文档库 最新最全的文档下载
当前位置:文档库 › 最小方差与最优投资组合

最小方差与最优投资组合

最小方差与最优投资组合

最小方差与最优投资组合

方差分析公式

方差分析公式 (20PP-06-2611:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analPsisofvarianee ,简写为ANOV或ANOV A可用于两个或两个以 上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态 分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完 全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的卩1,卩2,……卩k是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6完全随机设计的多个样本均数比较的方差分析公式 GC=(艺G) 2/N=艺ni , k为处理组数 方差分析计算的统计量为F,按表19-7所示关系作判断。 例19.9某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有 无差别? 表19-8某湖水不同季节氯化物含量(mg/L)

SS 加刖=丄 和 ' 10619.265^ 170 HO:湖水四个季节氯化物含量的总体均数相等,即 卩仁卩2=卩3=卩4 H1:四个总体均数不等或不全相等 a =0.05 先作表19-8下半部分的基础计算。 C=(艺 G ) 2/N= (588.4) 2/32=10819.205 SS 总=艺 G2-C=11100.84-10819.205=281.635 V 总=N-仁31 (工吋 “ 1 广_ (】6二口尸斗/」期.匸尸千 K .IT N "一 - ? r . —I b K V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28 MS 组间二SS 组间 /v 组间=141.107/3=47.057

方差概念及计算公式

方差概念及计算公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50 E(X )=72;Y:73,70,75,72,70 E(Y )=72。 平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期望的偏离程度。 单个偏离是 消除符号影响 方差即偏离平方的均值,记为D(X ): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”,即 , 其中

分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动程度。 二.方差的性质 1.设C为常数,则D(C) = 0(常数无波动); 2.D(CX )=C2D(X ) (常数平方提取); 证: 特别地D(-X ) = D(X ), D(-2X ) = 4D(X )(方差无负值) 3.若X、Y相互独立,则 证:记 则 前面两项恰为D(X )和D(Y ),第三项展开后为 当X、Y 相互独立时, , 故第三项为零。 特别地 独立前提的逐项求和,可推广到有限项。 三.常用分布的方差 1.两点分布

2.二项分布 X ~ B( n, p ) 引入随机变量X i(第i次试验中A出现的次数,服从两点分布) , 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) ~ 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 例2求上节例2的方差。 解根据上节例2给出的分布律,计算得到

求均方差。均方差的公式如下:(xi为第i个元素)。 S = ((x1-x的平均值)^2 + (x2-x的平均值)^2+(x3-x的平均值)^2+...+(xn-x的平均值)^2)/n)的平方根 大数定律表表明:事件发生的频率依概率收敛于事件的概率p,这个定理以严格的数学形式表达了频率的稳定性。就是说当n很大时,事件发生的频率于概率有较大偏差的可能性很小。由实际推断原理,在实际应用中,当试验次数很大时,便可以用事件发生的频率来代替事件的概率。 用matlab或c语言编写求导程序 已知电容电压uc,电容值 求电流i 公式为i=c(duc/dt) 怎样用matlab或c语言求解 函数的幂级数展开式

方差 — 标准差

方差(Variance) [编辑] 什么是方差 方差和标准差是测度数据变异程度的最重要、最常用的指标。 方差是各个数据与其算术平均数的离差平方和的平均数,通常以σ2表示。方差的计量单位和量纲不便于从经济意义上进行解释,所以实际统计工作中多用方差的算术平方根——标准差来测度统计数据的差异程度。 标准差又称均方差,一般用σ表示。方差和标准差的计算也分为简单平均法和加权平均法,另外,对于总体数据和样本数据,公式略有不同。 [编辑] 方差的计算公式 设总体方差为σ2,对于未经分组整理的原始数据,方差的计算公式为: 对于分组数据,方差的计算公式为: 方差的平方根即为标准差,其相应的计算公式为: 未分组数据: 分组数据: [编辑]

样本方差和标准差 样本方差与总体方差在计算上的区别是:总体方差是用数据个数或总频数去除离差平方和,而样本方差则是用样本数据个数或总频数减1去除离差平方和,其中样本数据个数减1即n-1 称为自由度。设样本方差为,根据未分组数据和分组数据计算样本方差的公式分别为: 未分组数据: 分组数据: 未分组数据: 分组数据: 例:考察一台机器的生产能力,利用抽样程序来检验生产出来的产品质量,假设搜集的数据如下: 根据该行业通用法则:如果一个样本中的14个数据项的方差大于0.005,则该机器必须关闭待修。问此时的机器是否必须关闭? 解:根据已知数据,计算

因此,该机器工作正常。 方差和标准差也是根据全部数据计算的,它反映了每个数据与其均值相比平均相差的数值,因此它能准确地反映出数据的离散程度。方差和标准差是实际中应用最广泛的离散程度测度值。 ?函数VAR假设其参数是样本总体中的一个样本。如果数据为整个样本总体,则应使用函数VARP来计算方差。 ?参数可以是数字或者是包含数字的名称、数组或引用。 ?逻辑值和直接键入到参数列表中代表数字的文本被计算在内。 ?如果参数是一个数组或引用,则只计算其中的数字。数组或引用中的空白单元格、逻辑值、文本或错误值将被忽略。 ?如果参数为错误值或为不能转换为数字的文本,将会导致错误。 ?如果要使计算包含引用中的逻辑值和代表数字的文本,请使用VARA 函数。 ?函数VAR 的计算公式如下: 其中x 为样本平均值AVERAGE(number1,number2,…),n 为样本大小。 示例 假设有10 件工具在制造过程中是由同一台机器制造出来的,并取样为随机样本进行抗断强度检验。 如果将示例复制到一个空白工作表中,可能会更容易理解该示例。 STDEV(number1,number2,...) Number1,number2,...为对应于总体样本的 1 到255 个参数。也可以不使用这种用逗号分隔参数的形式,而用单个数组或对数组的引用。 注解 ?函数STDEV 假设其参数是总体中的样本。如果数据代表全部样本总体,则应该使用函数STDEVP来计算标准偏差。 ?此处标准偏差的计算使用“n-1”方法。

最小方差套期保值比率

附录:最小方差套期保值比率(对冲率) 可以通过股票指数期货演示如何得到对冲现货头寸的最优期货合约数量。假设A 持有充分分散化的股票组合现货头寸,并且完全模拟市场指数(如S&P500),但是担心价格下跌,希望使用期货合约对持有的头寸对冲。已知: S=S&P500指数现价 TVS 0=初始持有现货总值(就是150万美元) F=期货价格(S&P500指数期货) FVF 0=一份期货合约的账面价值 N S,0=现货持有的指数单位数量 N f =持有的期货合约数量 S 0=1500 F 0= “合约乘数”或者S&P500指数每点价值z=250美元。因此 FVF 0=F 0z () 如果现货头寸是TVS0美元,投资者初始持有NS,0单位指数,则 N S,0=TVS 0/S 0=1500000/1500=1000单位指数 () t=0时,对冲者在现货市场上为多头,因此在期货市场上空头卖出N f 份合约。在t=1时刻,结清持有的头寸,对冲的组合价值变化如下: z F N S N z F F N S S N A V f S f S )()()() 3.3(0,01010,?-?=---=+=?期货头寸的变化 即期市场头寸的变化 。其中,0101,F F F S S S -=?-=? 对冲组合的方差是 )4.3(2)()(,2 2222A z N N z N N F S f S F f S S V ????-+=σσσσ 其中,2 V ?σ是S 的变化的方差。对公式()的Nf 微分,并使之为零(来得到最小值),也就 是0 2 =??f V N σ,得到最优值: )5.3(,0,2 2A z N z N F S S F f ???=σσ )6.3()( 2,0,A z N N F F S S f ???=σσ 代替公式()中的0,S N ,得到最小方差对冲率 )7.3(0)(,2,00A t zS TVS N F S F F S f ???????? ??===βσσ时现货指数的价值现货头寸的总价值 其中,“beta ”为现货资产绝对变化量△S 对期货价格绝对变化量△F 回归得到的回归系数: )8.3()(,0A F S t F S εβα+?+=???

数理金融学作业1最优投资组合的计算(1):不存在无风险资产情形

最优投资组合的计算(1):不存在无风险资产情形 1.(1)什么是最小方差资产组合? (2)写出标准的最小方差资产组合的数学模型。(即不存在无风险资产时期望收益率为p r 的模型) (3)求解该模型,即求权重表达式及最小方差表达式 (4)已知市场上有两种证券,它们的收益率向量为12(,)T X X X =,假设X 服从联合正态分布,其期望收益率向量为()(1,2,0.5)T E X m ==,X 的 协方差矩阵为230 350001轾犏犏=犏犏臌 ? ,设某投资者的投资选择组合为12(,)T w w w = 求由这两种证券组成的均值-方差最优资产组合(允许卖空)12(,)T w w w =与其对应的最小方差,并画出有效前沿图。 2.解:(1)最小方差资产组合是指对确定的期望收益率水平有最小的方差之资产组合。 (2)对一定期望收益率p r ,选择资产组合使其总风险最小的数学模型为: 211min 22..()11 T p T p p T w w s t E X w r w s m ==壮?? (3)应用标准的拉格朗日乘数法求解:令 其中1l 和2l 为待定参数,最优解应满足的一阶条件为: 121 2 10; 0;110; T T p T L w w L r w L w l m l m l l ?=-????=-???=-??? 得最优解:* 1 12(1)w l m l -=? ? 。 令1 1 1 ,11,T T T a b m m m m ---===邋 1 211,T c ac b -=D =-? 则12,.p p r c b a r b l l --= = D D 最小方差资产组合方差为:2 **21()T p p c b w w r c c s == -+D ? 当p b r c =时,资产组合达到最优组合,最优组合*1 11w c -= ? , 最优组合方差为:*2 1p c s =。

方差计算公式的证明

方差计算公式的证明 (1)用新数据法求平均数 当所给的数据都在某一常数a的上下波动时,一般选用简化公式:=+a.其中,常数a通常取接近这组数据平均数的较“整”的数,=-a,=-a,…,=-a ○1 =(+)是新数据的平均数(通常把,,…,,叫做原数据, ,,…,,叫做新数据)。证明: 把○1左边的数据相加,把○1右边的数据相加,得到一个等式: +=-a+-a+…+-a +=++…+-na =—a 即○2 亦即=+a (2)方差的基本公式 方差的基本公式由方差的概念而来。方差的概念是:在一组数据,,,中,各数据与他们的平均数的差的平方的平均数,叫做这组数据的方差。通常用“” 表示,即: =[+] (3) 方差的简化计算公式 =[++…+)-n] 也可写成=[++…+)]- 此公式的记忆方法是:方差等于原数据平方的平均数减去平均数的平方。 证明: =[+] =[++++…++] =[++…+)-2++…++n] =[++…+)-2n =[++…+)-2n =[++…+)-n] =++…+)-………………..(I)

根据○1,有=+a,=+a,…=+a,和=+a(详见(1)的证明) 代入简化公式(I),则有: =[()+()+…()- =[(++…+)+2a(++…+)+n]-(+2a+) =(++…+)+2a+-2a- =(++…+)+ 2a+ =(++…+)…………………….(II) 此公式的记忆方法是:方差等于新数据平方的平均数减去新数据平均数的平方。 由方差的基本公式,经恒等变形后,产生了简化公式(I);由简化公式(I)进行等 量代替产生了简化公式(II).因此,基本公式和简化公式(I)(II)所计算出的方 差都相同。基本公式和简化公式(I)按原数据,,…,计算方差;简化公 式(II)按新数据,,…,计算方差,计算出的方差相同。 (4) 用新数据法计算方差 原数据,,…,的方差与新数据=-a,=-a,…,=-a的方差相等。也就 是说,根据方差的基本公式,求得的,,…,的方差就等于原数据 ,,…,的方差。 证明: 把○1式里的每一个式子的两边,减去○2式的两边(左边-左边,右边-右边)有: -=(-a)-(-a)=- -=(-a)-(-a)=- ………… -=(-a)-(-a)=- 再把以上每一个新生成等式左右两边平方,即有左2=右2: ()=() ()=() ………… ()=() 最后把这些式子的左边加左边,右边加右边,其和分别除以n,即有:[()+()+…+()]=[+] 这就是根据方差的基本公式,求得的,,…,的方差就等于原数据 ,,…,的方差。

方差计算公式的变形及应用

方差计算公式的变形及应用 江苏 庄亿农 我们知道,对于一组数据x 1、x 2、…x n ,若其平均数为x ,则其方差可用公式 S 2=21)[(1 x x n -+22)(x x -+…+2)(x x n -]计算出来.我们可以对其作如下变形: 2s =n 1[( x 21+2x -2 x 1x )+( x 22+2x -2 x 2x )+…+( x 2n +2x -2 x n x )]=n 1[ (x 21+x 22+…+ x 2n )+n 2x -2x ( x 1+ x 2+…+ x n )]= n 1[ (x 21+x 22+…+ x 2n )+ n 2x -2n 2x ]=n 1[ (x 21+x 22+…+ x 2n )-n 2x ]=n 1[ (x 21+x 22+…+ x 2n )-n 1(x 1+x 2+…+ x n )2],即2s =n 1[ (x 21+x 22+…+ x 2n )-n 1(x 1+x 2+…+ x n )2].显然当x 1=x 2=…=x n 时,2s =0. 这个变形公式很有用处,在解决有些问题中,巧妙地利用这个变形公式,可化繁为简,具有事半功倍之效. 一、判断三角形形状 例1 若△ABC 的三边a 、b 、c ,满足b+c=8,bc=a 2-12a+52,试判断△ABC 的形状. 解析:因为b+c=8,所以(b+c)2=64,所以b 2+c 2=64-2bc .因为bc=a 2-12a+52,所以b 2+c 2=64-2(a 2-12a+52)=-2a 2+24a -40.由方差变形公式知,b 、c 的方差为2s = 21[(b 2+c 2)-21(b+c)2]= 21[(-2a 2+24a -40)-2 1×64]=-a 2+12a -36=-(a -6)2.因为2s ≥0,则-(a -6)2≥0,即 (a -6)2≤0,而(a -6)2≥0,所以(a -6)2=0,所以a -6=0,所以a=6.所以2s =0, 所以b=c .又b+c=8,所以b=c=4.所以△ABC 是等腰三角形. 二、解方程组 例2 解方程组?? ???+==+22493z xy y x . 解析:两个方程,三个未知数,一般情况下是求不出具体的未知数的值的.若考虑利用方差变形公式,则能解决问题. 因为x+y=3,所以(x+y)2=9,所以x 2+y 2=9-2xy .因为xy= 4 9+2z 2,所以x 2+y 2=9-2(49+2z 2)=29-4z 2.由方差变形公式知,x 、y 的方差为2s =21[ (x 2+y 2)-21(x+y)2]=21[2 9-4z 2-21×9]=-2z 2.因为2s ≥0,-2z 2≥0,则2z 2≤0,而z 2≥0,所以z=0.所以2s =0,所以

第章资产组合计算

第5章资产组合计算 资产组合是实务性比较强的内容,通过本章的学习,要求读者掌握协方差与相关系数之间的相互推导,熟悉资产组合基本理论,学会用MATLAB计算投资组合基本参数,如均值与方差、资产组合VaR,重点掌握资产组合有效前沿的计算,能够处理无风险利率以及借贷关系情况下的最优投资组合,会用MATLAB规划工具箱求解投资组合最优化问题。 资产组合基本原理 证券投资组合理论(Portfolio Theory)主要研究如何配置各种不同的金融资产,实现资产组合的最佳投资配置。1952年美国学者马克维茨创立了资产组合理论,该理论在实践中得到广泛运用。 收益率序列与价格序列间的转换 1.将收益率序列转换为价格序列 在处理金融时间序列时,有时需要把收益率序列转换为价格序列。在MATLAB中将收益率序列转换为价格序列的函数是ret2tick。 调用方式 [TickSeries,TickTimes]=ret2tick(RetSeries,StartPrice,RetIntervals,StartTime,Meth od) 输入参数 RetSeries %收益率序列 StartPrice %(0ptional)起始价格,默认值是1 RetIntervals %(0ptional)收益率序列的时间间隔,默认值是l StartTime %(optional)价格开始计算的时间,默认值是0

Method %(Optionl)转换方法。Method='Simple'表示简单,)r 1(P p 1t t 1t +++=;Method ='Continous'表示连续法,1t r t 1t e P P +=+。 输出参数 TickSeries %价格序列 TickTimes %与价格对应的时间序列 例5-1己知资产收益率以及时间间隔如表所示 表 资产收益率及时间 起始价格为10元,起始时间为2000年12月18日,试求该资产价格时间序列,收益率采用离散方法。 在MATLAB 中执行以下命令: RetSeries=[,,]'; RetIntervals=[182,91,92]'; StartPrice=10; StartTime=datenum('18-Dec-2000'); [TickSeries,TickTime]=ret2tick(RetSeries,StartPrice,RetIntervals,StartTime) datestr(TickTimes) ans = 18-Dec-2000 18-Jun-2001 17-Sep-2001 18-Dec-2001 这样就把收益率时间序列转换为价格时间序列,结果如表所示。 表 资产各时间的价格

资产组合有效集定理

资产组合的有效集定理 (一)资产组合收益与风险的测定 1、资产组合的收益 资产组合的预期收益是资产组合中所有资产预期收益率的加权平均。设一项资产组合中含有n项资产,令r i表示第i种资产的收益率,w i表示第i种资产在组合中的比例。则组合P的预期收益率为: E(r P)=E(w1r1+ w2r2…+ w n r n) = w1E(r1)+ w2E(r2)+…+ w n E(r n) =∑w i E(r i) 其中,∑w i =1,i=1,2,…,n。 2、资产组合的风险 衡量资产组合风险的工具是证券组合的方差。资产组合的方差不仅和其组成资产的方差有关,同时还与组成资产之间的相关程度有关。 对于有n项资产的组合P来说,其总方差为: σ P 2=∑∑w i w j cov(r i ,r j);w i和w j分别表示资产i和资产j的投资权重 其中当i=j时,cov(r i,r j)表示资产i收益的方差,即cov(r i,r j)=σi2 当i≠j时,cov(r i,r j)表示资产i和资产j收益间的协方差。用公式表示: cov(r i ,r j) =E{[ r i- E(r i)][ r j- E(r j)]} 协方差反映了两个证券收益同时变化的测度。 如果cov(r i,r j)>0,即协方差为正数,那么证券i和证券j的收益呈同向变化,即当证券i的收益大于其预期收益E(r i)时,证券j的收益也大于它的预期收益。 反之,如果cov(r i,r j)<0,即协方差为负数,那么证券i和证券j的收益呈反向变化。

为了能更清晰地说明两个证券之间的相关程度,通常把协方差正规化,使用资产i和资产j收益间的相关系数ρij,用公示表示: ρij= cov(r i,r j)/σiσj,其中σi和σj分别表示证券i和j的标准差,ρij的取值范围为[-1,1]。 当ρij=1时,证券i和j是完全正相关的。 当ρij=-1时,证券i和j是完全负相关的。 当ρij=0时,证券i和j之间不存在相关关系 重点关注由两种证券构成的投资组合: 这一投资组合的收益: E(r P)=E(w1r1+ w2r2)= w1E(r1)+ w2E(r2) 这一投资组合的方差: σ P 2=w 1 2σ 1 2+w 2 2σ 2 2+ 2w 1 w 2 cov(r 1 ,r2) =w12σ12+w22σ22+ 2w1w2ρ12σ1σ2 当ρ 12=1时,σ P =w1σ1+w2σ2;此时组合标准差等于组合中单个证券标准差 的加权平均值。 当ρ 12=0时,σ P =(w12σ12+w22σ22)1/2 当ρ 12=-1时,σ P =|w1σ1-w2σ2| 显然,投资组合的标准差在ρ 12=-1时最小,ρ 12 =1时最大。 例:已知证券组合P是由证券1和证券2构成,两种证券的预期收益和标准差分别为E(r1)=20%,σ1=10%;E(r2)=25%,σ2=20%,并且两种证券的权重分别为w1=w2=50%,请计算由这两种证券所构成的证券组合P的预期收益率,并分别 计算ρ 12=1,ρ 12 =0,ρ 12 =-1时证券组合P的标准差。 答:证券组合P的预期收益率为:

方差分析公式

方差分析公式 (2012-06-26 11:03:09) 转载▼ 标签: 分类:统计方法 杂谈 方差分析 方差分析(analysis of variance,简写为ANOV或ANOVA)可用于两个或两个以上样本均数的比较。应用时要求各样本是相互独立的随机样本;各样本来自正态分布总体且各总体方差相等。方差分析的基本思想是按实验设计和分析目的把全部观察值之间的总变异分为两部分或更多部分,然后再作分析。常用的设计有完全随机设计和随机区组设计的多个样本均数的比较。 一、完全随机设计的多个样本均数的比较 又称单因素方差分析。把总变异分解为组间(处理间)变异和组内变异(误差)两部分。目的是推断k个样本所分别代表的μ1,μ2,……μk是否相等,以便比较多个处理的差别有无统计学意义。其计算公式见表19-6. 表19-6 完全随机设计的多个样本均数比较的方差分析公式变异来源离均差平方和SS 自由度v 均方MS F 总ΣX2-C* N-1 组间(处理组间)k-1 SS组间/v组间MS组间/MS组间 组内(误差)SS总-SS组间N-k SS组内/v组内 *C=(ΣX)2/N=Σni,k为处理组数 表19-7 F值、P值与统计结论 αF值P值统计结论 0.05 <F0.05(v1.V2)>0.05 不拒绝H0,差别无统计学意义 0.05 ≥F0.05(v1.V2)≤0.05 拒绝H0,接受H1,差别有统计学意义 0.01 ≥F0.01(v1.V2)≤0.01 拒绝H0,接受H1,差别有高度统计学意义 方差分析计算的统计量为F,按表19-7所示关系作判断。

例19.9 某湖水不同季节氯化物含量测量值如表19-8,问不同季节氯化物含量有无差别? 表19-8 某湖水不同季节氯化物含量(mg/L ) X ij 春 夏 秋 冬 22.6 19.1 18.9 19.0 22.8 22.8 13.6 16.9 21.0 24.5 17.2 17.6 16.9 18.0 15.1 14.8 20.0 15.2 16.6 13.1 21.9 18.4 14.2 16.9 21.5 20.1 16.7 16.2 21.2 21.2 19.6 14.8 ΣX ij j 167.9 159.3 131.9 129.3 588.4(ΣX ) n i 8 8 8 8 32(N ) X i 20.99 19.91 16.49 16.16 ΣX 2 ijj 3548.51 3231.95 2206.27 2114.11 11100.84(ΣX 2 ) H0:湖水四个季节氯化物含量的总体均数相等,即μ1=μ2=μ3=μ4 H1:四个总体均数不等或不全相等 α=0.05 先作表19-8下半部分的基础计算。 C= (Σx )2/N=(588.4)2/32=10819.205 SS 总=Σx2-C=11100.84-10819.205=281.635 V 总=N-1=31 V 组间=k-1=4-1=3 SS 组内=SS 总-SS 组间=281.635-141.107=140.465 V 组内=N-k=32-4=28

相对标准方差的计算公式

标准偏差 标准偏差(Std Dev,Standard Deviation) -统计学名词。一种量度数据分布的分散程度之标准,用以衡量数据值偏离算术平均值的程度。标准偏差越小,这些值偏离平均值就越少,反之亦然。标准偏差的大小可通过标准偏差与平均值的倍率关系来衡量。 目录 编辑本段公式 标准偏差公式:S = Sqrt[(∑(xi-x拨)^2) /(N-1)]公式中∑代表总和,x拨代表x的均值,^2代表二次方,Sqrt代表平方根。 例:有一组数字分别是200、50、100、200,求它们的标准偏差。 x拨= (200+50+100+200)/4 = 550/4 = 137.5 S^2 = [(200-137.5)^2+(50-137.5)^2+(100-137.5)^2+(200-137.5)^2]/(4-1) 标准偏差 S = Sqrt(S^2) STDEV基于样本估算标准偏差。标准偏差反映数值相对于平均值(mean) 的离散程度。 编辑本段语法 STDEV(number1,number2,...)

编辑本段标准差 标准差也被称为标准偏差,或者实验标准差,标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。例如,A、B两组各有6位学生参加同一次语文测验,A 组的分数为95、85、75、65、55、45,B组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为17.08分,B组的标准差为2.16分,说明A组学生之间的差距要比B组学生之间的差距大得多。 编辑本段标准偏差与标准差的区别 标准差(Standard Deviation)各数据偏离平均数的距离(离均差)的平均数,它是离差平方和平均后的方根。用σ表示。因此,标准差也是一种平均数。标准差是方差的算术平方根。标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。

2016高考数学方差公式汇总

2016高考数学方差公式汇总 一.方差的概念与计算公式例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72;Y:73,70,75,72,70E(Y)=72。平均成绩相同,但X不稳定,对平均值的偏离大。方差描述随机变量对于数学期 望的偏离程度。方差即偏离平方的均值,记为D(X):直接计算公式分离散型和连续型,具体为:这里是一个数。推导另一种计算公式得到:“方差等于平方的均值减去均值的平方”。其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动二.方差的性质1.设C为常数,则D(C)=0(常数无波动);2.D(CX)=C2D(X)(常数平方提取);特别地D(-X)=D(X),D(-2X)=4D(X) (方差无负值)方差公式:平均数:M=(x1+x2+x3+…+xn)/n(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值)方差公式:S2=〈(M-x1) 2+(M-x2)2+(M-x3)2+…+(M-xn)2〉╱n三.常用分布的方差1.两点分布2.二项 分布X~B(n,p)引入随机变量Xi(第i次试验中A出现的次数,服从两点分布) 3.泊松分布(推导略)4.均匀分布另一计算过程为5.指数分布(推导略)6.正态分布(推导略)7.t分布:其中X~T(n),E(X)=0;D(X)=n/(n-2);8.F分布:其中 X~F(m,n),E(X)=n/(n-2);正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。方差的定义:设一组数据 x1,x2,x3······xn中,各组数据与它们的平均数x(拔)的差的平方分别是(x1- x拔)2,(x2-x拔)2······(xn-x拔)2,那幺我们用他们的平均数s2=1/n【(x1-x拔) 2+(x2-x拔)2+·····(xn-x拔)2】来衡量这组数据的波动大小,并把它叫做这组 数据的方差。

概率期望与方差的计算和性质

概率与统计 知识点一:常见的概率类型与概率计算公式;类型一:古典概型; 1、古典概型的基本特点: (1)基本事件数有限多个; (2)每个基本事件之间互斥且等可能;2、概率计算公式: A事件发生的概率 () A P A= 事件所包含的基本事件数 总的基本事件数。 类型二:几何概型; 1、几何概型的基本特点: (1)基本事件数有无限多个; (2)每个基本事件之间互斥且等可能; 2、概率计算公式: A事件发生的概率 () A P A= 构成事件的区域长度(或面积或体积或角度)总的区域长度(或面积或体积或角度); 注意: 究竟是长度比还是面积比还是体积比,关键是看表达该概率问题需要几个变量,如果需要一个变量,则应该是长度比或者角度比;若需要两个变量则应该是面积比;当然如果是必须要三个变量则必为体积比;b5E2RGbCAP (2)如果是用一个变量,到底是角度问题还是长度问题,关键是看谁是变化的主体,哪一个是等可能的;

例如:等腰ABC ?中,角C=23π ,则: (1) 若点M 是线段AB 上一点,求使得AM AC ≤的概率; (2) 若射线CA 绕着点C 向射线CB 旋转,且射线CA 与线段AB 始终相交且交点是M ,求使得AM AC ≤的概率; 解读:第一问中明确M 为AB 上动点,即点M 是在AB 上均匀分布, 所以这一问应该是长度之比,所求概率: 13P = 。 而第二问中真正变化的主体是射线的转动,所以角度的变化是均匀的,所以这一问应该是角度之比的问题,所以所求的概率: 2755 = = 1208P ?;p1EanqFDPw 知识点二:常见的概率计算性质; 类型一:事件间的关系与运算; A+B<和事件):表示A 、B 两个事件至少有一个发生; A B ?<积事件):表示A 、B 两个事件同时发生; A <对立事件):表示事件A 的对立事件; 类型二:复杂事件的概率计算公式; 1、 和事件的概率: ()=()()()P A B P A P B P A B ++-? <1)特别的,若A 与B 为互斥事件,则: ()=()()P A B P A P B ++ <2)对立事件的概率公式: ()1()P A P A =-

标准差的有关介绍及标准差计算公式标准差标准差

标准差的有关介绍及标准差计算公式标准差标准差(Standard Deviation) 也称均方差(mean square error) 各数据偏离平均数的距离(离均差)的平均数,它是离均差平方和平均后的方根。用σ表示。因此标准差是方差的算术平方根。 例如:如果有n个数据X1 ,X2 ,X3 ......Xn ,数据的平均数为X,标准差σ: 标准差能反映一个数据集的离散程度。平均数相同的,标准差未必相同。 例如,A、B两组各有6位学生参加同一次语文测验,A组的分数为95、85、75、65、55、45,B 组的分数为73、72、71、69、68、67。这两组的平均数都是70,但A组的标准差为18.71分,B组的标准差为2.37分(此数据时在R统计软件中运行获得),说明A组学生之间的差距要比B组学生之间的差距大得多。 标准差也被称为标准偏差,或者实验标准差。 关于这个函数在EXCEL中的STDEVP函数有详细描述,EXCEL中文版里面就是用的“标准偏差”字样。但我国的中文教材等通常还是使用的是“标准差”。 在EXCEL中STDEVP函数就是下面评论所说的另外一种标准差,也就是总体标准差。在繁体中文的一些地方可能叫做“母体标准差” 在R统计软件中标准差的程序为:sum((x-mean(x))^2)/(length(x)-1) 因为有两个定义,用在不同的场合: 如是总体,标准差公式根号内除以n, 如是样本,标准差公式根号内除以(n-1), 因为我们大量接触的是样本,所以普遍使用根号内除以(n-1), 外汇术语: 标准差指统计上用于衡量一组数值中某一数值与其平均值差异程度的指标。标准差被用来评估价格可能的变化或波动程度。标准差越大,价格波动的范围就越广,股票等金融工具表现的波动就越大。 阐述及应用 简单来说,标准差是一组数值自平均值分散开来的程度的一种测量观念。一个较大的标准差,代表大部分的数值和其平均值之间差异较大;一个较小的标准差,代表这些数值较接近平均值。 例如,两组数的集合{0, 5, 9, 14} 和{5, 6, 8, 9} 其平均值都是7 ,但第二个集合具有较小的标准差。 标准差可以当作不确定性的一种测量。例如在物理科学中,做重复性测量时,测量数值集合的标准差代表这些测量的精确度。当要决定测量值是否符合预测值,测量值的标准差占有决定性重要角色:如果测量平均值与预测值相差太远(同时与标准差数值做比较),则认为测量值与预测值互相矛盾。这很容易理解,因为如果测量值都落在一定数值范围之外,可以合理推论预测值是否正确。 标准差应用于投资上,可作为量度回报稳定性的指标。标准差数值越大,代表回报远离过去平均数值,回报较不稳定故风险越高。相反,标准差数值越细,代表回报较为稳定,风险亦较小。 样本标准差 在真实世界中,除非在某些特殊情况下,不然找到一个总体的真实的标准差是不现实的。大多数情况下,总体标准差是通过随机抽取一定量的样本并计算样本标准差估计的。 标准差的简易计算公式 假设有一组数值x1, ..., xN (皆为实数),其平均值为: 此组数值的标准差为: 一个较快求解的方式为: 一随机变量X 的标准差定义为: 须注意并非所有随机变量都具有标准差,因为有些随机变量不存在期望值。如果随机变量X 为 x1,...,xN 具有相同机率,则可用上述公式计算标准差。从一大组数值当中取出一样本数值组合 x1,...,xn ,常定义其样本标准差: 范例

金融经济学基础第三章中文文字版

第三章 资产组合前沿边界的数学分析 3.1 在第二章我们证明了当风险资产A 二阶随机占优于风险资产B 时,风险资产A 的期望收益率必然等于风险资产B 的风险收益率,方差则小于B 的方差。当存在两个以上的资产并且可以无限制地构造投资组合时,如果存在一个资产的投资组合二阶随机占优于所有与其期望收益率相同的投资组合,则这个占优的投资组合的方差必然最小。这一结果是我们论述在不同的期望收益率水平下具有最小方差的投资组合的动机之一。 3.2 资产选择的均值-方差模型自从马科维茨(Markowitz,1952)发展以来,已经被广泛地应用在金融领域。个体效用函数的单调性和严格凹性意味着投资者对预期收益的偏好和对方差的厌恶。不过,对任意的分布和效用函数,期望效用并不能仅仅由预期收益和方差决定。然而,资产选择的均值-方差模型仍然流行是因为它具有数理分析的简易性和丰富的实证检验。除3.1节指出的一个动机之外,还存在两个技术上的动机,简要回顾如下。 3.3 个体的效用函数可以在期望财富附近泰勒展开, ///231()([])([])([])([])([]),2 u w u E w u E w w E w u E w w E w R =+-+-+ 其中 ()331([])([])([])! n n n R u E w E w w E w n ==-∑ ()n u 表示u 的n 阶导数。 假设这个泰勒级数收敛,并且取期望和求和的过程是可以互换的,则个体期望效用可以表示为 //231[[]]([])([])()[],(3.3.1)2! E u w u E w u E w w E R σ=++ (3.3.1) 其中 ()33 1[]([])()!n n n E R u E w m w n ==∑ (3.3.2) ()n m w 表示的w 的n 阶中心矩。 关系式(3.3.1)指出了一个对期望财富偏好和对分差厌恶的个体,其效用函数是递增并严格凹的。除了期望与方差,关系式(3.3.2)还含有高阶矩的项,它说明

期望-方差公式-方差和期望公式

期望与方差的相关公式 -、数学期望的来由 早在17世纪,有一个赌徒向法国著名数学家帕斯卡挑战,给他出了一道题目,题目是这样的:甲乙两个人赌博,他们两人获胜的机率相等,比赛规则是先胜三局者为赢家,赢家可以获得100法郎的奖励。当比赛进行到第三局的时候,甲胜了两局,乙胜了一局,这时由于某些原因中止了比赛,那么如何分配这100法郎才比较公平? 用概率论的知识,不难得知,甲获胜的概率为1/2+(1/2)*(1/2)=3/4,或者分析乙获胜的概率为(1/2)*(1/2)=1/4。因此由此引出了甲的期望所得值为 100*3/4=75法郎,乙的期望所得值为25法郎。 这个故事里出现了“期望”这个词,数学期望由此而来。 定义1 若离散型随机变量ξ可能取值为i a (i =1,2,3 ,…),其分布列为i p (i =1,2,3, …),则当i i i p a ∑∞=1<∞时,则称ξ存在数学期望,并且数学期望为E ξ=∑∞ =1i i i p a ,如果i i i p a ∑∞ =1=∞,则数学期望不存在。[]1 定义2 期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1, 2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值. 期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定. 二、数学期望的性质 (1)设C 是常数,则E(C )=C 。 (2)若k 是常数,则E (kX )=kE (X )。 (3))E(X )E(X )X E(X 2121+=+。 三、 方差的定义 前面我们介绍了随机变量的数学期望,它体现了随机变量取值的平均水平,

高考数学必考:方差公式

2019年高考数学必考:方差公式 一.方差的概念与计算公式 例1两人的5次测验成绩如下: X:50,100,100,60,50E(X)=72; Y:73,70,75,72,70E(Y)=72。 平均成绩相同,但X不稳定,对平均值的偏离大。 方差描述随机变量对于数学期望的偏离程度。 方差即偏离平方的均值,记为D(X): 直接计算公式分离散型和连续型,具体为: 这里是一个数。推导另一种计算公式 得到:“方差等于平方的均值减去均值的平方”。 其中,分别为离散型和连续型计算公式。称为标准差或均方差,方差描述波动 二.方差的性质 1.设C为常数,则D(C)=0(常数无波动); 2.D(CX)=C2D(X)(常数平方提取); 特别地D(-X)=D(X),D(-2X)=4D(X)(方差无负值) 方差公式: 平均数:M=(x1+x2+x3+…+xn)/n(n表示这组数据个数,x1、x2、x3……xn表示这组数据具体数值) 方差公式:S2=〈(M-x1)2+(M-x2)2+(M-x3)2+…+(M-xn)2〉╱n 三.常用分布的方差

1.两点分布 2.二项分布 X~B(n,p) 引入随机变量Xi(第i次试验中A出现的次数,服从两点分布) 3.泊松分布(推导略) 4.均匀分布 另一计算过程为 5.指数分布(推导略) 6.正态分布(推导略) 7.t分布:其中X~T(n),E(X)=0;D(X)=n/(n-2); 8.F分布:其中X~F(m,n),E(X)=n/(n-2); 正态分布的后一参数反映它与均值的偏离程度,即波动程度(随机波动),这与图形的特征是相符的。 家庭是幼儿语言活动的重要环境,为了与家长配合做好幼儿阅读训练工作,孩子一入园就召开家长会,给家长提出早期抓好幼儿阅读的要求。我把幼儿在园里的阅读活动及阅读情况及时传递给家长,要求孩子回家向家长朗诵儿歌,表演故事。我和家长共同配合,一道训练,幼儿的阅读能力提高很快。方差的定义: 唐宋或更早之前,针对“经学”“律学”“算学”和“书学”各科目,其相应传授者称为“博士”,这与当今“博士”含义已经相去甚

第30讲方差定义和计算公式

第30讲方差定义和计算公式

2 () X E X 随机变量的均值: () X X E X -对于均值的离差: (())X E X E X -对于均值的平均离差: 0 =() E X E X -反映随机变量波动性可以用: ||2 [] 方差

3 {}2()()[()]. D X Var X E X E X ==-{}2 ([:)](()) D X Var E X E X X X X -设是一个随机变量,若存在, 则称其为的,方记为差或定义,即 ((,))D X X X σ将记为称为的或标准差均方差. ()(),(),,(),D X X X X D X X D X X σ和刻画了取值的波动性 是衡量取值分散程度的数字特征. 若较小 则取值比较集中;反之 若较大 则说明取值比较分散. ()X X σ是与随机变量具有相同量纲的量.

4 对于离散型随机变量X ,其分布律为 则(), 1,2,, i i P X x p i === 对于连续型随机变量X ,其概率密度函数为则(),f x 21 ()[()]; i i i D X x E X p ∞==-∑2 ()[()](). D X x E X f x dx +∞-∞=-?2()[()],g x x E X =-()(()).D X E g X =注意到, 当取则

5{} 2()[()]D X E X E X =-{} 222()[()]E X XE X E X =-+22 ()2()()[()]E X E X E X E X =-+22()[()]. E X E X =-利用数学期望的性质,可得方差的计算公式: 事实上,22 ()()[()]D X E X E X =-

相关文档
相关文档 最新文档