文档库 最新最全的文档下载
当前位置:文档库 › 聚乙二醇化壳聚糖的合成开题报告

聚乙二醇化壳聚糖的合成开题报告

聚乙二醇化壳聚糖的合成开题报告
聚乙二醇化壳聚糖的合成开题报告

聚乙二醇化壳聚糖制备、评价及应用的研究

摘要:壳聚糖(Cs)具有良好的抗病毒性、组织黏附性、生物相容性和生物可降解性等,在生物医学领域具有广阔的应用前景。CS不溶于水和一般的有机溶剂,因此,对CS进行化学接枝改性是CS研究中的一个重要课题。而聚乙二醇(PEG)化壳聚糖是一类新型功能性聚合物,较未修饰的壳聚糖而言,PEG化壳聚糖在水溶液和有机溶剂中的溶解性均明提高,同时聚合物的细胞毒性降低,生物相容性得以改善。

关键词:壳聚糖,接枝共聚物,聚乙二醇

1研究背景

壳聚糖是一种重要的生物功能性材料,然而由于其分子结构结晶性较高,不溶于一般的有机溶剂和水,极大地限制了其应用[1]。

对壳聚糖进行化学改性,既可以改善壳聚糖的水溶性,又能赋予壳聚糖一些新的性能,常见方法有酰化、羧甲基化、巯基化、季胺化以及聚乙二醇(PEG)接枝等。Harris等[2]于1984年首先采用还原氨基化反应将PEG醛接枝到壳聚糖上的氨基,合成了PEG壳聚糖接枝共聚物。因在壳聚糖中引入亲水性的基团,破坏了壳聚糖分子链排列的规整性,削弱了壳聚糖分子链间的氢键作用,从而使溶解性能得到改善。近年来随着国内外对PEG化壳聚糖的研究逐渐深人,发现PEG修饰不仅能提高壳聚糖的溶解性,而且还可以改善壳聚糖以及壳聚糖衍生物的细胞毒性,从而使聚合物的生物相容性增加,促进了PEG化壳聚糖在多肽药物、基因药物传输以及生物功能材料上的应用。

将PEG链引入壳聚糖分子结构,不仅增加其亲水性,还降低了结晶性,使其在两相中的性能都得到改善。Jeong等[3]制备了PEG-g-壳聚糖,并用紫外分光光度计法测定了壳聚糖,多种相对分子质量PEG-g-壳聚糖在不同pH值水溶液和不同有机溶剂中的溶解性能。结果表明,壳聚糖溶液在pH为时开始出现混浊;当pH值升至时,则完全析出,且不溶于DMSO、二甲基酰胺、乙醇等有机溶剂。而PEG-g-壳聚糖在pH为~时均可溶解,而且在DMSO、二甲基酰胺中也有良好的溶解性。Mao等制备的PEG-g-N-三甲基壳聚糖(PEG-g-TMC),即使接枝率只有10%,聚合物在pH为1~14时都可溶于水,且与PEG的相对分子质量无关,最大溶解度能达到50g·L-1。而Jeong等[4]制备的不同接枝率的PEG-g-壳聚糖在水中的溶解度可达到300g·L-1以上。

当前研究表明,PEG化壳聚糖在较宽pH值范围可溶于水,且能溶于部分有机溶剂中(如DMSO,二甲基酰胺等),克服了壳聚糖在大分子药物如蛋白质、多肽药物和抗肿瘤药物传输系统的应用局限,同时对壳聚糖进行PEG化修饰还能降低其细胞毒性和溶血作用,从而增加其作为药物载体的生物相容性。然而,PEG能部分屏蔽壳聚糖链上的正电荷,虽然这有利于改善生物相容性,但会在一定程度上降低壳聚糖本身的生物黏附性和促吸收特性。因此,如何通过PEG化程度、聚合物大小以及浓度等来优化处方,是促进蛋白质药物和基因药物体内作用的一个方向。另外,PEG化壳聚糖所制成的生物功能性材料因为PEG基团的加入,可以得到一些新的优良性能,促进了壳聚糖在生物组织工程中的应用。总之,随着研究的进一步深入,相信PEG化壳聚糖将会在生物医药领域发挥越来越大的作用。

2文献综述

壳聚糖(chitosan)是由自然界广泛存在的几丁质(chitin)经过脱乙酰作用得到的,化学名称为聚葡萄糖胺(1-4)-2-氨基-B-D葡萄糖,自1859年法国人Rouget首先得到壳聚糖后,这种天然高分子的生物官能性和相容性、血液相容性、安全性、微生物降解性等优良性能被各行各业广泛关注,在医药、食品、化工、化妆品、水处理、金属提取及回收、生化和生物医学工程等诸多领域的应用研究取得了重大进展。针对患者,壳聚糖降血脂、降血糖的作用已有研究报

告[5]。

壳聚糖在特定的条件下,能发生水解、烷基化、酰基化、羧甲基化、磺化、硝化、卤化、氧化、还原、缩合和络合等化学反应,可生成各种具有不同性能的壳聚糖衍生物。上述反应在甲壳素和壳聚糖中引入了大的侧基,破坏了其结晶结构,因而其溶解性提高,从而扩大了壳聚糖的应用范围。

接枝共聚

接枝共聚是壳聚糖改性的重要方法之一,由于PEG易与壳聚糖发生交联,一般采用PEG单甲醚(mPEG)作为接枝单元,与壳聚糖或壳聚糖衍生物葡胺糖单元上的不同位置结合,即可得到多种PEG化壳聚糖衍生物,如PEG-g-壳聚糖、PEG-g-壳聚糖季铵盐等。目前的接枝共聚衍生化反应主要在壳聚糖的2-N位置和6-C位置进行。N-PEG化壳聚糖合成方法主要有两步合成法和一步合成法。

两步法[6]是常用的壳聚糖接枝方法,第一步先将mPEG活化,一般可通过二甲基亚砜(DMSO)、二重稳态自由基、醇氧化酶等氧化剂将MPEG氧化为聚乙二醇醛(mPEGA),再在酸性水溶液条件下与壳聚糖上的伯氨基反应,即可得到Ⅳ-PEG化壳聚糖,其结构如图2-1。然而mPEGA 的制备过程较复杂,活化程度低,且mPEGA易被氧化,反应中也难以避免醛醇缩合的发生。因此,Hu等改进了合成路线,先将mPEG在三苯基亚磷酸盐的作用下与碘代甲烷反应得到碘化mPEG,再与6-三苯基甲基壳聚糖接枝,脱去三苯基甲基后便可得到N-PEG化壳聚糖。该路线不需使用催化剂,且简便易行。

图2-1 PEG-g-壳聚糖的结构式

一步反应法[6]是在甲酸溶液中,先将溶解的壳聚糖与mPEG混匀,再加入适量甲醛,壳聚糖上的氨基先与甲醛生成希夫碱中间体,再与mPEG上的羟基结合,即可得到PEG-g-壳聚糖。该方法制备简单,反应周期短,操作方便。Sugimoto[7]认为在对壳聚糖进行改性时,有必要保留其氨基糖结构单位和大部分氨基,因此对壳聚糖6位C上的改性就显得非常重要。Makugka等[8]先用邻苯二甲酸酐在干燥的二甲基酰胺中与壳聚糖反应,使壳聚糖上的氨基得到保护,然后再通过取代反应即得到一系列6-mPEG衍生物,其结构如图2-2,所得到的壳聚糖衍生物均为浅木兰色粉末。

图2-2 PEG-g-6-壳聚糖的结构式

交联改性

交联改性是壳聚糖常用的改性方法,交联可以增强壳聚糖及其衍生物的力学强度和耐酸、耐有机溶剂性能。戊二醛是壳聚糖交联改性中最常用的交联剂,然而其细胞毒性和在肠道pH 值下难以溶解的性质限制了它在药物传输系统中的应用。以PEG为交联剂得到的壳聚糖共聚物,不仅安全无毒,而且其溶胀性能明显提高。Kulkarni等[9]制备了PEG-壳聚糖交联聚合物,其结构如图2-3。发现在pH为时,其泡胀率为130%~250%,未交联的壳聚糖在pH为时泡胀率仅为100%。

图2-3 PEG-壳聚糖交联共聚物的结构式

在pH为时,PEG-壳聚糖交联聚合物泡胀率为170%~350%,壳聚糖则已经完全溶解。且当PEG的相对分子质量增加时,聚合物的泡胀率也随之增加。PEG-壳聚糖交联聚合物在不同pH值环境下均有良好的溶胀性,从而使其有潜力成为胃肠道缓释给药的载体。

嵌段共聚

目前关于PEG-壳聚糖共聚物的研究较少,但其合成过程简单,可以克服PEG接枝壳聚糖共聚物的一些不足,不仅能改善其溶解性能,还赋予其一些新的功能。Ganji等[10]以KSO为自由基引发剂制备了PEG-壳聚糖聚合物,其结构如图2-4,作为新型的可注射的嵌段聚合物,该聚合物展现出良好的温敏性,在低温时该聚合物为可注射的液体,而当温度达到体温时,便转化为不透明的凝胶,便于给药。

图2-4 PEG-壳聚糖嵌段共聚物的结构式

生物学特性

将壳聚糖进行PEG化修饰后,既保留了壳聚糖及其衍生物本身的一些优良性质,如生物黏附性,促黏膜吸收等,还改善了壳聚糖的生物相容性,提高了壳聚糖作为药物载体的安全性。尽管壳聚糖一般被认为是安全、可生物降解且无毒的聚合物,但Schipper等[11]还是观察到某些壳聚糖的毒性。这是因为壳聚糖是一种阳离子聚合物,在体内易与红细胞的质膜相结合,并可能与带负电荷的细胞成分和蛋白结合,从而引起溶血、血栓形成及细胞破裂等安全性问题。而将壳聚糖进行PEG化修饰后,由于PEG能在水中快速运动,并具有较大的立体排斥效应,可屏蔽掉一部分正电荷,从而降低了血小板和血浆蛋白的黏附作用和与细胞表面的接触,增加了聚合物的生物相容性。考察PEG化壳聚糖衍生物生物相容性的常用方法有溶血实验,细胞毒性实验和生物降解性研究。

溶血性评价

溶血实验主要考察阳离子聚合物与带负电荷的红细胞膜的相互作用。Zhu等[12]制备了PEG-g-壳聚糖季铵盐,并考察了不同浓度下壳聚糖季铵盐和PEG-g-壳聚糖季铵盐共聚物的溶血率。当共聚物浓度为2 mg·L-1时,壳聚糖季铵盐的溶血率为%,而PEG-g-壳聚糖季铵盐的溶血率仅有%,仅为壳聚糖季铵盐溶血率的一半。这是由于PEG减少了共聚物与血浆蛋白和血小板的吸附,使溶血率下降。此外,实验还表明PEG的作用与其相对分子质量有关,具有较长分子链的PEG-5000与低相对分子质量的PEG相比,更能有效屏蔽共聚物的正电荷,提高材料在血液中的生物相容性。

细胞毒性评价

细胞毒性实验是一种在离体状态下模拟生物体生长环境、检测材料接触机体组织后生物学反应的体外实验,Mao等[13]以L929小鼠成纤维细胞为模型测定了PEG-g-TMC对细胞代谢活性的影响,发现TMC具有一定的细胞毒性,且随着相对分子质量的增加而增强,TMC(400ku)的半数抑制浓度(IC)低至15 mg·L-1,而将其进行PEG化修饰后,细胞毒性得到了显著性改善。当以相同相对分子质量(400ku)的壳聚糖季铵盐进行不同程度的PEG化修饰后,取代度增加与半抑制浓度增加呈线性关系,并且PEG-g-TMC与未修饰的TMC的细胞毒性有显著性差异。另外,100 ku和50 ku的TMC经PEG化修饰后,细胞毒性降为原有的1/10,孵育24h 后,浓度为500 mg·L-1的两种聚合物溶液中仍有80%以上的细胞存活。此外,该组还以乳酸脱氧酶(LDH)实验测定了聚合物对细胞完整性的破坏程度。结果表明,PEG-g-TMC的LDH 释放均低于6%,而未修饰的TMC的LDH释放率高达±%,是PEG-g-TMC的8倍,这更证明了PEG修饰对壳聚糖衍生物细胞毒性的改善作用。

生物降解性研究

壳聚糖衍生物与PEG均为可生物降解的高分子材料,而两者结合所得的共聚物也展现出良好的生物可降解性。Pozzo等[14]合成了PEG-壳聚糖交联共聚物,并以酶解法考察了产物的生物降解性。实验结果表明,聚合物对水解酶如木瓜蛋白酶和脂肪酶敏感,短时间内便有50%左右聚合物发生降解,而24 h后聚合物几乎全部降解。与此同时,聚合物并不会被溶解酵素、淀粉酶、胶原酶所降解。由此可以推测当该PEG化壳聚糖衍生物用于体内药物传输时,可被组织分布广泛的脂肪酶所逐渐降解,从而不会在体内蓄积。

PEG化壳聚糖在生物医药领域的应用

PEG化壳聚糖具有卓越的生物黏附性以及促吸收特性,并且还是一种天然低毒的阳离子聚合物,易与带负电的多肽药物、基因、疫苗等相结合[15],是生物医药领域极有应用价值的药物载体之一。

3 技术路线

壳聚糖的纯化

称取50g壳聚糖,加入1mol·L-1NaOH溶液50mL,70℃搅拌条件下保温2 h,抽滤。滤饼用去离子水洗涤后于40℃下烘干。烘干后,溶于200 mL浓度为mol·L-1醋酸溶液中,过滤除去杂质,滤液用1mol·L-1NaOH溶液调节pH至8。用G4砂芯漏斗抽滤,去离子水反复冲洗至pH为中性,滤饼冷冻干燥。

mPEG-g-CS的制备

精密称取100 mg纯化后的CS(分子量11万)溶解在4 ml 98%甲酸中,放置使其溶解完全。加入45mlDMSO稀释,室温磁力搅拌均匀。随后加入一定量mPEG,持续搅拌15 min,加入适量质量37%甲醛溶液,室温磁力搅拌1 h。

将反应液移至透析袋(截留分子量8000-14000 Da)中,去离子水透析1天。将透析袋中的溶液转移至烧杯中,3 M NaOH调节pH值至13,布氏漏斗抽滤,再用无水乙醇洗涤滤饼。滤饼移入透析袋中,透析一天,除去里面混有的乙醇,冷冻干燥,得到产物。

表3-1 制备不同取代度的聚乙二醇单甲醚接枝壳聚糖投料量

mPEG(g)

甲醛(μl)

理论取代度

46

15%

90

30%

mPEG-g-CS的凝胶色谱检测

采用Agilent1100高效液相色谱系统检测mPEG-g-CS中残留的mPEG是否除尽。色谱条件:,TSKPWXLG4000凝胶色谱柱,流动相M CH3COOH,M CH3COONa,流速为ml/min,示差折光检测器,柱温30℃。标准品为不同分子量的葡聚糖:T-1(Mw=12,000),T-2(Mw=50,000),T-3(Mw=27,0000),T-4(Mw=670,000)。将mPEG-g-CS溶解在超纯水中过夜,配制成浓度为2 mg/ml的溶液,过220 nm水系滤膜,进样检测。

临界胶束浓度测定

以嵌二萘为分子探针,用荧光分光光度计测定不同取代度的mPEG-g-CS临界聚集浓度。精密称取mg嵌二萘,用50 ml甲醇溶解作为储备液。每次移取100 μl储备液,于10 ml离心管中,自然挥干甲醇。分别将6 ml ×10-5~ mg/ml的12种不同浓度的样品加入到含上述离心管中,超声探头超声2 min(超1s,停1s),放置12 h后测定荧光光谱。自350nm到400nm

进行荧光扫描,I3:波长385 nm,I1:波长373 nm。I1/ I3的强度比值对lg浓度作图计算CAC。(激发波长334nm)

4 进度安排

10月09日-10月15日查阅文献、仪器设备准备。

10月16日-11月12日撰写开题报告、翻译文献。壳聚糖纯化,制备mPEG-g-CS,mPEG-g-CS 的凝胶色谱检测和临界胶束浓度测定。

11月13日-11月18日撰写论文。

参考文献

[1]Mouwa VK,Inamdar N.Chitosan-modifications and applications:opportunities galore[J].React FunctPolym,2008,68(6):1013-1051.

[2] Harris JM,Struck EC,Case MG,a1.Synthesis and characterization of poly(ethylene glyco1)derivatives[J].J PolymSci:PolymChem Edi,1984,22(2):341-352.

[3]孙毅毅,侯世祥,陈彤等.壳聚糖-聚乙二醇接枝共聚物的合成与表征[J].四川大学学报(工程科学版),2005,37(2):76-79.

[4]魏晓红,梁文权.基因载体PEG化壳聚糖的制备及其表征[J].中国现代应用药学,2003,20(5):383-385.

[5] Mao SR,Shuai XT,Unger F,et a1.Synthesis,characterization and cytotoxicity of poly(ethylene glyco1)-graft-trimethylehitosan block copolymers[J].Biomaterials,2005,26(32):6343-6356.[6] Zhu SY,Qian F,Zhang Y,et a1.Synthesis and characterization of PEG modified N-trimethylaminoethylmethacrylate chitosan nailopartieles[J].EurPolym J,2007,43(6):2244-2253.

[7]蒋新国.生物药剂学与药物动力学[M].北京:高等教育出版社,2008.

[8]谷福根,高永良,崔福德.聚乙二醇单甲醚接枝壳聚糖自组装纳米球的制备[J].中国新药杂志,2005,14(6):686-693.

[9] Kulkarni AR,YH,Liang HF,et a1.A Novel method for the preparation of nanoaggregates of methoxypolyethyleneglycol linked chitosan[J].J NanosciNanotechnol,2006,6(9/10):2867-2873.

[10]崔福德药剂学.第六版[M].北京:人民卫生出版社,2011.

[11]Sperzel WD, Glassman HN, Jordan DC, et al. Overall safety of terazosin as an antihypertensive agent[J]. Am J Med, 1986, 8(5):77-81

[12]罗明生,高天惠.药剂辅料大全[M].四川科学技术出版社,1993.

[13]陈新谦,金有豫,汤光.新编药物学.第15版[M].北京:人民卫生出版社,2003.3672.

[14]SzepesMziK,SchallyAV,Halmos receptors in human colorectal cancers:unexpected molecular targets for experi-mental therapy[J].Int J Oucol,2007,30(6):1485-1492.[36]

二甲醚与甲烷

二甲醚与甲烷、丙烷、正丁烷的物理化学性质 丙烷的物理性质

来源:[苏州蓝天燃气有限公司] 该新闻共被浏览:[1444] 次

液化石油气(英文缩写LPG)指比较容易液化,通常以液态形式运输的石油气,简单地说就是液化了的石油气。液化石油气在常温常压下呈气态状态,在常温加压或常压低温下很容易从气态转变为液态,便于运输及贮存,故称液化石油气。一、液化石油气的化学成分 液化石油气的主要成分是含有三个碳原子和四个碳原子的碳氢化合物,行业上习惯分别称为碳三和碳四。液化石油气主要组成有丙烷、丙烯、丁烷、丁烯等四种。除上述主要成分外,有的还含有少量的戊烷(为通常俗称为残液的主要成份)、硫化物和水等。通常在民用液化石油气中,加入微量的甲硫醇、甲硫醚等硫化物作加臭剂。液化石油气主要来源是从炼油厂获取。其含量约占原油总量的5%--15%。 二、液化石油气的物理性质 通常所说的液化石油气都存在液、气两种形态,液、气态处于动态平衡中。它具有一些以下物理化学性质: (1)液态比水轻,比重约为水一半 液化石油气比水轻,比重约为水的一半,约在0.50--0.60之间。组成一定时,液态液化石油气的比重,随着温度的上升而变小,随着温度的降低而增大。 气态液化石油气比空气重,约为空气的1.5--2倍,密度随压力、温度升高而增加,压力不变时密度随温度升高而减少。所以液化石油气一旦从容器或管道泄漏出来后不象比重小的可燃气体那样容易挥发和扩散,而是象水一样往低处流动和沉积,很容易达到爆炸浓度,如遇明火、火花就会发生爆炸或燃烧。因此在使用过程中一定要十分注意安全,避免造成火灾事故。 液化石油气从液态变为气态时,体积膨胀非常大,约增大250--300倍。 (2)易挥发性,体积膨胀系数大 液化石油气的体积膨胀系数比水大得多,约为水的10--16倍,且随温度升高而增大,其饱和蒸气压也随温度升高而急剧增加。温度升高10℃,液化气液体体积膨胀约为3--4%。因此,液化石油气的贮存充装必须注意温度的变化,不论是槽车、贮罐或是钢瓶,在充装时都绝对不能充满,而应留有足够的气相空间,最大充装重量一般按充装系数0.425Kg/1,体积充装系数一般为85% 液体液化气全部充满整个容器是十分危险的,因为液态液化气全部充满整个容器以后,容器内的压力就不再是蒸气压,而是液体的膨胀压力,液体的膨胀压力比蒸气压力受温度的影响要大得多,温度每升高1℃,表压上升约20--30公斤/平方厘米,如果容器全部装满液体,温度升高3至5℃内压就会超出容器设计压力而导致爆炸。因此通常灌装时,容器内应留有一定的气相空间供温度升高时液态液化石油气膨胀用。所以严禁超装是液化石油气生产、贮存、运输、使用液化石油气的过程中必须严格遵守的要求。(3)饱和蒸气压随温度升高而增大 由于液化石油气具有这个特点,槽罐车、贮罐及钢瓶严禁超温使用,以免压力而超进容器的设计压力而使容器胀破,造成事故。 (4)气化潜热大 液化石油气液态变为气态体积增约250--300倍,并吸收大量的热量,所在液化石油气容易冻伤人。 (5)沸点低 液化石油气沸点很低,通常都很容易自然气化使用,有时家庭用的瓶装液化石油气在冬天使用时出现冷凝或结冰现象,很难气化,这时千万不能用火烧、开水烫钢瓶,

环氧乙烷的生产工艺探究

毕业设计(论文)题目:环氧乙烷的生产工艺探究 学生姓名:张亚鹏 学号:2010014434 所在学院:材料与化工学院 专业班级:化工1001 届别:2014 届 指导教师:李淮芬

皖西学院本科毕业设计(论文)创作诚信承诺书 1.本人郑重承诺:所提交的毕业设计(论文),题目《环氧乙烷的生产工艺探究》是本人在指导教师指导下独立完成的,没有弄虚作假,没有抄袭、剽窃别人的内容; 2.毕业设计(论文)所使用的相关资料、数据、观点等均真实可靠,文中所有引用的他人观点、材料、数据、图表均已标注说明来源; 3. 毕业设计(论文)中无抄袭、剽窃或不正当引用他人学术观点、思想和学术成果,伪造、篡改数据的情况; 4.本人已被告知并清楚:学校对毕业设计(论文)中的抄袭、剽窃、弄虚作假等违反学术规范的行为将严肃处理,并可能导致毕业设计(论文)成绩不合格,无法正常毕业、取消学士学位资格或注销并追回已发放的毕业证书、学士学位证书等严重后果; 5.若在省教育厅、学校组织的毕业设计(论文)检查、评比中,被发现有抄袭、剽窃、弄虚作假等违反学术规范的行为,本人愿意接受学校按有关规定给予的处理,并承担相应责任。 学生(签名): 日期:年月日

目录 前言 (2) 1 环氧乙烷的介绍 (2) 1.1环氧乙烷的定义 (2) 1.2环氧乙烷的物理性质 (2) 1.3环氧乙烷的主要应用领域 (4) 1.4环氧乙烷的应用发展概况 (4) 1.5环氧乙烷应用技术开发动向 (5) 2 乙烯环氧化反应基本原理[12] (5) 2.1乙烯环氧化法 (5) 2.2平行副反应: (5) 2.3环氧化反应 (6) 3 乙烯氧气氧化法生产环氧乙烷的工艺流程 (6) 参考文献: (9)

聚乙二醇

聚乙二醇 系列产品无毒、无刺激性,味微苦,具有良好的水溶性,并与许多有机物组份有良好的相溶性。它们具有优良的润滑性、保湿性、分散性、粘接剂、抗静电剂及柔软剂等,在化妆品、制药、化纤、橡胶、塑料、造纸、油漆、电镀、农药、金属加工及食品加工等行业中均有着极为广泛的应用。 中文名 聚乙二醇 英文名 Polyethylene glycol 别称 α-氢-ω-羟基(氧-1,2-乙二基)的聚合物等 化学式 HO(CH?CH?O)nH CAS登录号 25322-68-3 EINECS登录号 200-849-9

目录 .1不同名称 .2常用分类 .3物化性质 .?化学结构 .?化学性状 .?配伍性 .?配伍禁忌 .4产品分类 .5主要用途 .6常用规格 .7特别提示 .8安全信息 .9贮运 .10产品成员 .不同名称 中文名:聚乙二醇中文别名:α-氢-ω-羟基(氧-1,2-乙二基)的聚合物;乙二醇聚氧乙烯醚;聚氧化乙烯(PEO-LS);聚乙二醇400;聚乙二醇12000;聚乙二醇6000;聚乙二醇2000;AC52 常用分类 Polymers;医药中间体;Optimization Reagents;Protein Structural Analysis;X-Ray Crystallography;Cosmetic Ingredients & Chemicals;Gas Chromatography;Packed GC; Stationary Phases;分散剂、载体、压片剂、成型剂;分离剂;食品添加剂;抄纸过程中的化学品;化工助剂;造纸化学品 物化性质

熔点64-66℃ 沸点>250℃ 密度 1.27 g/mL at 25℃ 蒸气密度>1 (vs air) 蒸气压<0.01 mm Hg ( 20℃) 折射率n 1.469 闪点270℃ 储存条件2-8℃ 溶解度H2O: 50 mg/mL, clear, colorless form waxy solid 敏感性Hygroscopic Merck 147568 稳定性Stable. Incompatible with strong oxidizing agents. NIST化学物质信息Polyethylene glycol(25322-68-3) EPA化学物质信息Poly(oxy-1,2-ethanediyl), .alpha.-hydro-.omega.-hydroxy- (25322-68-3) 化学结构 HO(CH2CH2O)n H,由环氧乙烷与水或乙二醇逐步加成聚合而成。 化学性状 依相对分子质量不同而性质不同,从无色无臭黏稠液体至蜡状固体。分子量200~600者常温下是液体,分子量在600以上者就逐渐变为半固体状,随着平均分子量的不同,性质也有差异。从无色无臭粘稠液体至蜡状固体。随着分子量的增大,其吸湿能力相应降低。本品溶于水、乙醇和许多其它有机溶剂。蒸气压低,对热、酸、碱稳定。与许多化学品不起作用。有良好的吸湿性、润滑性、粘结性。无毒,无刺激。平均分子量300,n=5~5.75,熔点-15~8℃,相对密度1.124~1.130。平均分子量600,n=12~13,熔点20 ~25℃,闪点246℃,相对密度1.13 (20℃)。平均分子量4000,n=70~85,熔点53~56℃。 在一般条件下,聚乙二醇是很稳定的,但在120℃或更高的温度下它能与空气中的氧发生作用。在惰性气氛中(如氮和二氧化碳),它即使被加热至200~240℃也不会发生变化,当温度升至300℃会发生热裂解。加入抗氧化剂,如质量分数为0.25%~0.5%的吩噻嗪,可提高它的化学稳定性。它的任何分解产物都是挥发性的,不会生成硬壳或粘泥状的沉淀物。 聚乙二醇为环氧乙烷水解产物的聚合物,无毒、无刺激性,广泛应用于各种药物制剂中。低分子量的聚乙二醇毒性相对较大,综合来看,二醇类的毒性相当低。局部应用聚乙二醇特

合成聚乙二醇单甲醚甲基丙烯酸酯大分子单体的一步法新途径

合成聚乙二醇单甲醚甲基丙烯酸酯大分子单体的一步 法新途径 田金强,胡学一 江南大学化学与材料工程学院,江苏无锡 (2141221) E-mail: tianjinqiang2008@https://www.wendangku.net/doc/3e2642652.html, 摘要:探索了一种合成大分子单体聚乙二醇单甲醚甲基丙烯酸酯(PEGMEMA)的一步法新途径:在无机Al/Mg基复合催化剂催化下用环氧乙烷嵌入甲基丙烯酸甲酯合成PEGMEMA 大分子单体,经红外光谱鉴定得到了预期产物,通过紫外分光光度法测定其产率。实验考察了催化剂及阻聚剂的种类、反应温度的影响,并尝试用该大分子单体合成聚羧酸型减水剂。通过测定合成的聚羧酸型减水剂的水泥净浆流动性从侧面考察所合成的PEGMEMA大分子单体的适用性。与传统合成聚乙二醇单醚(甲基)丙烯酸酯的方法相比,该合成路线是原子经济性反应,不生成副产物,是一条具有工业化前景的合成PEGMEMA大分子单体的原子经济性绿色化学途径。 关键词:嵌入反应;聚乙二醇单甲醚甲基丙烯酸酯;一步法;大分子单体 1.引言 聚乙二醇单醚(甲基)丙烯酸酯是合成新型功能材料的一类重要大分子单体,该单体参与共聚得到的两亲性梳状聚合物可用于合成高效水泥减水剂、聚合物电解质、药物载体、环保涂料等多种用途[1-5]。以聚乙二醇单醚(甲基)丙烯酸酯为原料的第三代高效水泥减水剂的代表——聚羧酸系减水剂具有掺量低、减水率大、不离析、保坍性能好等优点,已成为国内外的研究和应用热点[6-7]。该类大分子单体的传统制备工艺是以甲醇或乙醇为起始剂,在高温、金属钠催化条件下与环氧乙烷加成制得聚乙二醇单醚,然后再与(甲基)丙烯酸或(甲基)丙烯酸甲酯反应。该传统工艺操作步骤较为繁琐,成本较高,生产过程中需耗用等摩尔量的金属钠并释放出氢气,消耗大量酸用于中和,生成水醇等副产物,需加入带水剂等,这些工艺缺陷限制了该产品的推广应用[8]。本实验室成功开发了催化脂肪酸甲酯[9]、油脂[10]、乙酸乙酯[11,12]等酯类原料与环氧乙烷或环氧丙烷嵌入加成的催化剂。且利用合成的聚乙二醇单乙醚乙酸酯为中间体,与甲基丙烯酸乙酯进行酯-酯交换得到了聚乙二醇单乙醚甲基丙烯酸酯[13]。如果能够实现以类似催化原理催化甲基丙烯酸甲酯与环氧乙烷嵌入合成聚乙二醇单甲醚甲基丙烯酸酯的一步反应,就能够避开因使用金属钠带来的诸多缺陷;不生成水、醇等副产物,成为原子利用率100%,零排放的绿色化学工艺。但获得具有催化活性的催化剂和筛选合适阻聚剂是从事该项开发研究的技术难点。 本研究探索了无机Al/Mg基复合催化剂催化环氧乙烷嵌入甲基丙烯酸甲酯合成聚乙二醇单甲醚甲基丙烯酸酯的反应催化活性;筛选了较为合适的复合阻聚剂。并尝试用该大分子单体合成聚羧酸型减水剂,通过测定合成的聚羧酸性减水剂的水泥净浆流动性反馈指导改进PEGMEMA大分子单体的合成工艺。该方法使传统工艺需要四步的反应一步完成,缩短了流程,节约了能源,且生产过程几乎不对设备造成腐蚀。

聚乙二醇二甲醚

Polyethylene Glycol Dimethyl Ether (NHD) CAS: 24991-55-7 Synonym/Trade Name: NHD Desulfurizing and Decarbonating Solvent Chemical Formula: CH3O(CH2CH2O)nCH3,n=3-8 Application NHD is a new type high-effective desulfurizing and decarbonating solvent with polyethylene glycol dimethyl ether as its main ingredient, light yellow liquid near neuter with better chemistry and heat stability. It is suitable for purification of synthetic gas. It can effectively desulfurize the vulcanized hydrogen out of mixture acid gas of natural gas, oil-fi eld gas, coal gas in factories or cities and lique fi ed petroleum gas. Specially, effectively desulfurize organic sulphur. Package: 200KGS/Iron Drum Storage and Transportation: Store in cool, dry well-ventilated location, transport as common chemicals.

环氧乙烷的制取

《化工工艺设计》课程设计说明书乙烯制取环氧乙烷生产工艺设计 姓名:张正元 学科、专业:应用化学0911 学号: 0920109124 指导教师:刘垚 完成日期: 2012年7月1日 苏州科技学院 Suzhou University of Science and Technolog

目录 1、设计任务书 (1) 1.1基本数据 (1) 1.2课程设计内容及要求 (1) 1.2.1内容 (1) 1.2.2具体要求 (1) 2、设计方案简介 (1) 2.1反应过程分析 (2) 2.2催化剂的选择 (2) 2.3反应器及混合器的选择: (3) 2.4影响因素(反应条件)的分析 (3) 3、工艺流程草图及说明 (5) 3.1 氧化反应部分 (5) 3.1.1 工艺流程草图 (5) 3.1.2 流程草图说明 (5) 3.2 环氧乙烷回收和精制部分 (6) 4、物料衡算 (6) 4.1 由设计任务书已知数据 (6) 4.2乙烯催化氧化制取环氧乙烷得物料衡算框图 (7) 4.3衡算过程 (7) 4.3.1确定反应混合气(RP)组成 (8) 4.3.2确定混合分离气(SP)的组成 (8) 4.3.3确定新鲜原料(FF)和循环气(RC)组成 (9) 的循环气SPC的组成 (10) 4.4.4确定未脱CO 2 4.4.5确定SRC的组成 (11) 5、数据校核及结果评价 (12) 5.1数据校核 (12) 5.2结果评价 (12) 6、计算结果一览表 (13)

7、工艺流程及控制点说明 (13) 7.1工艺流程说明 (13) 7.1.1环氧乙烷反应系统工艺流程 (13) 7.1.2二氧化碳脱除系统工艺流程 (14) 7.2控制点说明 (15) 7.2.1环氧乙烷反应系统控制点 (15) 7.2.2二氧化碳脱除系统控制点 (15) 参考文献 (16)

聚乙二醇合成操作规范

实验室合成聚乙二醇合成操作文件 1.引发剂的制备 方法一:醇与钾在四氢呋喃(THF)里直接反应 (一甲基二乙二醇醚+K,溶剂是精制的THF) (可以提前配好,需要时取用) 方法二:助引发剂二苯甲基钾(DPMK)+ 醇 (DPM+K=DPMK; DPMK+一甲基二乙二醇醚;溶剂是THF) (要求现配现用) 注意事项: a.THF必须经过精制才可使用。 精制方法为:在THF里加入二苯甲酮(指示剂)和金属钠,等THF变色后常压蒸出。 (注意:操作过程一定要避免与空气接触,不能有水,特别是不要让水进入蒸馏体系,否则会发生爆炸。) b.钾的切割必须全程浸泡在煤油里面。把表面氧化物切割完后放在 另一个干净的装有煤油的烧杯里称量。计量的表面干净的钾用 纸轻轻地吸一下煤油后放进装有四氢呋喃的制引发剂的烧瓶 中。 【注意:加钾的时候要通氮气保护。反应物加完后,停掉氮气,密闭反应(接液封)。】 c.制DPMK时需加热回流12小时。 【注意:DPM也需要精制(CaH2)。】 d.制好的引发剂通过双头针转移的方式,转移到安钵瓶中,用止血 钳封住,保持在干燥器中,置于暗处。 e.每次用时,用针筒(玻璃或一次性均可)抽取。 【注意:如果有剩余,还需保存,药用另一个止血钳封住针口一下,然后把原来的那个止血钳取下。】 f.一般单羟基的引发剂,是直接让它与钾反应(物质的量比为1: 1);

如果是两羟基或更多的羟基,一般用DPMK+多羟基引发剂的形式。 具体操作为:在一干燥的烧瓶(盐水瓶也可以)里,放入计量的多羟基引发剂,再加入计量的THF/DMSO(体积比3:2)混合溶剂(溶剂总量一般为总体积为环氧乙烷体积的1.5倍-2倍(根据合成的PEG的分子量定,分子量越大,溶剂越多。 DPMK/OH为1/2.5。 g.DMSO需精制除水。 (注意,DMSO极易吸水,一定要注意不要接触空气,保存一定要严格密封。) h.所有用于反应的玻璃仪器、乳胶管、针管均需烘干,并放置于真 空烘箱里,随时取用。 2. 环氧乙烷的聚合物 a.聚合之前先把反应釜清洗干净,清洗办法为:先用水洗,再用乙 醇洗,最后用丙酮清洗。注意要把一些死角洗干净,如冷凝盘 管、搅拌桨、及进料口和出料口。清洗完后,让溶剂挥发干。 b.密封反应釜,分别试正压和负压,看会不会漏气。另外要检查一 下反应釜的部件会不会松了,注意保养。最小的那两个反应釜 要记得在密封前加入合适大小的菱形搅拌子。 c.试压完后,干燥反应釜:加入到100o C,在油泵抽真空下,连续 干燥1小时。 d.冷却反应釜到-10 o C-0 o C之间,通过双头针,分别加入溶剂、引 发剂及单体环氧乙烷。 e.加料完毕后,关上所有阀门,确保密封后,撤掉冷凝装置,开动 搅拌。慢慢升高温度,先升到30o C,等温度稳定后,再每次升 高5度,最终温度为60度。注意,如果合成分子量较小的 PEG,如5000一下,要注意聚合时的放热情况,当釜内温度升 到70度时,开动冷凝装置,当温度下降到50度时,停止冷 凝。如温度又上升到70度,再次开动冷凝装置。循环几次,知 道温度不再明显上升后,使其温度稳定在60度。

聚乙二醇单甲醚

第一章聚乙二醇单甲醚MPEG概念 1.1 MPEG的定义及分类 1.2 MPEG的应用 1.3 MPEG产业链 第二章中国聚乙二醇单甲醚MPEG运行环境分析2.1 宏观环境 2.2 化工行业运行状况 2.2.1市场供需 2.2.2 价格走势 2.2.3 投资及经济效益 2.3 生态及政策环境 2.3.1 节能减排政策 2.3.2 其他政策 第三章中国聚乙二醇单甲醚MPEG行业概述 3.1 发展现状 3.2 市场供需 3.3 竞争格局 3.4 价格走势 3.5 发展前景及建议 第四章中国聚乙二醇单甲醚MPEG上游产业分析4.1 乙烯 4.1.1 产业布局 4.1.2 市场供需 4.1.3 价格走势 4.1.4 全球乙烯生产对国内产业的影响 4.2 环氧乙烷 4.2.1 产业布局 4.2.2 市场供需 4.2.3 价格走势 4.3 甲醇 4.3.1 产业布局 4.3.2 市场供需 4.3.2 价格走势 第五章中国聚乙二醇单甲醚MPEG下游产业分析5.1 聚羧酸系高性能减水剂行业 5.1.1 发展现状 5.1.2 市场供需 5.2 日用化妆与护肤品行业 5.2.1 发展现状 5.2.2 市场供需 5.3 医药行业 5.4 洗涤用品行业 第六章重点企业介绍 6.1 陶氏化学

6.1.1 公司简介 6.1.2 陶氏化学在中国 6.1.3 经营现状 6.2 科莱恩 6.2.1 公司简介 6.2.2 科莱恩在中国 6.2.3 经营现状 6.3 中石化 6.3.1 公司简介 6.3.2 主要化工产品 6.3.3 经营现状 6.4 韩国湖南石化 6.4.1 公司简介 6.4.2 湖南石化在中国 6.4.3 公司聚乙二醇单甲醚产品 6.4.4 经营现状 6.5 辽宁奥克 6.5.1 公司简介 6.5.2 公司主营产品 6.5.3 经营现状 6.6 德美化工 6.6.1 公司简介 6.6.2 公司主营产品 6.6.3 经营现状 6.7 辽宁科隆 6.7.1 公司简介 6.7.2 公司聚氧乙烯醚类产品 6.7.3 经营现状 6.8 上海台界 6.8.1公司简介 6.8.2 公司主营产品 6.8.3 经营现状 6.9 浙江皇马 6.9.1 公司简介 6.9.2 公司聚氧乙烯醚类产品 6.9.3 经营现状 图:MPEG上下游产业链结构 图:2007-2010年第一季度中国GDP增长率变化 表:2007-2009年中国大宗化工产品产量及增长率变化(单位:万吨) 表:2009年中国大宗化学产品均价及价格变化(元/吨) 图:2006-2009年化学原料及化学制品制造业营业收入、利润总额及毛利润变化(单位:十亿元) 图:2006-2009年基础化学原料制造业营业收入、利润总额及毛利润变化(单位:

聚乙二醇二甲醚资料

南京化学工业(集团)公司研究院以环氧乙烷与甲醇为原料合成出聚乙二醇二甲醚,将该产品制备技术转让江苏省清江石油化工厂所建装置实现工业化生产。早就不做了 聚乙二醇二甲醚 一、产品介绍: 1、主要物理性质: 结构式:CH3O(CH2CH2O)nCH3,其中n=2---9; 凝固点-22~-29℃; 蒸气压(25℃)0.0933254Pa 密度(25℃)1.032g/cm3; 分子量280~310; 闪点151℃; pH值6~8;气味:无恶臭;毒性:无毒 2、产品指标 外观淡黄色透明液体 活性物含量≥% 99.0 水份≤% 1.0 PH值(8:2)6~8 四、五、六乙二醇二甲醚含量≥% 75.0 相对平均分子量250~270 二、产品用途: 酸性气体(如H2S、CO2)的脱除、增塑剂、粘结剂的复配物、抗静电剂、印刷材料及印刷设备清洗剂、印刷行业的制备特种油墨及胶印显影剂、工业清洗、日用洗涤剂、油漆溶剂、涂漆剂和消泡剂。

我国于20世纪80年代在筛选溶剂研究过程中,找到了脱硫、脱碳的聚乙二醇二甲醚最佳溶剂组成,命名为NHD。 三、产品概论 聚乙二醇二甲醚(简写DMPE)时20世纪60年代美国联合化学公司开发的酸性气体物理吸收溶剂,其商品命名为Selexol。 聚乙二醇二甲醚一般指有一定同系物分布的混合物,其结构式CH3O(CH2CH2O)nCH3,聚合度n不同,有不同的物性,n≤10时为无色或淡黄色透明液体,随着n的不断增大,粘度增加,直至为白色或土灰色固体。聚乙二醇二甲醚为非质子极性物质,化学性质稳定,不易发生化学反应,其液体有较强的溶解能力,表现出多方面的适应性,有着多种用途。 1990年鲁南化学工业集团引进杭州化工研究所的小试技术,国内首次开发建设聚乙二醇二甲醚的工业化生产装置,规模为100t/a,1992年5月投产。由于NHD产品在化肥行业并未推广开来,1995年之前装置处于停车状态。1996年开始推广,产品开始供不应求,公司经过4次扩建产能达到2000t/a。兖矿鲁南化工科技发展有限公司于2006年3月申请了生产聚乙二醇二甲醚方法的专利技术。 全国NHD生产厂家至少7家,兖矿鲁化2000t/a,江苏宜兴天音化工股份有限公司2000t/a,江苏靖江石油化工厂1000t/a,安徽绩溪天池化工厂1000t/a,河北唐山朝阳化工厂500t/a,河北藁城溶剂厂300t/a,黑龙江齐齐哈尔黑龙精细化工厂300t/a, 由于NHD本身一种节能产品,也是一种低消耗产品,使用过程中

年产5.5万吨环氧乙烷工艺设计[1]讲解

年产5.5万吨环氧乙烷工艺设计 摘要 本文是对年产5.5万吨环氧乙烷合成工段的工艺设计。本设计依据环氧乙烷生产工段的工艺过程,在生产理论的基础上,制定合理可行的设计方案。 本文主要阐述了环氧乙烷在国民经济中的地位和作用、工业生产方法、生产原理、工艺流程。对主要设备如:混合器、反应器、环氧乙烷吸收塔、二氧化碳吸收系统,等进行物料衡算,对环氧乙烷反应器设备进行热量衡算,并对环氧乙烷反应器进行详细的设备计算和校核,确定操作参数、设备类型和材质,使用CAD绘制相应的工艺流程图,最后得出设备参数。 关键词:环氧乙烷;工艺流程;反应器;物料衡算。

PROCESS DESIGN OF ETHYLENE OXIDE WITH ANNUAL OUTPUT OF 55,000 TONS ABSTRACT The process of ethylene oxide with annual output of 5,5000 tons was designed in this paper. Based on the actual production process and production theory reasonable design scheme was developed. The status and role of ethylene oxide in the national economy was discussed in this paper. Furthermore, the produce methods, the principle of produce and process were also interpred. Material balance of the main equipments, such as: the mixer, the reactor, the absorb tower of epoxyethane, and the absorb system of carbon dioxide have been calculated. Calculation of energy balance for the epoxyethane reactor were also carried out. Equipment calculations and checking of the reactor were carried on detail. The parameters, types and materials of the equipments were confirmed. Based upon, the high purity epoxyethane rectifier was draw using CAD. Finally, correspond measures for the production process were given. KEY WORDS:epoxyethane;process;reactor;material balance。

聚乙二醇600中环氧乙烷与二氧六环

环氧乙烷与二氧六环 标准规定:含环氧乙烷不得过0.0001%,二氧六环不得过0.001%。 检验方法:照气相色谱法《中华人民共和国药典》2010年版二部(附录V E)测定。 GC分析条件: 色谱柱:100嘛二甲基硅氧烷为固定相(30mK 0.530 mmX 3卩m)的毛细管柱检测器:氢火焰(FID)柱流量:2.5ml/min 载气:氮气吹扫流量:3.0ml/min 检测器温度:250 C 分流比:1:1 进样口温度:150C 柱温程序:初始35C保持5分钟,以5C /分钟升温至180C,然后以30C /分钟升温至230 C,保持5分钟 顶空进样条件: 平衡温度:70°C平衡时间:45mi n 定量环温度:80 C 定量环体积:1ml 传递管线温度:90C 系统性实验: a.对照溶液b色谱图中,乙醛和环氧乙烷的分离度应达到至少 2.0 ,二氧六环峰高至少应为基线噪音的5 倍。 b.分别将供试品溶液及对照溶液c顶空进样,重复进样至少3次。计算对照溶液c图谱 中环氧乙烷和二氧六环峰面积的相对标准偏差和供试品溶液图谱中环氧乙烷和二氧六环含量的相对标准偏差。环氧乙烷三次测量值的相对标准偏差应不得过15%,二氧六环的3 次测量值的相对标准偏差应不得过10% 溶液的配制: a. 供试品溶液:精密称取供试品1g 置顶空瓶中,加入1.0ml 超纯水,密封,摇匀,平行制备3 份。 b. 环氧乙烷储备液:环氧乙烷的取样操作均应在通风橱中进行,操作者应戴聚乙稀手套及合适的防护器具保护手和面部,所有溶液均应密闭,在2C?8C保存。 环氧乙烷对照品置于冰水浴中降温,用冷冻的注射器,取约300卩l液态环氧乙烷(相当于0.25g环氧乙烷),置50ml经处理过的冷的聚乙二醇400(取聚乙二醇400约500ml 置1000ml圆底烧瓶中,以60C,1.5?2.5kPa负压旋转蒸发12小时,除去挥发成份,再装入密闭容器置于2~8C环境中温度平衡备用或储存)中,加入前后称重以确认加入量约为0.25克,用相同的溶剂稀释至100ml,用前充分摇匀,2-8 C保存。 环氧乙烷储备液的含量测定:取10毫升50%K化镁的无水乙醇混悬液与20ml乙醇制盐酸滴定液(0.1mol/L )混匀,放置过夜使平衡。精密称量5g 环氧乙烷储备液置上述溶液中混匀,放置30分钟,用0.1mol/L乙醇制氢氧化钾滴定液滴定,用电位法指示终点,用空白实验校正实验结果,以每1 毫升0.1mol/L 的乙醇制氢氧化钾滴定液相当于4.404mg的的环氧乙烷计算环氧乙烷储备液中环氧乙烷的浓度。空白平行测定两次,样品平均测定3次,以三次样品实验的结果为最终结果。按以下公式计算环氧乙烷储备液中环氧乙烷的浓度:

聚乙二醇硼酸酯的合成

学 生 毕 业 论 文 课题名称 聚乙二醇硼酸酯的合成 姓 名 李腊 学 号 1008102-20 院 系 化学与环境工程学院 专 业 化学工程与工艺 指导教师 周攀登讲师 2014年6月02日 ※※※※※※※※※ ※※ ※※ ※※ ※※※※※※※※※ 2014届学生 毕业设计(论文)材料 (四)

湖南城市学院本科毕业设计(论文)诚信声明 本人郑重声明:所呈交的本科毕业设计(论文),是本人在指导老师的指导下,独立进行研究工作所取得的成果,成果不存在知识产权争议,除文中已经注明引用的内容外,本设计(论文)不含任何其他个人或集体已经发表或撰写过的作品成果。对本文的研究做出重要贡献的个人和集体均已在文中以明确方式标明。本人完全意识到本声明的法律结果由本人承担。 本科毕业设计(论文)作者签名: 二○一四年六月二日

目录 1. 绪论 (4) 1.1 有机硼酸酯的介绍 (4) 1.2 有机硼酸酯的合成方法 (5) 1.3铝电解电容器 (6) 1.3.1节能灯专用中高压铝电解电容器[4] (6) 1.3.2高压铝电解电容器的工作电解液 (7) 1.3.3高压铝电解电容器工作电解液的研究进展 (8) 1.3.4工作电解液耐高压添加剂的研究进展 (8) 1.4有机含硼化合物在导电介质中的应用研究进展 (9) 1.5 研究目的、主要工作及意义 (11) 1.5.1 研究目的 (11) 1.5.2 主要工作 (11) 1.5.3 研究意义 (11) 2. 聚乙二醇硼酸酯的合成 (13) 2.1 引言 (13) 2.2 实验部分 (13) 2.2.1 实验原料与器材 (13) 2.2.2合成原料的选择与合成条件筛选 (14) 2.2.3 聚合反应装置 (15) 2.2.4 操作方法 (15) 3. 结果与讨论 (16) 3.1 聚乙二醇硼酸酯的合成工艺 (16) 3.1.1 正交实验结果 (16) 3.2 产物红外光谱分析 (21) 4 结论 (21) 参考文献 (21)

聚乙二醇在新型药物制剂中的应用

聚乙二醇在新型药物制剂中的应用 【摘要】:聚乙二醇具有良好的生物相容性和两亲性,在生物医药领域中有着广泛的应用,卒文就聚乙二醇在新型药物制剂中的应用进行综述,主要包括纳米给药系统、蛋白质药物修饰和疏水性药物的前药等。 【Abstract】Poly (ethylene glycol) excellent biocompatibility and amphiphilic in biological pharmaceutical sector has the widespread application, jailer. Wen.Poly (ethylene glycol) in new drug preparation applications were reviewed, mainly including nano dosing system, protein drugs modified and hydrophobic medicine Things before medicine, etc. 【关键词】:聚乙二醇;纳米给药系统;修饰;蛋白质药物;前药 【Key words】:Polyethylene glycol, Nano dosing system, Modify, Protein drugs, Before medicine 聚乙二醇(polyethylene glycol,PEG),是由环氧乙烷与水或乙二醇逐步加成聚合而得到的一类分子量较低的水溶性聚醚,作为一种两亲性聚合物,PEG既可溶于水,又可溶于绝大多数的有机溶剂,且具有生物相容性好、无毒、免疫原性低等特点,可通过肾排出体外,在体内不会有积累。此外,PEG具有一定的化学惰性,但在端羟基进行活化后又易于和蛋白质等物质进行键合,键合后,PEG可将其许多优异性能赋予被修饰的物质。作为表面修饰材料,聚乙二醇在体循环中的优点还有能防止与血液接触时血小板在材料表面的沉积,有效延长被修饰物在体内的半衰期,提高药物传递效果[1,2]。 PEG获得了FDA的认可,被中、美、英等许多国家药典收载作为药用辅料。长期以来,PEG在 软(乳)膏剂、栓剂、滴丸剂、硬胶囊、滴眼剂、注射剂、片剂等各种药剂中有着广泛应用。从上个世纪90年代开始,PEG在新型药物制剂中的应用的研究越来越多。本文主要综述PEG在纳米给药系统、蛋白质药物及疏水性药物的前药等几种新型药物制剂中的应用。 1 PEG修饰的纳米给药系统 纳米给药系统,也称纳米控释系统,包括纳米微球(Nanospheres)和纳米胶(Nanocapsules),它们是直径在10~500nm之间的固状胶态粒子,活性组分(药物和生物

乙烯氧化法生产环氧乙烷

编号:No.22课题:乙烯氧化法生产环氧乙烷 授课内容: ●乙烯氧化法生产环氧乙烷反应原理 ●乙烯氧化法生产环氧乙烷工艺流程 知识目标: ●了解环氧乙烷物理及化学性质、用途、生产方法 ●掌握乙烯氧化法生产环氧乙烷反应原理 ●掌握乙烯氧化法生产环氧乙烷工艺流程 能力目标: ●分析影响反应过程的主要因素 ●分析和判断工艺流程特点 思考与练习: ●乙烯氧化法生产环氧乙烷反应催化剂组成和特点 ●影响乙烯氧化法生产环氧乙烷反应过程的主要因素 ●乙烯氧化法生产环氧乙烷工艺流程的构成 授课班级: 授课时间:年月日

第六章乙烯系产品的生产 乙烯是碳原子数最少的烯烃,由于它具有极其活泼的双键结构,因而其反应能力很强,且成本低、纯度高、易于加工利用,所以是有机化工中最重要的基本原料。通过乙烯的聚合、氧化、卤化、烷基化、水合、羰基化、齐聚等反应的实现,可以得到一系列极有价值的乙烯衍生物,如环氧乙烷、乙二醇、乙醛、醋酸、醋酸乙烯、乙苯、聚乙烯等,由乙烯出发还可生产溶剂、表面活性剂、增塑剂、合成洗涤剂、农药、医药等。乙烯系主要合成产品及其用途如图6-1所示。 目前,乙烯的产量在各种有机产品中居首位。就用途而言,乙烯最大的消费是塑料工业,其中尤以聚乙烯所需乙烯量最大,乙烯的其它消费依次为环氧乙烷、乙苯、乙醛、乙醇,还有醋酸乙烯、α-烯烃、卤代烷等。 第一节乙烯直接氧化法生产环氧乙烷 一、概述 1.环氧乙烷的性质和用途 环氧乙烷(EO)又叫氧化乙烯。它是无色易挥发的具有醚类香味的液体,能与水、醇、醚及其它有机溶剂以任意比例互溶。沸点 10.5℃, 熔点 -111.3℃, 燃点 429℃。环氧乙烷能与空气形成爆炸性混合物,其爆炸范围为 3.6~80%(体积)。 环氧乙烷有毒,如停留于环氧乙烷蒸气的环境中10min,会引起剧烈的头痛、眩晕、呼吸困难、心脏活动障碍等,接触液体E0会被灼伤,尤其是40~80%的EO水溶液,较其它浓度的EO水溶液能更快地引起严重的灼伤。工作环境的空气中EO的允许浓度,美国职业防护与保健局(0SHA)1984年规定:8h的平均允许浓度为1ppm,废除了以前工作环境中最大允许浓度为50ppm的规定。

聚乙二醇

摘要 越来越多的蛋白质多肽类药物被应用于人类疾病的治疗,与其它合成化学药物相比,它们有易引起机体的免疫反应,体内半衰期短,在体内易水解、变性等缺点。化学修饰作为一种新兴技术,能改善上述不良特性。本文主要优化合成了一种PEG修饰剂——mPEG.NHs,采用牛血清白蛋白BsA和溶菌酶作为模式蛋白对其修饰条件进行了优化,并用层析法分离修饰后蛋白质。 mPEG.NHS的合成主要通过两个反应得到,第一步是mPEG同丁二酸酐之间的酯化反应,得到mPEG—SA,第二步是mPEG—SA同NHS(N.羟基硫代琥珀酰亚胺)反应,在脱水剂DCCI(N.N’一二己基碳二亚胺)的催化下得到mPEG.NHS。 通过优化反应条件使得mPEG的转化率和mPEG.NHs的纯度都得到提高。优化后反应条件分别为:n1酯化反应采用毗啶为催化剂,酸醇比为10:I,反应时间3 h;f2)脱水反应时间25h,温度400C反应物摩尔比mPEG.sA:NHS为1:2.5。优化后的两步反应的转化率分别为60.1%和56.O%。 mPEG—NHS修饰蛋白质在不同的反应条件下得到不同修饰率的蛋白质,优化反应条件后能得到更高氨基修饰率的修饰产物。最佳修饰反应条件为:反应时间10min,蛋白质和修饰剂质量比为1:5,采用pH=9.O的硼砂缓冲液,在优化条件下可得到修饰率为47.5%的产物。 由于修饰反应得到的蛋白质溶液中含有连接有修饰剂的蛋白质和未连接修饰剂的蛋白质,可通过层析的方法将它们分离开。溶菌酶修饰产物采用seDhadex G.75凝胶层析和Deae.sepharose CL-6B阳离子交换层析相结合的方法:BsA 修饰产物采用sephadex G.100和Q.SeDharose阴离子交换层析相结合的方法。用sDs.PAGE电泳检测分离产物,证明未修饰的蛋白质同被修饰的蛋白质被分离开来。 关键词:PEG修饰化学修饰合成优化分离层析

乙二醇单甲醚

乙二醇单甲醚 1 基本信息 中文名称:2-甲氧基乙醇、乙二醇单甲醚、乙二醇一甲醚、甲基溶纤剂、甲氧基乙醇、 羟乙基甲醚 英文名称:2-Methoxyethanol 别名名称:Ethylene glycol Ethylene glycol monomethyl ether Methyl cellosolve Methoxyethanol 分子式:C3H8O2 分子量:76.09 CAS号:109-86-4 MDL号:MFCD00002867 EINECS号:203-713-7 RTECS号:KL5775000 BRN号:1731074 PubChem号:24857158 2 物性数据 性状:无色透明液体 沸点(ºC):124.5 熔点(ºC):-85.1 相对密度(g/mL,20/4ºC):0.9663 相对密度(g/mL,25/4ºC):0.953230 相对蒸汽密度(g/mL,空气=1):2.62 折射率(n20ºC):1.4028 折射率(n25ºC):1.4013 黏度(mPa·s,20ºC):1.72 黏度(mPa·s,25ºC):1.60 闪点(ºC,闭口):43 闪点(ºC,开口):461 燃点(ºC):288 蒸发热(KJ/mol,b.p.):39.48 燃烧热(KJ/mol):1844.7 比热容(KJ/(kg·K),25ºC,定压):2.20 电导率(S/m,20ºC):1.09×10-6 蒸气压(kPa,25ºC):1.3 蒸气压(kPa,27ºC):1.3 蒸气压(kPa,56ºC):6.7

环氧乙烷分析方法

车间空气中环氧乙烷卫生标准 GB11721-1989 所属分类:电力相关标准规范卫生标准 性质:强制性 有效性:现行 状态:制定 发文单位:中华人民共和国卫生部建设部 文号:GB11721-1989 发布日期:1989-12-30 实施日期:1990-02-01 1主题内容与适用范围 本标准规定了车间空气中环氧乙烷的最高容许浓度。 本标准适用于新建、改建、扩建的工业企业。对于现有工业企业有污染危害的,亦应积极采取行之有效的措施,逐步达到本标准的有关规定。 2卫生要求 车间空气中环氧乙烷最高容许浓度为2mg/m3。 3监测检验方法 本标准的监测检验方法采用气相色谱法,见附录A(补充件)。 附录A

气相色谱法 (补充件) A1原理 空气中环氧乙烷经聚乙二醇柱分离,用氢焰离子化检测器检测,以保留时间定性,峰高定量。 本法的检测限为1×10-3μg(直接进样1mL空气样品)。 A2仪器 A2.1注射器,100mL,50mL,1mL。 A2.2气相色谱仪,氢焰离子化检测器。 A3试剂 A3.1环氧乙烷。 A3.2聚乙二醇6000,色谱固定液。 A3.36201担体,60~80目。 A4采样 取50mL注射器,在采样点用现场空气抽洗3次,然后抽取50mL

空气,套上橡胶帽,并将注射器垂直放置,当天分析。 A5分析步骤 A5.1色谱条件 a.色谱柱:柱长2m,内径4mm,不锈钢柱。聚乙二醇6000:6201担体=5:100。 b.汽化室温度:120℃。 c.检测室温度:90℃。 d.载气(氮气):25mL/min。 A5.2标准曲线绘制 用1mL注射器取一定量的环氧乙烷纯气(在标准状态下,1mL环氧乙烷气体重1.965mg)。注入100mL注射器中,用清洁空气稀释至100mL。计算环氧乙烷浓度,然后再用100mL注射器适当稀释配成环氧乙烷浓度为0.005,0.01,0.05及0.1μg/mL的标准气体。分别注入1mL各种不同浓度标准气体,测量保留时间及峰高。每个浓度重复三次,取峰高的平均值。以环氧乙烷的含量对峰高作图,绘制标准曲线,保留时间为定性指标。 A5.3样品分析

氮甲基二乙醇胺(脱硫剂原料)

氮甲基二乙醇胺(脱硫剂主要成分) 纯度:99% 包装:180kg/桶(有小样) 结构式 CAS:105-59-9 分子式:C5H13NO2 分子量: 119.16 中文名称:N-甲基二乙醇胺 N,N-二(β-羟乙基)甲胺 甲氨基二乙醇 N,N-双(β-羟乙基)甲胺 N,N-双(2-羟乙基)甲胺 性质描述:无色或深黄色油状液体。凝固点为-21℃,沸点247.2℃,121℃(0.53kPa),相对密度1.0377(20、4℃),折射率1.4678,闪点260℃。能与水、醇混溶,微溶于醚。 质量标准: 外观无色或微黄色粘性液体,无悬浮物 密度(20℃) 1.030-1.050g/cm3 伯胺和仲胺 气相色谱法≤0.8% 化学滴定法≤0.10mmol/g MDEA≥99% 水分≤0.6% 用途:主要用作乳化剂和酸性气体吸收剂、酸碱控制剂、聚氨酯泡沫催化剂。也用作抗肿瘤药物盐酸氮芥等的中间体。 广泛用于化肥厂、合成氨厂、生产尿素的二氧化碳脱除,并用于炼油厂干气、液化气,油田气的脱硫及克劳斯装置的硫磺回收,一般而言,采用MDEA 溶剂能耗可降低30-50%,操作费用可减少20-30%,投资可节省20%左右。该法被称之为“当今最低能耗的脱碳、脱硫”方法。 1、全脱二氧化碳工作液配制:MDEA:活化剂:H2O=50:4:46,溶液总碱度500克/升,工作液浓度控制在50%左右,消泡剂适量。 2、半脱二氧化碳:MDEA:活化剂: H2O=36:4:60,脱碳工作液的浓度一般控制在30-40%左右,消泡剂适量。注意配制的水一定要选用软水。 3、液化气、干气脱除硫化氢工作液配制:一般(以MDEA计)控制在30-40%浓度。 附:炼厂气的脱硫,目前主要采用醇胺法,醇胺法脱硫开始应用的是一乙醇胺(MEA)、二乙醇胺(DEA),后来又在克劳斯尾气装置上使用二异丙醇胺(DIPA)。80年代我国研制开发了新型选择性脱硫溶剂N-甲基二乙醇胺(MDEA),开始在天然气脱硫装置上应用;进入90年代,MDEA在炼厂气脱硫装置上也开始应用。 MDEA是Fluor公司早年开发的脱硫溶剂。目前,它作为新一代脱硫溶剂已在天然气脱硫、煤气化脱硫以及炼厂脱硫中得到广泛应用。由于MDEA对H 2 S有很高的选择性和较低的能耗,被用于克劳斯原料气提浓,斯科特法尾气处理,低热值气体脱硫等过程。

相关文档