文档库 最新最全的文档下载
当前位置:文档库 › 1000MW超超临界机组热力系统的优化

1000MW超超临界机组热力系统的优化

1000MW超超临界机组热力系统的优化
1000MW超超临界机组热力系统的优化

1概述

通过对火电厂热力系统进行全面优化分析,优选系统设计或技术改造方案。热力系统优化可以通过对热力系统的结构、设备、参数及运行方式等进行比较,选取最佳方案,以保证机组安全可靠、经济运行。

高压缸通风阀的布置方案、旁路系统型式、高压加热器容量和布置方式等是影响1000MW超超临界汽轮机热力系统的关键因素。

2热力系统优化方案

2.1高压缸通风阀布置方案优化

大容量汽轮机在打闸停机后高压主汽门及调门快速关闭,汽轮机转子继续惰走,但此时高压缸内的蒸汽不再流动,无法带走因高压转子鼓风产生的热量,导致高压缸内温度急剧上升,会造成高压转子叶片因超温过热而烧损。因而,一般在高压缸上设置通风阀。

高压缸通风阀可以布置在高排管道上或布置在一段抽汽管道上,或布置在高压导汽管上。高压缸通风阀的布置位置不同,对高压缸叶片的保护范围不同。布置在一段抽汽管道上,只能保护高压末几级叶片,一段抽汽前的压力级仍具有叶片过热的风险。布置在高排逆止门前管道上,虽能将部分蒸汽旁路进凝汽器,但由于通风阀的通流能力一般不宜太大,仍会有部分蒸汽倒入高压缸,不利于设备安全。布置在高压导汽管上,则可以通过高压缸通流部分,用冷段来汽均匀冷却高压级叶片。

经综合比较,华电国际邹县发电厂四期工程1000MW超超临界机组将通风阀布置在4号高压进汽导管上,考虑到阀前后压力差较大会影响门的开关,为保证阀门事故状态下迅速打开,将通风阀并联一个小旁路来进行压力平衡和管道预热,这也是国内第一台将通风阀布置在高压导汽管上百万千瓦超超临界机组。

2.2汽轮机旁路系统的选型

旁路系统作为机组的一个重要辅助系统,其选择主要根据机组启动时间的要求,运行方式需要、容量的大小。

大型机组常用的旁路型式主要有:两级串联旁路系统、两级并联旁路系统、一级大旁路系统和三级旁路系统等类型。一级旁路系统简单,执行机构

1000MW超超临界机组热力系统的优化

OpitimazitionofThermalSystemin1000MWUltra-supercriticalUnits

吕宗武,王治杰,王学凤

(华电国际邹县发电厂,山东邹城273522)

摘要:以邹县发电厂1000MW超超临界机组热力系统为例,提出超超临界发电机组热力系统优化方案,为超超临界热力系统优化提供参考。

关键词:超超临界;热力系统;优化

Abstract:Takingthethermalsystemof1000MWultra-supercriticalunitsinZouxianpowerplantforexample,bringingtheoptimizationofthermalsystem.Theseprovideascientificbasisfortechniquedevelopmentinultrasupercriticalunits.

Keywords:ultrasupercritical;thermalsystem;optimization

中图分类号:TM621.4文献标识码:B文章编号:1007-9904(2008)04-60-03

60

可以采用电动,省去了复杂的其他旁路型式必须的液压控制站,投资最少。两级串联(并)联旁路系统复杂,所选用的附属设备较多,必须选用可靠的液压控制系统,才能发挥其旁路优势,控制难度大,故障率高,维护工作量大,投资较大。三级旁路系统的最复杂,投资最大。

邹县发电厂拥有4台335MW机组、2台600MW机组和2台1000MW机组,在进行超超临界1000MW机组设计时是按基本载荷进行设计的,没有考虑旁路系统停机不停炉功能和带厂用电运行的功能。最终选用了高压一级大旁路系统,高压旁路阀选用电动执行机构,旁路容量为25%,制造厂家为西门子,这也是国内首台选用一级大旁路系统的1000MW超超临界燃煤发电机组。2.3高压加热器的选型及布置

加热器的选择主要根据加热器的结构型式、容量和制造工艺来选择。加热器常见的结构型式有两种,即表面式和混合式。表面式加热器组成的回热系统简单,运行可靠和维修方便,在汽轮机回热系统中得到广泛采用。

加热器的布置有卧式和立式两种形式。立式布置占地面积小,特别对于同层布置的加热器,立式布置更有利管道的安装。卧式布置的加热器占地面积相对大,但是通过理论分析和实践证明,卧式布置的加热器传热效果好,加热器内疏水的水位比较稳定,而且便于加热器的结构设计。所以目前大型汽轮发电机组采用卧式加热器的居多。

卧式高压加热器的布置分两种形式,一种为分层布置,一种为同层布置。分层布置的高加加热器疏水可利用势位差,在机组启动或低负荷运行时比较有利。高压给水管道柔性比较好,可减少对设备接口的推力,但不利于运行人员巡视,且抽汽和高压给水管道较长。高压加热器同层布置,抽汽和高压给水管道相对较短,高压给水阀门可集中布置,方便运行人员巡视和维护。高压加热器同层布置还可以减少一层平台,降低除氧框架的层高,节省厂房建筑成本,对于大容量机组,高压给水系统应力求简捷,阻力小,阀门少,管道短。目前大容量机组高压加热器的布置多采用同层布置形式。

600MW ̄1000MW级的机组,高压加热器的容量及参数较高,如果仍采用单列高压加热器对高压给水系统而言简单,阀门少、管道短,布置方便,但对于高压加热器的制造工艺,对加工机具的要求很高。特别是高压加热器的球形水室、管板厚度随着机组容量及参数的提高而逐渐加大,加厚,高压加热器的外型尺寸也逐渐加大。

1000MW超超临界机组单列高压加热器,由于国内的设备厂家未做过具体设计,也不掌握国外进口材料的价格,所以不能提供报价,因此无法对单、双列高压加热器的设备价格进行对比。在厂房容积方面,双列高压加热器同层布置除氧框架跨度为12m,单列高压加热器除氧框架跨度为10.5m,两个方案的除氧框架层高不变,主厂房容积单列比双列减少10239.9m3。管道阀门方面,单列高压加热器给水管道全容量管径是Ф660×76.5,双列高压加热器给水管道半容量管径是Ф457×47.5,单列高加给水管道比双列高加长度短230米/机,管道重量减少21.7吨/机。双列高压加热器采用双路大旁路,单列比双列高压加热器的高压给水、抽汽和疏水阀门(国外进口)各减少一套,但由于管径的不同,单列比双列阀门价格将增加8%~10%。

经综合比较分析,考虑运行业绩,加工制造工艺和整个机组运行的经济性和可靠性,本工程选用双列单层布置方案。这是国内第一台高加选用双列单层布置方案的百万千瓦超超临界机组。

3结语

在进行充分调研和广泛研究的基础上,对热力系统优化和辅机选型方面进行了大胆的尝试,采用一级大旁路系统,VV阀安装位置选择在4号高压导汽管上,选择双列高加同层布置方案。这在国内百万千瓦机组上是一个创新。应用大容量机组辅机配置方案研究成果,使单台设备的技术难度降低,避免了辅机设备依靠进口的问题。高加、选用国产设备,且可靠性与国产600MW机组类似。

热力系统优化方案在华电国际邹县发电厂四

61

期2×1000MW超超临界机组扩建工程应用后,效果显著。首台机组于2006年12月4日完成168小时运行。机组在168小时满负荷运行期间稳定可靠,在试生产完成了各类考核试验,并成功进行了100%工况常规法甩负荷试验。

参考文献

[1]1000MW超超临界汽轮发电机组可行性研讨.[2]杨立洲.超临界压力火力发电技术[M].上海交通大学出版社,1990,5.

收稿日期:2008-3-10

作者简介:

吕宗武(1973-),男,山东省邹平县人,工程师,从事发电厂汽轮机运行与检修工作。

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

近几年,我国风电发展速度越来越快,而且风电场的规模也越来越大,风电并网问题越来越受到各方面的重视。风电场规模逐步扩大,需要更高电压等级的电网,在更大范围内优化资源配置。

国家发改委能源局可再生能源处处长史立山在谈到这个问题时说,国家发改委对风电并网问题十分重视。目前,全国风电场接入系统工程进展都比较顺利。总的来说,国家电网公司非常支持风电场建设。

国家电网公司发展策划部主任赵庆波介绍,国家电网公司坚决支持可再生能源发展,各地风电场接入系统工程进展都比较顺利。目前,大多数风电场接入220千伏及以下电网,接入系统工程由地方发改委核准,各省电网公司都尽可能根据风电规划,积极开展接入系统工作。由于各地发展风电的热情很高,多数工程能够及时被核准,并按期完成,使风电场及时并网发电。

随着风电场规模逐步扩大,将来风电大规模并网就需要更高电压等级的电网,在更大范围内优化资源配置,这与国家电网公司实施"一特四大"能源战略是一致的。

龙源电力集团公司总经理谢长军说,这两年,龙源电力集团公司风电发展步伐确实很快。2007年,龙源集团装机总容量突破160万千瓦,2008年的目标是投产120万千瓦。绝大多数电源都要通过电网送到千家万户,风电也不例外。国家电网公司非常支持我们的工作,较好地保证了风电场及时并网发电。在这里,我们要对电网企业的出色工作表示感谢。

由于风电在我国大规模开发才刚刚开始,各方对有些问题的认识尚不统一,包括电网投入与接纳能力的关系等,这需要很大一笔投入,而目前还没有对这方面进行合理补偿的规定。

国家电网实施“一特四大”能源战略风电并网提速

国网报2008-6-1162

张吉培300MW汽轮机热力系统方案

N300MW汽轮机组热力系统分析- TMCR 专科生毕业设计开题报告 2011 年 09 月 24 日

摘要 节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行

经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法—— 常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统 目录 N300MW汽轮机组热力系统分析- TMCR (1) 专科生毕业设计开题报告 (1) 摘要 (4) 关键词 (4) 第一章绪论 (9) 1.1 毕业设计的目的 (9) 1.2国外研究综述 (9) 第二章 300MW汽轮机组的结构与性能 (11) 2.1汽轮机工作的基本原理 (11) 第三章热力系统的设计 (14) 3.1主、再热蒸汽系统 (14) 3.1.1主蒸汽系统 (15) 3.1.2再热蒸汽系统 (15) 3.2主给水系统 (16) 3.2.1除氧器 (16) 3.2.2高压加热器 (16) 3.2.3其他 (17) 3.3凝结水系统 (17) 3.3.1凝结水用户 (17) 3.3.2凝结水泵及轴封加热器 (18) 3.4抽汽及加热器疏水系统 (18) 3.5轴封系统 (19) 3.6高压抗燃油系统 (20) 3.6.1磁性过滤器 (20) 3.6.2自循环滤油系统 (21) 3.7润滑油系统 (21) 3.8本体疏水系统 (21) 3.9发电机水冷系统 (22)

汽轮机组热力系统..

第二节汽轮机组热力系统 汽轮机组热力系统主要是由新蒸汽管道及其疏水系统、汽轮机本体疏水系统、汽封系统、主凝结水系统、回热加热系统、真空抽气系统、循环水系统等组成。 一、新蒸汽管道及其疏水系统 由锅炉到汽轮机的全部新蒸汽管道,称为发电厂的新蒸汽管道,其中从隔离汽门到汽轮机的这一段管道成为汽轮机的进汽管道。在汽轮机的进汽管道上通常还连接有供给汽动油泵、抽气器和汽轮机端部轴封等处新蒸汽的管道,汽轮机的进汽管道和这些分支管道以及它们的疏水管构成了汽轮机的新蒸汽管道及其疏水系统。3)在机组启动和低负荷运行时,为了保证除氧器的用汽,必须装设有饱和蒸汽或新蒸汽经减压后供除氧器用的备用汽源。 5)在机组启动、停止和正常运行中,要及时地迅速地把新蒸汽管道及其分支管路中的疏水排走,否则将会引起用汽设备和管道发生故障。这些疏水是: ①隔离汽门前、后的疏水和汽轮机进汽管道疏水。这两处疏水在机组启动暖管和停机时,都是排向地沟的,正常运行中经疏水器可疏至疏水扩容器或疏水箱。 ②汽动油泵用汽排汽管路的凝结水。由于废汽是排入大气的,它的凝结水接触了大气,水质较差,且在机组启、停时才用,运行时间不长,故一般都排入地沟。 ③汽轮机本体疏水。我们通常把汽轮机高压缸疏水、抽汽口疏水、低压缸疏水、抽汽管路上逆止门前后疏水以及轴封管路疏水等,统称为汽轮机本体疏水。这些疏水,由于压力的不同,而引向不同的容器中。高压疏水一般都是汇集在疏水膨胀箱内,在疏水膨胀箱内进行扩容,扩容后的蒸汽由导汽管送至凝汽器的喉部,而凝结水则由注水器(水力喷射器)送入凝汽器的热水井中。低压疏水可直接排入凝汽器。 6)一般中、低压汽轮机的自动主汽门前必须装设汽水分离器。汽水分离器的作用是分离蒸汽中所含的水分,提高进入汽轮机的蒸汽品质。21-1.5型机组的汽水分离器是与隔离汽门装置在一起的,N3-24型机组的汽水分离器是和自动主汽门装置在一起的。 二、凝结水管道系统 蒸汽器热水井中的凝结水,由凝结水泵升压,经过抽气器的冷却器、轴封加热器、低压加热器,然后进入除氧器,其间的所有设备和管道组成了凝结水系统。 凝结水系统的任务是不间断地把凝汽器内的凝结水排出和使主抽气器能够正常地工作,从而保证凝汽器所必须的真空,并尽量收回凝结水,以减少工质损失。 2)汽轮机组在启动和低负荷运行时,为了保证有足够的凝结水量通过抽器冷却器,以保证抽气器的冷却和维持凝汽器热水井水位,在抽气器后的主凝结水管道上装设了一根在循环管,使一部分凝结水可以在凝汽器到抽气器这一段管路内循环。再循环水量的多少,由再循环管上的再循环门来调节。 3)汽轮机在第一次启动及大修后启动时,凝汽器内还无水,这时首先应通过专设的补充水管向凝汽器充水,一般电厂都补充化学软水。机组启动运转正常后,应化验凝结水水质是否合格,若不合格则应通过放水管将凝结水

汽轮机组效率及热力系统节能降耗定量分析计算

汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民国电力行业标准DL/T904—2004《火力发电厂技术经济指标计算方法》和GB/T8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1.1 汽轮机组热耗率及功率计算 a. 非再热机组 试验热耗率: G 0H G H HR0 fw fw N t kJ/kWh 式中G ─主蒸汽流量,kg/h;G fw ─给水流量,kg/h;H ─ 主蒸汽焓值,kJ/kg ;H fw─ 给水焓值,kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中C Q─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。 b. 再热机组 试验热耗率:: G 0H G fw H fw G R (H r H 1 ) G J (H r H J) HR N t kJ/kWh 式中G R─高压缸排汽流量,kg/h; G J ─再热减温水流量,kg/h; H r ─再热蒸汽焓值,kJ/kg; K

p c ?υ0 p 0?υc k H k H 1─ 高压缸排汽焓值,kJ/kg ; H J ─ 再热减温水焓值,kJ/kg 。 修正后(经二类)的热耗率: HQ HR C Q kJ/kWh 式中 C Q ─ 主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽 机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中 K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及 汽机背压对功率的综合修正系数。 1.2 汽轮机汽耗率计算 a. 试验汽耗率: SR G 0 N t kg/kWh b. 修正后的汽耗率: SR G c kg/kWh c p 式中G c ─修正后的主蒸汽流量,G c G 0 ,kg/h ; p c 、c ─设计主蒸汽压力、主蒸汽比容; p 0、 ─实测主蒸汽压力、主蒸汽比容。 1.3 汽轮机相对效率计算 a. 非再热机组 汽轮机相对效率: H 0 H k 100% oi 0 - H ' 式中 ' H k ─ 汽轮机等熵排汽焓,kJ/kg ; ─ 汽轮机排汽焓,kJ/kg 。 K N H

汽轮机原则性热力系统资料

汽轮机原则性热力系统 根据热力循环的特征,以安全和经济为原则,将汽轮机与锅炉本体由管道、阀门及其辅助设备连接起来,组成发电厂的热力系统。汽轮机热力系统是指主蒸汽、再热蒸汽系统,旁路系统,轴封系统,辅助蒸汽系统和回热抽汽系统等。下面着重介绍主蒸汽系统及旁路系统。 第一节主蒸汽及再热蒸汽系统 锅炉与汽轮机之间的蒸汽管道与通往各用汽点的支管及其附件称为主、再热蒸汽系统。本机组的主蒸汽及再热蒸汽采用单元制连接方式,即一机一炉相配合的连接系统,如图3-1所示。该连接方式结构简单、阀门少、管道短而阻力小,便于自动化的集中控制。 一、主蒸汽系统 主、再热蒸汽管道均为单元双—单—双管制系统,主蒸汽管道上不装设隔断阀,主蒸汽可作为汽动给水泵及轴封在机组启动或低负荷时备用汽源。 主蒸汽从锅炉过热器的两个出口由两根蒸汽管道引出后汇合成一根主蒸汽管道送至汽轮机,再分成两根蒸汽管道进入2只高压自动主汽阀、4只调节阀,然后借助4根导汽管进入高压缸,在高压缸内做功后的蒸汽经过2只高压排汽逆止阀,再经过蒸汽管道(冷段管)回到锅炉的再热器重新加热。经过再热后的蒸汽温度由335℃升高到538℃,压力由3.483MPa 降至3.135MPa,由于主、再热蒸汽流量变化不多蒸汽比容增加将近一倍。再热后蒸汽由两根蒸汽管道引出后汇合成一根再蒸汽管道送至汽轮机,再分成两根蒸汽管道经过2只再热联合汽阀(中压自动主汽阀及中压调节阀的组合)进入中压缸。 它设有两级旁路,I级旁路从高压自动主汽阀前引出,蒸汽经减压减温后排至再热器冷段管,采用给水作为减温水。II级旁路从中压缸自动主汽阀前引出,蒸汽经减压减温后送至凝汽器,用凝结水泵出口的凝结水作为减温水。 带动给水泵的小汽轮机是利用中压缸排汽作为工作汽源(第4段抽汽,下称低压蒸汽)。由于低压蒸汽的参数随主机的负荷降低而降低,当负荷下降至额定负荷的40%时,该汽源已不能满足要求,所以需采用新蒸汽(下称高压蒸汽)作为低负荷的补充汽源或独立汽源。当低压蒸汽的调节阀开足后,高压蒸汽的调节阀才逐步开启,使功率达到新的平衡。 主蒸汽管道上还接出轴封备用及启动供汽管道。 主蒸汽管道设计有通畅的疏水系统,在主蒸汽管道主管末端最低点,去驱动给水泵的小汽轮机的新蒸汽管道的低位点,以及靠近给水泵汽轮机高压主汽阀前,均设有疏水点,每一根疏水管道分别引至凝汽器的热水井。 主蒸汽管道主管及支管的疏水管道上各安装一只疏水阀,不再装设其它隔离阀。疏水阀在机组启动时开启,排除主蒸汽管道内暖管时产生的凝结水,避免汽轮机进水,并可加速暖管时的温升。待机组负荷达到10%时,疏水阀自动关闭;当汽轮机负荷降至10%时或跳闸时,疏水阀自动开启,也可以在单元控制室手动操作。 冷再热蒸汽管道从汽轮机高压缸排汽接出,先由单管引至靠近锅炉再热器处,再分为两根支管接到再热器入口联箱的两个接口上。在再热蒸汽冷段管道上接出2号高压加热器抽汽管道。汽轮机主汽阀及调节汽阀的阀杆漏汽、高压旁路的排汽均送入本系统。

大型汽轮机组的轴加疏水系统类型及目前水封改造供选择的方案

汽轮机组轴加疏水系统改造方案 摘要 以国内大型机组为例,以运行实践为基础,探讨了大型汽轮机组轴封加热器(以下简称轴加)及其热力系统的设计和运行问题,认为目前情况下,平东公司轴加疏水单级U型管水封疏水必须进行改造,对存在的问题进行了分析,提出了改造的设计要点。 一、概述 平东热电有限公司#6、#7汽轮机为哈尔滨汽轮机厂生产的C140/ N210-12.75/535/535/0.981型超高压、一次中间再热、两缸两排汽、采暖用可调整抽汽、供热凝汽式汽轮机,自试运以来,两台机组真空系统严密性均较差,#6汽轮机最好时达到1.4kPa/min左右,#7汽轮机为3.5kPa/min左右,严重影响机组的经济性。 #6、#7机设计上轴加疏水水封采用多级水封方式,根据以往其它机组的运行经验,多级水封运行中易发生水封破坏现象,公司2006年10月对轴加疏水水封进行改进,改为单级水封。 U 型水封管通常应用在电厂低压加热器轴封蒸汽冷却器等设备内的凝结疏水至凝汽器的管路上,它是依靠介质在U型水封管进口与出口之间的压力差来进行疏水的U 型水封管,分为单级和多级,在电厂实际应用中多级水封管应用较多,平东公司改造后的轴封疏水U 型运行一直不稳定,存在不少问题,针对这些问题进行分析和提出改造方案。 二、U型水封管在实际运行中遇到的问题 目前国内设计轴加疏水水封不论是单级还是多级水封存在运行不稳定问题,易发生水封破坏现象,并且多是运行中临时对轴加水封进水和回水阀门进行调节。 一般情况下,主要是由于负压侧沿程阻力和局部阻力较小,难以抵消真空的影响,在U型套桶管里未能建立起水封,致使空气随疏水一同进入凝汽器中,使得真空恶化。因此,在U型套桶管的出口加装一个调节阀,使疏水在U型套桶管里流动会产生节流,增大沿程阻力和局部阻力,强制建立起水封,改善真空。 如果U型套桶管直通凝汽器或者设计不当,将无法建立起水封,从轴封回收的蒸汽(含有空气)冷却后空气随疏水一同进入凝汽器,影响凝汽器真空。 目前机组加减负荷较频繁轴封蒸汽冷却器进汽量经常变化,使冷却器的水位无法维持在一定范围内,而导致其U型水封管内的疏水量经常变化,U 型水封管多次发生失水现象,当U 型管水封管失水时,轴封蒸汽冷却器的汽侧就直接与凝汽器相通,机组真空就会急剧下跌,需要运行人员对轴加进行注水,并且当注水量大时,遇突然发生机组跳闸造成轴加电机烧损,多次影响机组的安全经济运行。 在U型套桶管的出口处加装调节阀,起到了增大沿程阻力和局部阻力的作用,在U型套桶管里形成水封,保持了两端的压力差。但这并非长久之计,主要问题是担心轴加泄漏,轴加汽侧由于阻力较大(调节阀的节流作用),轴加疏水及泄漏的凝结水很难较快地排入凝汽器,轴加汽侧水位升高很快,疏水会沿着轴封汽管道经汽轮机高、低压汽封进入汽轮机,这样将会产生严重的后果,一则疏水会对汽轮机的大轴起着冷却作用,使大轴产生热应力或产生热弯曲;二则疏水进入汽轮机后会产生水击作用,严重时会打坏汽轮机的叶片。其次需要对轴加进行注水,并且当注水量大时,遇突然发生机组跳闸造成轴加电机烧损,因此,电厂在条件允许的情况下,应彻底进行改造,消除隐患。 一般由于设计精度问题,在轴加U型套桶管出口处加装调节阀,满负荷时逐渐关小调节阀,凝汽器真空随之变化,调节阀关闭到20%开度时,真空就应正常。但是目前平东公司其调节阀开度

汽轮机600MW汽轮机原则性热力系统设计计算

600MW汽轮机原则性热力系统设计计算 目录 毕业设计............... 错误!未定义书签。内容摘要 (3) 1.本设计得内容有以下几方面: (3) 2.关键词 (3) 一.热力系统 (4) 二.实际机组回热原则性热力系统 (4) 三.汽轮机原则性热力系统 (4) 1.计算目的及基本公式 (5) 1.1计算目的 (5) 1.2计算的基本方式 (6) 2.计算方法和步骤 (7) 3.设计内容 (7) 3.1整理原始资料 (9) 3.2计算回热抽气系数与凝气系数 (9) 回热循环 (10) 3.2.1混合式加热器及其系统的特点 (10) 3.2.2表面式加热器的特点: (11) 3.2.3表面式加热器的端差θ及热经济性 (11) 3.2.4抽气管道压降Δp j及热经济性 (12) 3.2.5蒸汽冷却器及其热经济性 (12)

3.2.6表面式加热器的疏水方式及热经济性 (13) 3.2.7设置疏水冷却段的意义及热经济性指标 (14) 3.2.8除氧器 (18) 3.2.9除氧器的运行及其热经济性分析 (19) 3.2.10除氧器的汽源连接方式及其热经济性 (19) 3.3新汽量D0计算及功率校核 (23) 3.4热经济性的指标计算 (26) 3.5各汽水流量绝对值计算 (27) 致谢 (32) 参考文献 (33)

600MW汽轮机原则性热力系统设计计算 内容摘要 1.本设计得内容有以下几方面: 1)简述热力系统的相关概念; 2)回热循环的的有关内容(其中涉及到混合式加热器、表面式加热器的特点,并对其具有代表性的加热器作以细致描述。表面式加热器的端差、设置疏水冷却段、蒸汽冷却段、疏水方式及热经济性、除氧器的运行及其热经济性分析、除氧器的汽源连接方式及其热经济性) 3)原则性热力系统的一般计算方法 2.关键词 除氧器、高压加热器、低压加热器

汽轮机组效率及热力系统节能降耗定量分析计算

关于修订管理标准的通知 汽轮机组主要经济技术指标的计算 为了统一汽轮机组主要经济技术指标的计算方法及过程,本章节计算公式选自中华人民共和国电力行业标准DL/T 904—2004《火力发电厂技术经济指标计算方法》和 GB/T 8117—87《电站汽轮机热力性能验收规程》。 1 凝汽式汽轮机组主要经济技术指标计算 1. 1汽轮机组热耗率及功率计算

a. 非 再热机组试 验热耗率: G0 H kJ/kWh G H HR fw fw N t 式中G0 ─主蒸汽 流量,kg/h;G fw ─给 水流量,kg/h;H 0─ 主蒸汽焓值,kJ/kg;H fw ─给水焓值, kJ/kg; N t ─实测发电机端功率,kW。 修正后(经二类)的热耗率: kJ/kWh HQ HR C Q 式中C Q ─主蒸汽压力、主蒸汽温度、汽机背压对热耗的综合修正系数。修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、汽机背压对功率的综合修正系数。

b. 再热机 组试验热 耗率:: kJ/kWh G 0 H 0G fw H fw G R (H r H 1)G J (H r H J ) HR N t 式中G R ─高压缸排 汽流量,kg/h;G J ─再热 减温水流量,kg/h;H r ─ 再热蒸汽焓值,kJ/kg;

关于修订管理标准的通知 H1 ─高压缸排汽焓值,kJ/kg; H J ─再热减温水焓值,kJ/kg。 修正后(经二类)的热耗率: kJ/kWh HQ HR C Q 式中C Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽机背压对热耗的综合修正系数。 修正后的功率: N N t kW p Q 式中K Q ─主蒸汽压力、主蒸汽温度、再热蒸汽温度、再热压损、再热减温水流量及汽机背压对功率的综合修正 系数。 1. 2汽轮机汽耗率计算 a. 试验汽耗率: kg/kWh SR G0 N t b. 修正后的汽耗率: SR G c kg/kWh

N300MW汽轮机组热力系统分析--TMCR-毕业设计

N300MW汽轮机组热力系统分析- TMCR 南京工程学院本科生毕业设计开题报告 2010 年月日

节能是我国能源战略和政策的核心。火电厂既是能源供应的中心也是资源消耗及环境污染和温室气体排放的大户,提高电厂设备运行的经济性和可靠性,减少污染物的排放,已经成为世人关注的重大课题。 热经济性代表了火电厂的能量利用、热功能转换技术的先进性和运行的经济性,是火电厂经济性评价的基础。合理的计算和分析火电厂的热经济性是在保证机组安全运行的基础上,提高运行操作及科学管理水平的有效手段。火电厂的设计、技术改造、运行优化以及目前国内外对大型火电厂性能监测的研究、运行偏差的分析等均需对火电厂的热力系统作详细的热平衡计算,求出热经济指标作为决策的依据。因此电厂的热力系统计算是实现上述任务的重要技术基础,直接反映出全厂的经济效益,对电厂的节能具有重要意义。 本文主要设计的是300MW凝汽式汽轮机。先了解了汽轮机及其各部件的工作原理。再设计了该汽轮机的各热力系统,并用手绘了各系统图。最后对所设计的热力系统进行经济性指标计算,分析温度压力等参数如何影响效率。本设计采用了三种计算方法——常规计算方法、简捷计算、等效热降法。 关键词:节能、热经济性分析、热力系统

Energy is our county’s energy strategy and policies. Thermal Power Plant is the center of energy supply and is large of resource consumption and environmental pollution and greenhouse gas emissions. Improving power plant equipment operation and reliability of economic and reducing emissions has become a major issue of world attention. Represents the thermal power plant economics of energy use, advanced thermal conversion technology functions and running economy is the thermal power plant based on economic evaluation. Rational calculation and analysis of the Thermal Power Plant is to increased operating and running an effective means of scientific management based on ensure the safe operation of generating units. Power plant design, technological innovation, optimization and operation of large thermal power plants at home and abroad Performance Monitoring, running deviation analysis require thermal power plant system on a detailed calculation of heat balance,then,calculate heat economic indicators as the basis for decision-making. Thus the plant system calculation is an important technique to achieve these tasks based onand it is a direct reflection of the economic benefits of the whole plant. It is important to energy power plant This article is designed to 300MW Condensing Steam Turbine. I first understand the components of the turbine and its working principle. I re-design of the turbine of the thermal system and hand-drawn map of each system. Finally, I designed thermal system on the economic index calculation, and analyze how

相关文档
相关文档 最新文档