度和板间距均为l,第一四象限有磁场,方向垂直于Oxy平面向里.位于极板左侧的粒子源沿x轴间右连续发射质量为m、电量为+q、速度相同、重力不计的带电粒子在0~3t0时间内两板间加上如图乙所示的电压(不考虑极边缘的影响).已知t=0时刻进入两板间的带电粒子恰好在t0时刻经极板边缘射入磁场.上述m、q、l、t0、B为已知量.(不考虑粒子间相互影响及返回板间的情况) (1)求电压U0的大小. (2)求t0时进入两板间的带电粒子在磁场中做圆周运动的半径. (3)何时射入两板间的带电粒子在磁场中的运动时间最短?求此最短时间.2.如图所示,在xOy平面内,0<x<2L的区域内有一方向竖直向上的匀强电场,2L<x<3L的区域内有一方向竖直向下的匀强电场,两电场强度大小相等.x>3L 的区域内有一方向垂直于xOy平面向外的匀强磁场.某时刻,一带正电的粒子从坐标原点以沿x轴正方向的初速度v0进入电场;之后的另一时刻,一带负电粒子以同样的初速度从坐标原点进入电场.正、负粒子从电场进入磁场时速度方向与电场和磁场边界的夹角分别为60°和30°,两粒子在磁场中分别运动半周后在某点相遇.已经两粒子的重力以及两粒子之间的相互作用都可忽略不计,两粒子带电量大小相等.求: (1)正、负粒子的质量之比m1:m2; (2)两粒子相遇的位置P点的坐标;

(3)两粒子先后进入电场的时间差. 3.如图所示,相距为R的两块平行金属板M、N正对着放置,s1、s2分别为M、N板上的小孔,s1、s2、O三点共线,它们的连线垂直M、N,且s2O=R.以O为圆心、R为半径的圆形区域内存在磁感应强度为B、方向垂直纸面向外的匀强磁场.D为收集板,板上各点到O点的距离以及板两端点的距离都为2R,板两端点的连线垂直M、N板.质量为m、带电量为+q的粒子,经s1进入M、N间的电场后,通过s2进入磁场.粒子在s1处的速度和粒子所受的重力均不计. (1)当M、N间的电压为U时,求粒子进入磁场时速度的大小υ; (2)若粒子恰好打在收集板D的中点上,求M、N间的电压值U0; (3)当M、N间的电压不同时,粒子从s1到打在D上经历的时间t会不同,求t的最小值. 4.如图所示,直角坐标系xoy位于竖直平面内,在?m≤x≤0的区域内有磁感应强度大小B=4.0×10﹣4T、方向垂直于纸面向里的条形匀强磁场,其左边界与x轴交于P点;在x>0的区域内有电场强度大小E=4N/C、方向沿y轴正方向的条形匀强电场,其宽度d=2m.一质量m=6.4×10﹣27kg、电荷量q=﹣3.2×10?19C 的带电粒子从P点以速度v=4×104m/s,沿与x轴正方向成α=60°角射入磁场,经电场偏转最终通过x轴上的Q点(图中未标出),不计粒子重力.求:

高中物理必修一经典例题附解析

华辉教育物理学科备课讲义 A.大小为2N,方向平行于斜面向上 B.大小为1N,方向平行于斜面向上 C.大小为2N,方向垂直于斜面向上 D.大小为2N,方向竖直向上 答案:D 解析:绳只能产生拉伸形变, 绳不同,它既可以产生拉伸形变,也可以产生压缩形变、弯曲形变和扭转形变,因此杆的弹力方向不一定沿杆. 2.某物体受到大小分别为 闭三角形.下列四个图中不能使该物体所受合力为零的是 ( 答案:ABD 解析:A图中F1、F3的合力为 为零;D图中合力为2F3. 3.列车长为L,铁路桥长也是 桥尾的速度是v2,则车尾通过桥尾时的速度为 A.v2

答案:A 解析:推而未动,故摩擦力f=F,所以A正确. .某人利用手表估测火车的加速度,先观测30s,发现火车前进540m;隔30s 现火车前进360m.若火车在这70s内做匀加速直线运动,则火车加速度为 ( A.0.3m/s2B.0.36m/s2 C.0.5m/s2D.0.56m/s2 答案:B 解析:前30s内火车的平均速度v=540 30 m/s=18m/s,它等于火车在这30s 10s内火车的平均速度v1=360 10 m/s=36m/s.它等于火车在这10s内的中间时刻的速度,此时刻Δv v1-v36-18

两根绳上的张力沿水平方向的分力大小相等. 与竖直方向夹角为α,BC与竖直方向夹角为 .利用打点计时器等仪器测定匀变速运动的加速度是打出的一条纸带如图所示.为我们在纸带上所选的计数点,相邻计数点间的时间间隔为0.1s. ,x AD=84.6mm,x AE=121.3mm __________m/s,v D=__________m/s 结果保留三位有效数字)

高中物理平抛运动经典例题

[例1] 如图1所示,某人骑摩托车在水平道路上行驶,要在A处越过的壕沟,沟面对面比A处低,摩托车的速度至少要有多大? 图1 解析:在竖直方向上,摩托车越过壕沟经历的时间 在水平方向上,摩托车能越过壕沟的速度至少为 2. 从分解速度的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的速度方向,则我们常常是“从分解速度”的角度来研究问题。 [例2] 如图2甲所示,以9.8m/s的初速度水平抛出的物体,飞行一段时间后,垂直地撞在倾角为的斜面上。可知物体完成这段飞行的时间是() A. B. C. D. 图2 解析:先将物体的末速度分解为水平分速度和竖直分速度(如图2乙所示)。根据平抛运动的分解可知物体水平方向的初速度是始终不变的,所以;又因为与斜面垂直、与水平面垂直,所以与间的夹角等于斜面的倾角。再根据平抛运动的 分解可知物体在竖直方向做自由落体运动,那么我们根据就可以求出时间了。则 所以 根据平抛运动竖直方向是自由落体运动可以写出

所以 所以答案为C。 3. 从分解位移的角度进行解题 对于一个做平抛运动的物体来说,如果知道了某一时刻的位移方向(如物体从已知倾角的斜面上水平抛出,这个倾角也等于位移与水平方向之间的夹角),则我们可以把位移分解成水平方向和竖直方向,然后运用平抛运动的运动规律来进行研究问题(这种方法,暂且叫做“分解位移法”) [例3] 在倾角为的斜面上的P点,以水平速度向斜面下方抛出一个物体,落在斜面上的Q点,证明落在Q点物体速度。 解析:设物体由抛出点P运动到斜面上的Q点的位移是,所用时间为,则由“分解位移法”可得,竖直方向上的位移为;水平方向上的位移为。 又根据运动学的规律可得 竖直方向上, 水平方向上 则, 所以Q点的速度 [例4] 如图3所示,在坡度一定的斜面顶点以大小相同的速度同时水平向左与水平向右 抛出两个小球A和B,两侧斜坡的倾角分别为和,小球均落在坡面上,若不计空气阻力,则A和B两小球的运动时间之比为多少? 图3 解析:和都是物体落在斜面上后,位移与水平方向的夹角,则运用分解位移的方法可以得到 所以有

高中物理磁场测试题

《磁场》学习效果自我评估检测题一 班级 姓名 一、选择题(本题共8小题,每小题至少有一答案正确,) 1、如图所示,一束带负电粒子沿着水平方向向右飞过磁针正上方, 磁针N极将………( ) A 、向纸内偏转 B 、向纸外偏转 C 、不动 D 、无法确定 2、下列说法正确的是………………………………………………………………………( ) A 、磁感线上某点切线方向就是该点磁感强度方向 B 、沿着磁感线方向磁感强度越来越小 C 、磁感线越密的地方磁感强度越大 D 、磁感线是客观存在的真实曲线 3、下列说法正确的是………………………………………………………………………( ) A 、一小段通电导线放在某处不受磁场力作用,则该处磁感强度为零 B 、由IL F B = 可知,磁感强度大小与放入该处的通电导线I 、L 的乘积成反比 C、因为IL F B =,故导线中电流越大,其周围磁感强度越小 D 、磁感强度大小和方向跟放在磁场中通电导线所受力的大小和方向无关 4、关于洛伦兹力,以下说法正确的是……………………………………………………( ) A 、带电粒子运动时不受洛伦兹力作用,则该处的磁感强度为零 B、磁感强度、洛伦兹力、粒子的速度三者之间一定两两垂直 C 、洛伦兹力不会改变运动电荷的速度 D 、洛伦兹力对运动电荷一定不做功 5、在回旋加速器中……………………………………………………………………………( A 、电场用来加速带电粒子,磁场则使带电粒子旋转 B 、电场和磁场同时用来加速带粒子 C、在确定的交流电源下,回旋加速器的半径越大,同一带电粒子获得的动能越大 D 、同一带电粒子得到的最大动能只与交流电源的电压大小有关,而与电源的频率无关 6、如图所示,一条形磁铁放在水平桌面上,在它的正中央上方固定一直导线,导线与磁场垂直,若给导线通以垂直于纸面向里的电流,则………………………………………( ) A 、磁铁对桌面压力增大 B 、磁场对桌面压力减小 C 、桌面对磁铁没有摩擦力 D、磁铁所受合力不为零 7、如图,a 、b 、c 、d是四根长度相同,等间距地被竖直固定在同一平面上的通电长直导线,当它们通以大小相等,方向如图的电流时,各导线所受磁场力的合力情况是( ) A、导线a受力方向向左 B 、导线b受力方向向左 C 、导线c 受力方向向左 D 、导线d 受力方向向右 8、一个带电粒子沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图所示,径迹上的每一小段都可近似看成圆弧,由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,(电荷不变),从图中可以确定…………………………………………………………( ) v N I

(完整word版)高中物理功和功率典型例题解析

功和功率典型例题精析 [例题1] 用力将重物竖直提起,先是从静止开始匀加速上升,紧接着匀速上升,如果前后两过程的时间相同,不计空气阻力,则[ ] A.加速过程中拉力的功一定比匀速过程中拉力的功大 B.匀速过程中拉力的功比加速过程中拉力的功大 C.两过程中拉力的功一样大 D.上述三种情况都有可能 [思路点拨]因重物在竖直方向上仅受两个力作用:重力mg、拉力F.这两个力的相互关系决定了物体在竖直方向上的运动状态.设匀加速提升重物时拉力为F1,重物加速度为a,由牛顿第二定律F1-mg=ma, 匀速提升重物时,设拉力为F2,由平衡条件有F2=mg,匀速直线运动的位移S2=v·t=at2.拉力F2所做的功W2=F2·S2=mgat2. [解题过程] 比较上述两种情况下拉力F1、F2分别对物体做功的表达式,不难发现:一切取决于加速度a与重力加速度的关系. 因此选项A、B、C的结论均可能出现.故答案应选D. [小结]由恒力功的定义式W=F·S·cosα可知:恒力对物体做功的多少,只取决于力、位移、力和位移间夹角的大小,而跟物体的运动状态(加速、匀速、减速)无关.在一定的条件下,物体做匀加速运动时力对物体所做的功,可以大于、等于或小于物体做匀速直线运动时该力做的功. [例题2]质量为M、长为L的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图8-1所示.现在长木板右端加一水平恒力F,使长木板从小物块底下抽出,小物块与长木板摩擦因数为μ,求把长木板抽出来所做的功.

[思路点拨] 此题为相关联的两物体存在相对运动,进而求功的问题.小物块与长木板是靠一对滑动摩擦力联系在一起的.分别隔离选取研究对象,均选地面为参照系,应用牛顿第二定律及运动学知识,求出木板对地的位移,再根据恒力功的定义式求恒力F的功. [解题过程] 由F=ma得m与M的各自对地的加速度分别为 设抽出木板所用的时间为t,则m与M在时间t内的位移分别为 所以把长木板从小物块底下抽出来所做的功为 [小结]解决此类问题的关键在于深入分析的基础上,头脑中建立一幅清晰的动态的物理图景,为此要认真画好草图(如图8-2).在木板与木块发生相对运动的过程中,作用于木块上的滑动摩擦力f 为动力,作用于木板上的滑动摩擦力f′为阻力,由于相对运动造成木板的位移恰等于物块在木板左端离开木板时的位移Sm与木板长度L之和,而它们各自的匀加速运动均在相同时间t内完成,再根据恒力功的定义式求出最后结果.

高中物理经典题库1000题

《物理学》题库 一、选择题 1、光线垂直于空气和介质的分界面,从空气射入介质中,介质的折射率为n,下列说法中正确的是() A、因入射角和折射角都为零,所以光速不变 B、光速为原来的n倍 C、光速为原来的1/n D、入射角和折射角均为90°,光速不变 2、甘油相对于空气的临界角为42.9°,下列说法中正确的是() A、光从甘油射入空气就一定能发生全反射现象 B、光从空气射入甘油就一定能发生全反射现象 C、光从甘油射入空气,入射角大于42.9°能发生全反射现象 D、光从空气射入甘油,入射角大于42.9°能发生全反射现象 3、一支蜡烛离凸透镜24cm,在离凸透镜12cm的另一侧的屏上看到了清晰的像,以下说法中正确的是() A、像倒立,放大率K=2 B、像正立,放大率K=0.5 C、像倒立,放大率K=0.5 D、像正立,放大率K=2 4、清水池内有一硬币,人站在岸边看到硬币() A、为硬币的实像,比硬币的实际深度浅 B、为硬币的实像,比硬币的实际深度深 C、为硬币的虚像,比硬币的实际深度浅 D、为硬币的虚像,比硬币的实际深度深 5、若甲媒质的折射率大于乙媒质的折射率。光由甲媒质进入乙媒质时,以下四种答案正确的是() A、折射角>入射角 B、折射角=入射角 C、折射角<入射角 D、以上三种情况都有可能发生 6、如图为直角等腰三棱镜的截面,垂直于CB面入射的光线在AC面上发生全反射,三棱镜的临界角() A、大于45o B、小于45o C、等于45o D、等于90o 7、光从甲媒质射入乙媒质,入射角为α,折射角为γ,光速分别为v甲和v乙,已知折射率为n甲>n乙,下列关系式正确的是() A、α>γ,v甲>v乙 B、α<γ,v甲>v乙 C、α>γ,v甲

高中物理知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。 (3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。

高中物理磁场题型练习

一. 质谱仪问题 1.质谱仪是一种测定带电粒子质量和分析同位素的重要工具.它的构造原理如图所示,离子源S产生带电量为q的某种正离子,离子射出时的速度很小,可以看作是静止的,离子经过电压U加速后形成离子束流,然后垂直于磁场方向进入磁感应强度为B的匀强磁场,沿着半圆周运动而到达记录它的照相底片P上.实验测得:它在P上的位置到入口处S1的距离为a,离子束流的电流为I.请回答下列问题: (1)在时间t内射到照相底片P上的离子的数目为多少? (2)单位时间穿过入口处S1离子束流的能量为多少? (3)试证明这种离子的质量为. 2.质谱仪是一种测定带电粒子质量和分析同位素的重要工具,它的构造原理如图所示.离子源S产生的各种不同正离子束(速度可看作为零),经加速电场(加速电场极板间的距离为d、电势差为U) 加速,然后垂直进入磁感应强度为B的有界匀强磁场中做匀速圆周运动,最后到达 记录它的照相底片P上.设离子在P上的位置与入口处S1之间的距离为x. (1)求该离子的荷质比. (2)若离子源产生的是带电量为q、质量为m1和m2的同位素离子(m1> m2),它们分 别到达照相底片上的P1、P2位置(图中末画出),求P1、P2间的距离△x。 (3)若第(2)小题中两同位素离子同时进入加速电场,求它们到达照相底片上的时间差△t(磁场边界与靠近磁场边界的极板间的距离忽略不计). 二. 弧形轨迹问题 1.如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad边中点O,方向垂直磁场向里射入一速度方向跟ad边夹角θ=30°、大小为v0的带正电粒子,已知粒子质量为m,电量为q,ad边长为L,ab边足够长,粒子重力不计,求: (1)粒子能从ab边上射出磁场的v0大小范围. (2)如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最 长时间. 2.如图所示,在矩形abcd区域内存在着匀强磁场,甲、乙两带电粒子从顶角c处沿cd方向射入磁场,甲从p处射出,乙从q处射出,已知甲的比荷是乙的比荷的2倍,cp连线和cq连线与cd边分别成60°和30°角,不计两粒子的重力.

高中物理牛顿第二定律经典例题

牛顿第二运动定律 【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是: A、物体从A下降和到B的过程中,速率不断变小 B、物体从B上升到A的过程中,速率不断变大 C、物体从A下降B,以及从B上升到A的过程中,速 率都是先增大,后减小 D、物体在B点时,所受合力为零 的对应关系,弹簧这种特 【解析】本题主要研究a与F 合 殊模型的变化特点,以及由物体的受力情况判断物体的 运动性质。对物体运动过程及状态分析清楚,同时对物 =0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F 合 由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。在C位置mg=kx c,a=0,物体速度达最大。由C→B的过程中,由于mgf m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。 综合上述,正确答案应为A、B、D。 【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A 的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少? 【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线 中拉力T,滑块A的支持力N,如 图3-12所示,小球在这三个力作用 下产生向左的加速度,当滑块向左

高一物理典型例题

高一物理必修1知识集锦及典型例题 一. 各部分知识网络 (一)运动的描述: 测匀变速直线运动的加速度:△x=aT 2 ,6543212 ()()(3) a a a a a a a T ++-++=

a与v同向,加速运动;a与v反向,减速运动。

(二)力: 实验:探究力的平行四边形定则。 研究弹簧弹力与形变量的关系:F=KX.

(三)牛顿运动定律: . 改变

(四)共点力作用下物体的平衡: 静止 平衡状态 匀速运动 F x 合=0 力的平衡条件:F 合=0 F y 合=0 合成法 正交分解法 常用方法 矢量三角形动态分析法 相似三角形法 正、余弦定理法 物 体 的平衡

二、典型例题 例题1..某同学利用打点计时器探究小车速度随时间变化的关系,所用交流电的频率为50 Hz,下图为某次实验中得到的一条纸带的一部分,0、1、2、3、4、5、6、7为计数点,相邻两计数点间还有3个打点未画出.从纸带上测出x1=3.20 cm,x2=4.74 cm,x3=6.40 cm,x4=8.02 cm,x5=9.64 cm,x6=11.28 cm,x7=12.84 cm. (1)请通过计算,在下表空格内填入合适的数据(计算结果保留三位有效数字); (2)根据表中数据,在所给的坐标系中作出v-t图 象(以0计数点作为计时起点);由图象可得,小车 运动的加速度大小为________m /s2 例2. 关于加速度,下列说法中正确的是 A. 速度变化越大,加速度一定越大 B. 速度变化所用时间越短,加速度一定越大 C. 速度变化越快,加速度一定越大 D. 速度为零,加速度一定为零 例3. 一滑块由静止开始,从斜面顶端匀加速下滑,第5s末的速度是6m/s。求:(1)第4s末的速度;(2)头7s内的位移;(3)第3s内的位移。 例4. 公共汽车由停车站从静止出发以0.5m/s2的加速度作匀加速直线运动,同时一辆汽车以36km/h的不变速度从后面越过公共汽车。求: (1)经过多长时间公共汽车能追上汽车? (2)后车追上前车之前,经多长时间两车相距最远,最远是多少? 例5.静止在光滑水平面上的物体,受到一个水平拉力,在力刚开始作用的瞬间,下列说法中正确的是 A. 物体立即获得加速度和速度

高中物理 几种常见的磁场练习题

高中物理 几种常见的磁场练习题 一、选择题 1、对于通有恒定电流的长直螺线管,下列说法中正确的是( ) A .放在通电螺线管外部的小磁针静止时,它的N 极总是指向螺线管的S 极 B .放在通电螺线管外部的小磁针静止时,它的N 极总是指向螺线管的N 极 C .放在通电螺线管内部的小磁针静止时,它的N 极总是指向螺线管的S 极 D .放在通电螺线管内部的小磁针静止时,它的N 极总是指向螺线管的N 极 解析:由通电螺线管周围的磁感线分布知在外部磁感线由螺线管的N 极指向S 极,在 内部由S 极指向N 极,小磁针静止时N 极指向为该处磁场方向.答案:AD 2、如上图所示ab 、cd 是两根在同一竖直平面内的直导线,在两导线中央悬挂一个小磁针,静止时在同一竖直平面内,当两导线中通以大小相等的电流时,小磁针N 极向纸面里转动,则两导线中的电流方向( ) A .一定都是向上 B .一定都是向下 C .ab 中电流向下,cd 中电流向上 D .ab 中电流向上,cd 中电流向下 解析:小磁针所在位置跟两导线距离相等,两导线中的电流在该处磁感应强度大小相等,小磁针N 极向里转说明合磁感应强度方向向里,两电流在该处的磁感应强度均向里,由安培定则可判知ab 中电流向上,cd 中电流向下,D 正确. 答案:D 3、如上图所示,矩形线圈abcd 放置在水平面内,磁场方向与水平方向成 α角,已知sin α=45,线圈面积为S ,匀强磁场的磁感应强度为B ,则通过线 圈的磁通量为( ) A .BS B.4BS 5 C.3BS 5 D.3BS 4 解析:B 与S 有夹角α,则Φ=BS sin α=45 BS .答案:B 4、如下图所示,a 、b 是两根垂直纸面的直导体通有等值的电流,两导线外有一点P ,P 点到a 、b 距离相等,要使P 点的磁场方向向右,则a 、b 中电流的方向为( ) A .都向纸里 B .都向纸外 C .a 中电流方向向纸外,b 中向纸里 D .a 中电流方向向纸里,b 中向纸外 解析:a 、b 中电流等值,P 点与a 、b 等距,故a 、b 中电流在P 点磁感应强度大小相等,P 点合磁感应强度水平向右,以平行四边形定则和安培定则可判知a 中电流向外,b 中电流向里,C 正确. 5、如图,两根相互平行的长直导线分别通有方向相反的电流I 1和I 2,且 I 1>I 2;a 、b 、c 、d 为导线某一横截面所在平面内的四点,且a 、b 、c 与两导线 共面;b 点在两导线之间,b 、d 的连线与导线所在平面垂直.磁感应强度可能 为零的点是( ) A .a 点 B .b 点 C .c 点 D .d 点 解析:根据右手螺旋定则,I 1和I 2虽然在a 点形成的磁感应强度的方向相反,但由于I 1>I 2,且a 点距I 1较近,a 点的磁感应强度的方向向上,所以不可能为零,A 错;同理c 点的磁感应强度可能为零,C 正确;I 1,I 2在b 点形成的磁感应强度的方向相同,不可能为零,B 错;因b 、d 的连线与导线所在平面垂直,d 点也在两导线之间,I 1、I 2在d 点形成的磁感应强度的方向不可能相反,磁感应强度不可能为零,D 错.答案:C

高中物理圆周运动典型例题解析1

圆周运动的实例分析典型例题解析 【例1】用细绳拴着质量为m 的小球,使小球在竖直平面内作圆周运动,则下列说法中,正确的是[ ] A .小球过最高点时,绳子中张力可以为零 B .小球过最高点时的最小速度为零 C .小球刚好能过最高点时的速度是Rg D .小球过最高点时,绳子对小球的作用力可以与球所受的重力方向相 反 解析:像该题中的小球、沿竖直圆环内侧作圆周运动的物体等没有支承物的物体作圆周运动,通过最高点时有下列几种情况: (1)m g m v /R v 2当=,即=时,物体的重力恰好提供向心力,向心Rg 加速度恰好等于重力加速度,物体恰能过最高点继续沿圆周运动.这是能通过最高点的临界条件; (2)m g m v /R v 2当>,即<时,物体不能通过最高点而偏离圆周Rg 轨道,作抛体运动; (3)m g m v /R v m g 2当<,即>时,物体能通过最高点,这时有Rg +F =mv 2/R ,其中F 为绳子的拉力或环对物体的压力.而值得一提的是:细绳对由它拴住的、作匀速圆周运动的物体只可能产生拉力,而不可能产生支撑力,因而小球过最高点时,细绳对小球的作用力不会与重力方向相反. 所以,正确选项为A 、C . 点拨:这是一道竖直平面内的变速率圆周运动问题.当小球经越圆周最高点或最低点时,其重力和绳子拉力的合力提供向心力;当小球经越圆周的其它位置时,其重力和绳子拉力的沿半径方向的分力(法向分力)提供向心力. 【问题讨论】该题中,把拴小球的绳子换成细杆,则问题讨论的结果就大相径庭了.有支承物的小球在竖直平面内作圆周运动,过最高点时:

(1)v (2)v (3)v 当=时,支承物对小球既没有拉力,也没有支撑力; 当>时,支承物对小球有指向圆心的拉力作用; 当<时,支撑物对小球有背离圆心的支撑力作用; Rg Rg Rg (4)当v =0时,支承物对小球的支撑力等于小球的重力mg ,这是有支承物的物体在竖直平面内作圆周运动,能经越最高点的临界条件. 【例2】如图38-1所示的水平转盘可绕竖直轴OO ′旋转,盘上的水平杆上穿着两个质量相等的小球A 和B .现将A 和B 分别置于距轴r 和2r 处,并用不可伸长的轻绳相连.已知两球与杆之间的最大静摩擦力都是f m .试分析角速度ω从零逐渐增大,两球对轴保持相对静止过程中,A 、B 两球的受力情况如何变化? 解析:由于ω从零开始逐渐增大,当ω较小时,A 和B 均只靠自身静摩擦力提供向心力. A 球:m ω2r =f A ; B 球:m ω22r =f B . 随ω增大,静摩擦力不断增大,直至ω=ω1时将有f B =f m ,即m ω=,ω=.即从ω开始ω继续增加,绳上张力将出现.12m 112r f T f m r m /2 A 球:m ω2r =f A +T ;B 球:m ω22r =f m +T . 由B 球可知:当角速度ω增至ω′时,绳上张力将增加△T ,△T =m ·2r(ω′2-ω2).对于A 球应有m ·r(ω′2-ω2)=△f A +△T =△f A +m ·2r(ω′2-ω2). 可见△f A <0,即随ω的增大,A 球所受摩擦力将不断减小,直至f A =0

相关文档
相关文档 最新文档