文档库 最新最全的文档下载
当前位置:文档库 › 预热器堵塞的原因分析及预防处理措

预热器堵塞的原因分析及预防处理措

预热器堵塞的原因分析及预防处理措
预热器堵塞的原因分析及预防处理措

预热器堵塞的原因分析及预防处理措施

一、结皮堵塞

预分解窑生产工艺线普遍存在着一个常见问题,就是窑尾系统——预热系统与分解炉结皮、积料、堵塞。预热系统一旦发生结皮堵塞,热工制度打乱,严重影响水泥的生产质量,且处理结皮堵塞,恢复生产比较困难,更有甚者,因堵塞塌料而造成人身伤亡。如何正确理解、严肃对待这一客观存在的现象,认识其将给生产带来的种种危害,切实通过一些必要的控制手段和一定的工艺处理措施,科学地进行预测与防范,是保障生产顺利进行,确保工艺设施安全,发挥系统优势的关键所在。针对这些问题,我搜集了水泥生产线的预防解决措施,以期望能够在以后的工作中有所帮助。

结皮的形成

预分解窑最易发生结皮的部位是窑尾烟室、下料斜坡、窑尾缩口、最低两级筒的下料管、分解炉内等处。结皮使通风通道的有效截面积减小,阻力相应增大,影响系统通风,使主排风机拉风加大。结皮塌落时,还容易发生堵塞。

二、堵塞的症状、多发部位

2.1 窑尾系统堵塞症状

预热器发生堵料时在中控室和现场都能判断。正常生产时,双系列预分解窑从中控操作画面上看预热器系统各控制参数是很有规律的:从上至下负压逐级降低,温度逐级升高,且同级两列相差很小。但当某列发生堵料时:

(1)以堵塞部位为界,堵塞部位以上多处负压值急剧上升;堵塞部位以下出现正压; 捅料孔、排风阀等处有冒灰现象发生。

(2)窑头负压不足,严重时会有正压产生,且从观测孔等处往外冒火。

(3)窑尾排风机、一级筒出口、分解炉出口及窑尾等多处温度异常。

(4)被堵预热器的锥体负压急剧下降,甚至达到或接近零压。

(5)下料温度异常下降。

(6)进入窑内的物料减少。

通常,上述这些症状中有3种或3种以上同时出现时,就说明窑尾系统已经产生堵塞,应及时采取措施。

预分解系统内很多部位都可能发生堵塞,但主要发生在五级和四级旋风筒内;各级下料管及翻板阀内,若不及时处理,有时能从下料管堵到预热器锥体,甚至整个旋风筒;再是分解炉及其斜坡,连结管、变型或变径管等处。

2.2 堵塞时间

从时间上看,堵塞大部分发生在点火后不久,窑操作不正常,系统热工制度不稳定等情况下。另外,系统事故多,频繁开停窑时,由于风料搭配不当,煤粉不完全燃烧及其它外因,也很容易造成堵塞。

2.3 堵塞原因

造成堵塞的因素很多且复杂,因此必须从工艺、原燃材料、设备、热工制度、操作与管理上去认真细致的分析研究。根据一些厂的生产经验,造成结皮堵塞的主要原因大致有以下几方面。

3.1 结皮造成的堵塞

结皮是高温物料在烟室、上升管道、各级(主要为五、四级)旋风筒锥体内壁上粘结的一层层硬皮,严重的地方呈圈状缩口。阻碍了物料的正常运行,粘结和烧熔交替,使皮层数量和厚度渐渐增加,影响窑内通风、改变了预热器内物料与气流的运行速度和方向,最后导致堵塞。造成这种现象的主要原因有三:(1)回灰的影响

窑尾袋收尘(含增湿塔)收下来的物料,已经经过高温物理化学反应,这种物料重新进入预热器时,很容易造成物料及早分解,提前出现液相,来不及到达窑内,在预热器内形成熔融状态,粘附在旋风筒内壁上,形成结皮,严重时导致堵塞。这种情况主要在窑尾系统温度偏高,回灰掺入不均匀或掺入量过大时发生。因此,那些旋风收尘器收尘效率不高,袋收尘收下回灰又未进生料储存均化系统,而直接从提升机等入窑的,更应加强操作。

(2)有害元素的影响

原燃料中有害元素K、Na、Cl、S等含量高时,大量出现的碱便会从烧成带高温区挥发出来,进入气相与其它组分发生反应,首先与氯和二氧化硫反应,随气流带至窑尾系统,温度降低后,以硫酸盐和氯化物的形态冷凝在原料上。这种沉淀物在较低温度下出现熔融相,形成微细熔体,然后发生固体颗粒的固结。它们通过多次高温挥发,低温凝聚循环和附着作用,粘附在预热器、分解炉及联接管道内形成结皮,若处理不及时,继续循环粘附,最终导致堵塞。

(3)局部高温造成结皮堵塞

窑尾局部高温, 这是形成结皮的关键因素。窑尾系统中如果产生局部高温, 一方面促进生料和燃料中有害组分的挥发及冷凝循环, 并使内循环发生的区域进一步扩大; 另可能使液相提前出现, 把生料粘附在衬料的内壁而形成结皮。产生局部高温的原因, 主要有如下两方面。

a.煤粉的不完全燃烧。窑头或分解炉中的煤粉由于多种原因( 如燃煤的灰分大、设备超负荷运转、分解炉结构不合理) 燃烧不完全时, 就可能到窑尾或低级旋风筒中去燃烧,从而产生局部高温。导致煤粉进入预热器内的渠道有三:一是由分解炉至末级旋风筒, 再由上升管道上移;二是由分解炉经次末级旋风筒下料管失灵的翻板阀上窜;三是因窑内煤粉燃烧不完全,被带至窑尾和窑尾废气一起进入预热器内,局部高温, 再加有害成分作用, 就很容易形成高温结皮堵塞。

b.喂料量波动。喂料量忽大忽小时, 很容易打乱预热器、分解炉和窑的正常工作;而且操作具有滞后性, 往往不能随喂料量的变化及时加减燃量。因此很容易出现料小不减煤甚至短期断料不减煤状况, 由此造成窑尾系统温度偏高而形成结皮。

3.2 漏风造成的堵塞

漏风是窑外分解窑的一大克星,预分解系统的漏风不仅降低旋风筒分离效率,增加热耗, 而且还是造成预热器系统堵塞的一个重要原因。因当预热器漏进冷风时, 物料温度和分解率会降低, 为维持生产系统排风必须加大, 因而废气量增大, 循环负荷加大, 导致入窑生料温度下降, 能耗上升;而且冷风与热物料接触, 很容易使热物料冷凝而粘附在系统的内壁而产生结皮;此外被带到窑尾或预热器中的煤粉遇到新鲜冷风, 燃烧速度加快, 会产生局部高温而形成结皮。同时,因窑、炉用风比例失调,窑内通风差,导致窑内结圈、结球频繁。

(1)内漏风造成的堵塞

当旋风筒的排灰阀( 也称锁风阀) 因烧坏或失灵时, 下一级旋风筒的热气流会经过下料管通过排灰阀漏入上一级旋风筒内, 这种漏风称为内漏风。

各级预热器下料管的排灰阀关闭不严、烧坏或失灵,不能很好地起到锁风作用,不仅旋风筒收尘效率降低,而且会引起短路、塌料和堵塞。因为下料管排灰阀锁风不严,下一级气体就会从下料管内经过,使预热器内收集下来的物料又重新上升,不能顺利排出,造成内循环。由于下料口处风速高,不达到一定的数量,物料不会沉降,但一旦物料过多具备了沉降的条件,便是一大股落下,造成下料不均,分散状况不好,导致堵塞。

四月下旬五级A系列翻板阀烧坏,造成内漏风,因此五级下料管经常堵塞,四月三十日更换翻板阀后,虽有所好转,但由于密封不严、不灵活,五月三日该处严重堵塞。

(2)外漏风造成的堵塞

外漏风是指从系统外漏入系统内的冷空气。它主要是从各级旋风筒的检查门、下料管排灰阀轴、各联接管道的法兰、预热器顶盖、各测量点等处漏入。旋风预热器内气流运动复杂,加上粉粒粒度分布较宽,使其内部的物料运动更加复杂,随机性较大。若系统密封不好,漏入冷风,改变了物料在预热器内的运动轨迹,降低了其旋转运动速度,离心甩向壁面的离心力降低,部分物料随气流回到上一级,造成物料循环,最终堆积堵塞。另一方面,冷风漏入与热物料接触,极易造成物料冷热凝聚,粘附在预热器筒体壁上,导致结皮或产生大块,卡死下料管或排灰阀造成堵塞。

2.3.3 操作不当造成的堵塞

(1)投料不及时

当分解炉点火,达到投料温度(900℃)时,一定要及时投料,否则会造成系统温度偏高,且因此时料量较小,更易造成结皮。

(2)开停窑时排风量不当。

因故需停料停窑时,排风量不能大辐度减少,否则很容易使物料因风速过小沉积在管内(主要在水平管),造成堆积。重新开窑投料时,开始排风量过小,堆积的物料不能被顺利带走,随着下料量的不断增加,管内物料堆积增多,严重时也会导致堆积堵塞。

(3)下料量与窑速不同步。

窑运转不正常,热工制度不稳定,需预打小慢车或慢转窑时,减料不及时很容易因喂料量与窑速不同步,造成物料在窑尾烟室堆积。这时即使窑仍在运转,但堆积在窑尾的物料不能够很快输送出去,堆积的物料受高温熔融粘附在窑尾烟室内壁,在烟室与窑连接处形成棚料现象,造成烟室及上一级预热器堵塞。

(4)排风量控制不当。

排风量过大时,预分解系统气流速度较高,物料在预热器内被甩向壁面的离心力较大,物料沿壁面旋转下落速度降低,物料与高温气流接触时间相对较长,易粘糊在预热器内壁上,形成从松到实的层状覆盖物,造成堵塞;

当排风量过小时,气流速度降低,难以使料团冲散,形成塌料堵塞,且物料很易滞留在水平连接管内,导致水平管道堵塞。

(5)窑、炉风量分配不均,操作不协调。

操作调节不合理,窑尾缩口闸板开度和入分解炉三次风闸板开度不当时,易导致窑炉风量分布不均匀。如果窑尾缩口风速过低,或分解炉进口风速过低或过

高,都会引起物料在预分解系统内结皮、棚料、塌料、堆积直至堵塞。窑、炉操作不能前后兼顾;协调不好;片面强调窑内通风、系统负压;不适当的追求入窑分解率,两把火配合不好,也易造成高温结皮、积料、塌料、堵塞。

( 6) 窑炉操作不协调。

回转窑和分解炉的操作不能前后兼顾, 片面强调窑内通风或系统负压, 两者很容易造成高温结皮、积料、棚料、塌料堵塞预热器。

( 7) 岗位工责任心不强。

有时由于预热器的自动吹风及温度、压力仪表失灵, 岗位工未能手动喷吹并定时巡回检查、活动各级排灰阀。当预热器出现异常时, 未能及时发现和处理, 导致系统堵塞。

3.4 外来物造成的堵塞

系统的检查门砖镶砌不劳垮落;旋风筒、分解炉顶盖及内衬材料剥落;旋风筒内筒或撒料板烧坏掉下;排灰阀烧坏或转动不灵;检修时耐火砖或铁器等物件留在预热器内未清出时及易造成预热器的机械堵塞。

( 1) 内衬剥落或掉砖的部位通常是预热器平行管道的分料墙、进出口管道和站墙, 预热器顶盖及内筒衬料等处。其主要原因有系统热工制度不稳、冷热交替较频繁; 未留好膨胀缝; 顶盖漏风; 内筒受高温变形导致内衬开裂或在处理结皮时导致内衬同物料结皮一起落入预热器内。

( 2) 旋风筒内筒烧损掉下残片造成的堵塞, 主要发生在最末两级旋风筒, 以末级最为严重。另当该级旋风筒有并列两个时, 若其中一个内筒烧扁, 则并列的另一个旋风筒通过的风和料就相应增大, 平衡被打乱也易导致堵塞。

( 3) 翻板阀本身结构不好, 因高温烤烧而变形,配重不当, 或者因结皮严重, 闪动不灵活甚至卡死而堵塞下料管。

预防与处理

3.1搞好开窑和开窑前的检查

系统检修后,一定要对系统进行详细检查,清理系统内部所有杂物,确认耐火砖等内衬材料是否牢固。开机前应对所有排灰阀进行检查,确认是否灵活或损坏;检查各级排灰阀配重是否合理,防止过轻或过重,造成机械转动不灵或密封不好,形成漏风,引起堵塞。正常生产时排灰阀微微颤动,即为配重合理。开窑时应及时检查所有检查门、法兰、测孔、排灰阀轴等处是否密封,防止因外漏风造成的堵塞。发现问题及时处理,不可等到“下一次”。温度升高,可投料时,应及时投料。投料前应活动各排灰阀,开通吹风装置,以防锥体积料。

3.2加强操作

正常生产时,应严格操作,保持温度、压力合理分布,前后兼顾,密切协调;操作人员要有良好的责任心和预见性。加减料及时,风煤料配合合理,喂料窑速同步;勤检查、勤联系、勤观察、勤活动。在中控操作中,当发现锥体压力波动较大(300Pa~500Pa)时,或压力逐渐减小时, 应及时通知巡检工或岗位工快速到达该部位,活动翻板阀,反吹风,用锤敲震,高压水枪清理,使积料及时下走;当负压低于某个数值(如- 300 Pa)时, 应马上减料或止料, 待现场检查证明没有堵塞或仅仅是压力表显示有问题,负压管堵塞等,才准许继续投料生产;当压力显示不正常,特别是突然间变小时(不一定为0),应认为是现场出了问题,不能心存侥幸,

要及时进行减料或止料或止煤等一系列操作。因为5000t/d熟料生产线,巡检工也常只有一名,巡检路线长,发现压力不正常到巡检工到达该部位检查堵塞时,有时长达20min, 对于投料量300~350t/h的双系列悬浮预热器, 堵的部位就可能已经很高了。

3.3把好原、燃材料关,合理配料,提高煤粉质量

对原、燃材料有害成分严加控制,一般要求生料(Na2O+K2O)<1.5%,氯含量Cl<0.02%,硫碱比控制在0.85左右。调整熟料率值,优化配料,液相量控制在24~27%较适宜;采用两高一中配料方案,使得烧成物软而不结,硬而不散。控制好煤粉细度和水分,要求降低煤粉细度到10%以下,降低煤粉水分到 1.0%左右,避免高硫煤和劣质煤。

3.4完善工艺设施,综合治理,消除隐患

经常出现堵塞的生产线,应对整个工艺过程进行诊断,找出各种可能导致结皮的因素,有效治理。

(1) 采用新型耐火材料,即在容易结皮的部位使用抗结皮的耐火材料。

(2) 控制窑尾烟室和分解炉各级预热器出口温度等,防止局部过热。防止炉内不完全燃烧和还原气氛形成, 当料子难烧, 不可硬烧和控制过高的分解炉及五级下料物料温度。

(3) 在频繁结皮容易堵塞或者曾发生过堵塞的部位,合理增设捅料孔、空气炮,安装监测预警装置,巡检或岗位工定期清理结皮等。在各级预热器及分解炉工作面,配备清堵的气管,钢钎,铁锤。停窑时,对预热器系统检查,修补浇注料脱落处,检查处理内筒挂片,清理平行管道积灰, 做好各级预热器及翻板阀漏风点的密封,确保系统工艺稳定。

生产中,一旦发现堵塞,应尽快查出原因及时处理,以防结硬块,增大处理难度。

3.5操作处理

中控窑操作员, 在确认堵塞后, 立即停止分解炉喂煤并减窑头喂煤, 慢窑, 视堵塞情况, 决定是否止窑头喂煤, 并及时报告相关领导和现场负责人。迅速组织清堵人员、工器具到达现场, 制定清堵方案, 处理越快, 越容易清堵, 如物料温度下降结块, 则更难处理。

(1)捅堵可用高压空气吹或高压水枪喷射。另外, 可采用高温控制爆破技术, 捅出一个小孔后, 装入加工处理后的药卷、雷管, 实施高温环境下爆破,效果也很好, 但需要专业爆破技术人员实施。

(2)清堵时, 注意先下后上的原则, 使捅下的物料及时排走, 注意安全, 从下到上依次开孔, 依次作业, 只准单孔作业, 并保证捅堵人员的安全通道, 任何人不准正对捅料孔, 现场负责人要安排好作业人员, 有序进行, 现场要忙而不乱, 防止塌料喷出伤人。窑尾排风机、高温风机、窑头引风机要连续拉风, 保持较高负压。

(3)清堵完毕后, 要对系统进行检查, 确保各级旋风筒锥体部位、翻板阀等处干净完好, 确保所有人孔门、捅料孔密封严密, 各处压力温度恢复正常。

3.6 高压水枪清堵

高压水枪清堵是简便合理有效的方法。但是,这种方法也有一定的技术含量,许多岗位工并不注重操作,频繁清堵,造成系统气氛紊乱,损伤衬料等。

高压水枪是使40MPa高压水柱射入850~1050℃左右的结皮物料内部,在高

温物料内水骤然汽化而产生强烈爆炸,被击中的部分物料全被震动而垮落。爆炸水柱的射入深度与结皮厚度匹配,其结果是结皮物料因此而垮落,而上升烟道衬料则得到保护。爆炸的喷射角又使物料由于松软而不会被大面积冲击垮落而引起设备、人员伤害事故。

使用高压水枪清理结皮要掌握好时机。过早清理会导致衬料损伤或压力失衡引起分解炉垮料等;过晚会给产量造成严重损失。另外,水枪压力也是一个重要因素。压力过低,清堵效果有限,就得频繁操作;压力过高则会击跨衬料,造成局部“红斑”;随着剩余结皮的减少,压力也应降低。再者,水枪扳机每次抠住1~2秒即可,清堵前必须找准部位。

引起窑外分解窑窑尾系统结皮、积料、堵塞的因素很多且十分复杂,有单项独处,有多项多处,要操作好这种窑必须加强管理、加强操作。因引起预分解系统堵塞的许多原因也会导致窑问题,所以要时刻与窑系统结合起来,合理调控窑头窑尾两把火,避免造成系统通风不畅,给生产带来严重影响。

综上所述,回转窑及预热器讲究一个“稳”字,稳风、稳料、稳转、稳定的生产秩序,而且前述四项越稳,生产就越稳很;很多问题如不及时解决就会导致停窑或损坏设备等严重后果。但是由于中控主要追求产量,而化验室的责任在于控制质量,中控人员遇到问题也经常以拖到交班为目的,很多问题不能及时有效的解决。从各方面考虑,我还是认为为避免或减少预热器结皮,化验室应该合理调整熟料率值,严格控制入窑生料的有害成分和煤粉质量,提高入窑生料的均匀性;现场人员积极检查检修,密切配合;窑操作员应该提高操作水平,积累操作经验,精心操作,把握好风、煤、料和窑速的合理匹配,稳定烧成系统的热工制度,针对系统出现的问题分析原因,车间要迅速采取针对性的解决措施,这样预分解窑内的诸多问题是可以避免或迅速解决的。

在生产正常的时候,有人认为可以松一口气,其实这是才是培训干部、员工,准备备件,整理工器具的大好时机,一旦出现故障,就可立即准确判断,及时处理,从而使窑长期处于稳定状态,运转率自然而然地就上来了。

时间仓促,不妥之处,请多提宝贵意见。

2013年5月13日

预热器旋风筒堵塞清理安全操作规程通用版

操作规程编号:YTO-FS-PD605 预热器旋风筒堵塞清理安全操作规程 通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

预热器旋风筒堵塞清理安全操作规 程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 目的: 用于指导预热器旋风筒异常堵塞清理作业,确保作业安全,避免伤害事故发生。 2 适用范围: 制造分厂预热器岗位 3 引用标准: 《劳动安全卫生国家标准》 4.作业中的安全风险: 4.1空气炮所处状态,防止意外工作。 4.2被飞溅出来的物料烫伤。 4.3确保通道(包括逃生线路)畅通。 4.4确保所有区域有足够的照明。 4.5清理现场可能产生灰尘的料堆如预热器框架各级平台及篦冷机附近。 4.6周遍及该级旋风筒以下平面的电缆防止被烫坏 5.堵塞判断与消除:

5.1旋风筒锥部压力上升趋于0。 5.2分解炉及窑尾温度急速上升。 当出现上述现象时中控操作员应立即通知预热器工确认是否出现堵塞。 5.3如果确认出现堵塞执行以下程序。 5.3.1操作员释放空气炮3~5次,如果无效,立即止料,止尾煤(送煤风机不停),止头煤,停窑开启辅传转窑,并通知相关人员(值班主任,回转窑巡检工,质控部),减拉风(高温风机转速减至30%,风门关小到50%,保证预热器系统负压以便进行安全清堵作业),开启点火烟囱帽,保证预热器出口温度<400℃。 5.3.2调尾排风机转速和风门,保持高温风机出口压力在-0.3~-0.5kpa,并通知生料磨和煤磨操作员。 5.3.3篦冷机篦速减至1~1.5次/分,降低篦冷机4,5,6室冷却风机转速到0,2,3室冷却风机风门开度50%,1室冷却风机风门开度20%,调控头排风机转速,保持窑头罩压力在-20Pa。 5.3.4停止窑筒体冷却风机。 5.3.5 20分钟后停篦冷机,间断运转(每隔10分钟启动一次)关闭2,3室冷却风机风门,调控头排风机转速,保持窑头罩压力在-20Pa。 6.清堵作业程序:

空气预热器堵灰及腐蚀的原因及预防措施

空气预热器堵灰及腐蚀的原因及预防措施 【摘要】回转式空气预热器在运行中常见的问题是堵灰及腐蚀,堵灰及腐蚀严重影响锅炉运行的安全性及经济性。本文针对我厂#4炉空气预热器在运行中存在的问题,并就其中原因作出简要的分析,提出几点预防建议措施,以供同行参考。【关键词】空气预热器、堵灰、腐蚀 一、概述 湛江电力有限公司#4机组装机容量为300MW,汽轮机为东方汽轮机厂制造的亚临界、中间再热、两缸两排汽、凝汽式汽轮机,型号为N300-16.7/537/537/-3(合缸),采用喷嘴调节。锅炉DG1025/18.2-Ⅱ(5)为东方锅炉厂制造的亚临界压力、中间再热、自然循环单炉膛;全悬吊露天布置、平衡通风、燃煤汽包炉。锅炉配备两台型号为LAP10320/3883的回转式三分仓容克式空气预热器。空气预热器还配有固定式碱液冲洗装置和蒸汽、强声波吹灰装置,在送风机的入口装有热风再循环装置。 二、空气预热器运行中存在的主要问题 1 空气预热器堵灰 运行中,首先发现一次、二次风压有摆动现象,随后摆幅逐渐加大,且呈现周期性变化。其摆动周期与空气预热器旋转一周的时间恰好吻合,这说明空气预热器有堵塞现象。这是因为当堵塞部分转到一次风口时,一次风压开始下降;当堵塞部分转到二次风口时,二次风压又开始下降,在堵塞部分转过之后,风量又开始增大。#4锅炉燃烧较不稳定,空气预热器堵灰时,由于风量的忽大忽小,炉膛负压上下大幅度波动,严重影响锅炉燃烧的稳定性。 2 空气预热器腐蚀 空气预热器堵灰及腐蚀是息息相关的。空气预热器堵灰时,空气预热器受热面由于长期积灰结垢,水蒸汽及SO3容易黏附在灰垢上,加重了空气预热器的腐蚀;而空气预热器腐蚀时,受热面光洁度严重恶化,加重了空气预热器的积灰。空气预热器堵灰及腐蚀时,运行中表现出空气预热器出口一、二次风温降低,排烟温度升高,锅炉效率降低。

锅炉SCR烟气脱硝空气预热器堵塞原因及其解决措施

锅炉SCR烟气脱硝空气预热器堵塞原因及其解决措施 截至2012年4月,建成、在建及签订合同的火电机组锅炉烟气脱硝装置约650台装机容量共计3.8亿kW,其中投运SCR装置的机组容量超过1.0亿kW。这些机组在安装SCR装置时,对部分空气预热器(空预器)换热元件进行了改造,并配置了高效吹灰器。在已投运烟气脱硝装置的机组中,改造过的和尚未改造的空预器均出现过因硫酸氢氨堵塞而造成烟侧阻力增加的现象,部分空预器改造后还出现了排烟温度升高,炉效降低的情况。 1空预器硫酸氢氨堵塞 燃煤锅炉炉膛内烟气中的SO2约有0.5%~1.0%被氧化成SO3。加装SCR系统后,催化剂在把NOx还原成N2的同时,将约1.0%的SO2氧化成SO3。在空预器中/低温段换热元件表面,SCR反应器出口烟气中存在的未反应的逃逸氨(NH3)、SO3及水蒸气反应生成硫酸氢氨或硫酸氨:NH3+SO3+H2O→ NH4HSO4 2NH3+SO3+H2O→ (NH4)2SO4 当烟气中的NH3含量远高于SO3浓度时,主要生成干燥的粉末状硫酸氨,不会对空预器产生粘附结垢。当烟气中的SO3浓度高于逃逸氨浓度(通常要求SCR出口不大于3μL/L)时,主要生成硫酸氢氨(ABS),生成规律见图1。 在150~220℃温度区间,ABS是一种高粘性液态物质,易冷凝沉积在空预器换热元件表面,粘附烟气中的飞灰颗粒,堵塞换热元件通道,增加空预器阻力并影响换热效果。 硫酸氢氨造成的堵灰清除比较困难,严重时需停炉进行离线清洗。为降低硫酸氢氨的影响,目前主要从空预器本体改造或者脱硝系统氨逃逸控制两方面采取措施。

2空预器本体改造 2.1改造措施 空预器烟侧进出口温度范围约110~400℃,涵盖了高粘性硫酸氢氨的生成温度区间。为了应对硫酸氢氨的影响,空预器采取了以下改造措施。 (1)传统空预器元件分为高、中、低温3段,冷段高度约300mm,主要为了防止硫酸低温腐蚀。当硫酸氢氨温度区间跨越2层换热元件时,接缝处的硫酸氢氨吸附飞灰结垢搭桥现象更加严重。为此,需合并传统的冷段和中温段,将换热元件改为2段,冷段高度加大到约800~1200mm,涵盖机组不同负荷下硫酸氢氨的生成温度范围,保证全部硫酸氢氨在冷段完成凝结和沉积。 (2)空预器冷段元件较高,元件下部烟气温度较低,易受到烟气中的酸结露低温腐蚀,造成元件表面锈蚀龟裂,加剧硫酸氢氨粘附挂灰。为提高冷段元件的表面光洁度和防腐蚀能力,通常采用高强度低合金考登钢材质、表面镀搪瓷或者表面使用硅作涂层。根据国外经验[2],搪瓷镀层能显著降低硫酸氢氨的结垢速率,但如镀层因加工质量而损裂,将不利于防止硫酸氢氨的吸附。SCR空预器冷段采用何种型号的换热元件,主要受到煤中硫含量、入口烟气中SO3浓度、入口烟气O2浓度、冷段综合温度水平等因素的综合影响。根据国外某公司的经验(图2),煤中硫含量小于1.75%且冷段综合温度大于138℃时,冷段可采用考登钢材质。 (3)加装SCR系统后,空预器冷段换热元件通常采用局部封闭、高吹灰通透性的波形(如FNC或DNF)替代倾斜的双层皱纹形,使元件表面沉积的飞灰易于被吹灰器清扫。 (4)空预器冷段换热元件即使采用镀搪瓷元件,如果没有有效的吹灰清洗装置相配套,同样会发生严重的堵灰。目前,空预器冷段通常配置回转式双介质高能量射流吹灰器,正常运行过程中,采用高压蒸汽吹扫,当空预器烟侧阻力超过设计值的50%时,投运高压水冲洗。冲洗主要有离线和在线2种方式,前者是在保持60%左右机组负荷时,将单侧空预器解列隔离进行高压水冲洗,完成后采用同样方式冲洗另一台空预器;后者是在机组满负荷或部分负荷下,对任一台运行中的空预器进行高压水冲洗。高压水冲洗时,水压达10MPa以上,水量小于70kg/min,对烟气成分或烟气温度影响甚微。

空预器堵灰原因分析及防范措施

仅供参考[整理] 安全管理文书 空预器堵灰原因分析及防范措施 日期:__________________ 单位:__________________ 第1 页共6 页

空预器堵灰原因分析及防范措施 在企业中为提高经济效益,做到节能减排,提高锅炉热效率,以充分利用烟气余热,降低排烟温度,提高锅炉热效率,工业锅炉的尾部都加装了空气预热器。但是作为锅炉尾部的空气预热器,通常是含有水蒸汽和硫酸蒸汽的低温烟气区域,工作条件比较恶劣,容易出现低温腐蚀和堵灰,从而影响锅炉安全运行。我们采用了当今先进的热管技术对空预器进行了改造,彻底解决了这一问题。 腐蚀机理 造成锅炉尾部受热面低温腐蚀的原因有两点:一是烟气中存在着三氧化硫;二是受热面的金属壁温低于烟气中的酸露点温度。 锅炉燃料中或多或少的都含有硫。当燃用含硫量较多的燃料时,燃料中的硫份在燃烧后,大部分变成二氧化硫,在一定条件下其中的少部分进一步氧化成三氧化硫气体。三氧化硫气体与水蒸汽能结合成硫酸蒸汽,其凝结露点温度高达120℃以上,露点温度越高,烟气含酸量愈大,腐蚀堵灰愈严重。当空气预热器管壁温度低于所生成的硫酸露点时,硫酸就在管壁上凝结而产生腐蚀,叫做低温腐蚀(见图1)。金属壁面被腐蚀的程度取决于硫酸凝结量的多少,浓度的大小和金属壁面温度的高低。硫酸象一层胶膜,一面粘在管壁上腐蚀,一面不断粘着烟灰,形成多种硫酸盐,并逐渐增厚,这就是低温式结渣。 煤中含硫量的多少,影响锅炉排烟温度的选取。同时,鉴于对锅炉排烟热损失与防止尾部受热面低温腐蚀等因素的综合考虑,目前,装有空气预热器的锅炉设计排烟温度一般为160~190℃。事实上,由于某些单位使用蒸汽时负荷变化较大,或长期低负荷运行,引起操作不当,增加大量过剩空气;设备失修,不及时清灰等原因而造成排烟温度长期低 第 2 页共 6 页

预热器清堵安全操作规程

预热器清堵安全操作规程 流程风险分析安全要点严禁事项防护用品应急措施 作业前准备1.1、巡检作业时必须穿戴好个人劳 保用品,同时穿好防火服、防烫鞋、 防护面罩,必要时系好安全带,检查 安全绳是否牢固。 清堵作业前必须办理危险作业申请 1.2、清料时与中控室取得联系,维持系统 负压。 1.3、清料前现场关闭所有气源,切断空气 炮控制电源、气源,并释放空气炮贮气罐 中高压气体。 1.4、清料前要注意清扫清料孔门周围的杂 物,便于清料人的安全撤离。在清理堵料 时,先找好躲避地方,才能清理堵料,否 则不准清理 防火服、 防火鞋、 防护帽、 长管猪皮 手套 作业过程2.1、清料过程必须由下至上,逐级 清理,每次清料只能打开一个清料 孔,严禁同时多孔清料。 2.2、用高压气体清料时,必须保证 清料管穿透料层,防止喷料;必须有 专人控制高压气体阀门,待清料人员 同意方可打开阀门。 2.3、清料人员应站在上风口,并尽 量侧身对着清料孔,以防垮料烫伤。 2.4、清理预热器堵料时,必须由四 人以上人员进行,捅料时捅料人必须 有人指挥、看护。 2.5、进入现场作业人员要定时更换, 如感到头、胸闷等不适情况时,应立 即撤离现场。 2.6、清预热器堵塞时,必须经生产 清堵发生灼烫预热器清堵作业人员应穿戴好防火隔热专 用劳动保护用品,检查相应的作业工具, 确保安全使用;,相关安全管理人员现场监 控;与中控联系确认好,维持系统负压, 关闭空气炮进气阀门并切断电源,并将空 气炮内部气源排空,挂“禁止操作”警示 牌;作业期间必须遵循由下而上的原则, 用高压气体清料时,必须保证清料管穿透 料层,防止喷料,专人控制高压气体阀门; 清堵作业人员应站在上风口,应侧身对着 清料孔,防止垮料、喷料造成人员烫伤; 使用高压气体清堵作业必须严格执行相关 的安全操作要领;清料过程中现场各层平 台及预热器四周要设置警戒范围,防止生 料粉喷出伤人,对生料粉喷出可能触及的 电缆和设备要采取防护措施;处理分解炉 篦冷机、斜拉链及地坑内禁止人 员作业,防止生料粉涌入伤人。 严禁多孔上下同时清料; 发生事故立 即立即关闭 高压气路阀 门并伤者冲 洗。

预热器系统堵塞

悬s浮预热预分解回转窑等新型干法生产工艺存在一个“通病”——预热器系统堵塞。堵塞的发生不仅扰乱了窑的热工制度,降低了窑的产量和熟料质量,而且处理起来费时费力。甚至还会造成人员伤亡大事故,本文从生产实际出发介绍预热器系统堵塞的症状、产生的原因、处理方法和预防措施。 预热系统堵塞时,一般有以下几种“症状”:堵塞部位以上多处负压剧烈上升;堵塞部位以下部位出现了正压;捅料孔、排风阀等处向外冒灰,窑头通风不好,严重时往外冒火。排风机入口,一级筒C1出口,分解炉出口,窑尾等处温度异常升高,甚至达到或超过危险温度范围。预热器锥体负压急剧减少或下料温度减少。如果发现不及时,旋风筒内几分钟就积满了料粉,但往窑内下料却很少。 对于五级旋风预热预分解窑来说,预热器系统内容易堵塞的部位主要有以下几处:1、旋风筒C2-C4锥体及翻板阀处。2、窑尾烟室、窑尾斜坡和分解炉缩口。3、五级旋风筒C5锥体膨胀腔及下料管。4、分解炉及其连接管道。 造成预热器系统堵塞的主要原因是在预热器和窑之间的“内部循环”。当窑尾废气温度达到一定值时,粉尘就粘附在废气管道壁上,而这种粉尘由于吸附了碱、氯、硫,故粘性很大,随着温度的上升,粉尘粘附的数量和硬度也增加了,这便形成结皮。管道实际通风截面就要减少,有时旋风筒顶部的粘灰脱落在旋风筒内,就使旋风筒下部堵塞。 当预热器内生料和燃料含硫、碱较高时,温度达到400-600℃时SO2就会转化为SO3,SO3被生料粉吸收以后生成CaSo4,在860℃时CaSO3熔融并容易与料粉在预热器底部尾内部结成圈。 预热系统的结皮和堵塞最容易发生在最低的两个预热器内部,特别是最下一级旋风筒是最容易发生结皮的地方,在预热器和回转窑入口处的沉积物含有较高的硫酸碱和氯化碱,窑气中含有的硫酸碱因熔融,凝聚而分离出来,形成与燃烧物质和窑灰相结合的物质。这样的熔融物在生料颗料上形成薄膜,使流动恶化并在预热器内造成堵塞。 预热器系统堵塞除上述工艺方面原因外,还有操作方面,设备维护方面的原因。 1、操作方面:喂料不均,生料量和成分波动,火焰形成不当,窑内还原气氛,不完全燃烧等容易造成预热系统结皮堵塞。 2、设备维护方面:窑尾密封处,人孔、冷风闸门等漏风,预热器内剥蚀,翻板阀不灵活等也容易造成预热系统结皮堵塞。 新型干法窑预热系统发生堵塞后,应立即进行清堵。处理方法和步骤有以下几点: 1、接到堵塞报告后,应立即采取止料、煤,慢转窑等措施。 2、中控工同巡检工及时联系探明堵塞情况及堵塞部位。制定清堵方案,组织人员快速处理。堵塞料长时间不清除,温度下降物料冷却后则形成为坚硬的熟料更难处理。 3、如果堵塞较轻微,稍捅即可清堵时,可适当减煤,继续转窑;如果堵塞严重时,则止料、煤,同时慢转窑。 4、捅堵时可用超高压缩空气喷枪或水炮,对准堵塞部位直接捅捣。同时要确保人身安全。 5、清堵时应本着“先下后上”的原则,即先捅下部,后捅上部,保证捅下的物料顺畅排走。 6、清堵时要注意窑尾排风机阀门(不得关闭排风机),保持预热器系统内呈负压状态,便于捅堵。 7、捅堵完毕后进行预热器系统详细检查,确保各级旋风筒锥体部位,撒料板,阀门处等干净完好,确保所有人孔门,捅料孔等密封严密,各处压力,温度恢复正常。 预热器系统堵塞的预防措施: 1、严格控制进厂原材料、燃料质量,加强内部管理,定时排放收尘灰,使窑尾电收尘

利用空气预热器风量分切防止堵灰

利用空气预热器风量分切防止堵灰 摘要:针对于空预器现堵灰状况,应采取有效措施提高冷端温度,从机理上降 低低温结露和腐蚀,从而解决空预器堵灰问题,改善空预器运行现状。风量分切 防堵灰技术采用为针对性加热方式,在蓄热元件转至烟气侧之前,提高该点的温 度到B点,使冷端温度最低点高于酸结露点,避开酸结露区,降低低温结露。 关键词:堵灰;风量分切;温度;酸结露区;露点 1 本场概述 1.1 锅炉参数 大唐鲁北发电公司2×330MW机组锅炉是哈尔滨锅炉厂有限责任公司根据美 国ABB-CE燃烧工程公司技术设计制造的,配330MW汽轮发电机组的亚临界、一 次中间再热、燃煤自然循环汽包锅炉,型号为HG-1020/18.58-YM23。现有2台 330MW燃煤发电机组分别于2009年9月20日、2009年12月20日投产发电。 主蒸汽额定压力18.58Mpa,主汽温543℃。 1.2 2号炉空预器参数 表1-1 2号炉2A空预器 2 堵灰情况及堵灰原因 2.1 2号炉堵灰情况 鲁北公司自超低排放改造及配煤掺烧后,空预器压差高的问题成为威胁机组 安全经济运行的重要问题,随着煤质硫份及喷氨量的增加,空预器堵灰情况更加 严重,压差上升速率急剧加快,严重影响了机组运行。鲁北公司锅炉空预器烟气 侧差压实际运行时在3kPa左右,最高时达到4kPa以上,导致引、送、一次风机 耗电率上升,空预器换热效果下降,排烟温度升高,锅炉经常缺氧燃烧,飞灰含 碳量上升,锅炉效率严重下降,另外还因其原因出现了机组限出力和风机失速等 不安全事件[1]。 自2017年2月14日至3月20日,空预器进行了热解及水冲洗工作,效果如下: 2月23日,使用提高单侧空预器后部排烟温度的方法对硫酸氢铵进行热解, 2B侧空预器排烟温度160℃持续时间70分钟,压差较同负荷状态下降约0.35kpa。 2月27日,2B空预器进行热解硫酸氢铵[2],2A/2B空预器烟气侧出入口差压 分别下降0.33kpa/1.03kpa(平均主汽流量752t/h,平均负荷248MW时)。 2月28日,2A空预器热解,2A/2B空预器烟气侧出入口差压分别下降 0.15kpa/0.06kpa(平均主汽流量728t/h,平均总风量938t/h,平均负荷240MW 时)。 3月2日,2B空预器热解,2A/2B空预器烟气侧出入口差压分别下降 0.32kpa/0.74kpa(平均主汽流量823t/h,平均总风量991t/h,平均负荷268MW 时)。 2017年4月28日至5月2日,2号炉进行停机检修,对2号炉空预器进行 了离线水冲洗工作,启动后2A/2B空预器烟气侧出入口差压分别为2.25/1.5 (330MW时数据)。 自此,每次停机对2号炉空预器进行离线水冲洗,并在机组运行过程中进行 间断性在线水冲洗,但烟气侧出入口差压均在2以上。 2.2 2号炉空预器堵灰原因分析

空预器堵灰原因分析及防范措施正式版

In the schedule of the activity, the time and the progress of the completion of the project content are described in detail to make the progress consistent with the plan.空预器堵灰原因分析及防范措施正式版

空预器堵灰原因分析及防范措施正式 版 下载提示:此解决方案资料适用于工作或活动的进度安排中,详细说明各阶段的时间和项目内容完成的进度,而完成上述需要实施方案的人员对整体有全方位的认识和评估能力,尽力让实施的时间进度与方案所计划的时间吻合。文档可以直接使用,也可根据实际需要修订后使用。 在企业中为提高经济效益,做到节能减排,提高锅炉热效率,以充分利用烟气余热,降低排烟温度,提高锅炉热效率,工业锅炉的尾部都加装了空气预热器。但是作为锅炉尾部的空气预热器,通常是含有水蒸汽和硫酸蒸汽的低温烟气区域,工作条件比较恶劣,容易出现低温腐蚀和堵灰,从而影响锅炉安全运行。我们采用了当今先进的热管技术对空预器进行了改造,彻底解决了这一问题。 腐蚀机理 造成锅炉尾部受热面低温腐蚀的原因

有两点:一是烟气中存在着三氧化硫;二是受热面的金属壁温低于烟气中的酸露点温度。 锅炉燃料中或多或少的都含有硫。当燃用含硫量较多的燃料时,燃料中的硫份在燃烧后,大部分变成二氧化硫,在一定条件下其中的少部分进一步氧化成三氧化硫气体。三氧化硫气体与水蒸汽能结合成硫酸蒸汽,其凝结露点温度高达120℃以上,露点温度越高,烟气含酸量愈大,腐蚀堵灰愈严重。当空气预热器管壁温度低于所生成的硫酸露点时,硫酸就在管壁上凝结而产生腐蚀,叫做低温腐蚀(见图1)。金属壁面被腐蚀的程度取决于硫酸凝结量的多少,浓度的大小和金属壁面温度的高

SCR法烟气脱硝后空气预热器堵塞及应对措施

收稿日期:2014-05-28 作者简介:惠润堂(1963—),男,陕西渭南人,高级工程师,主要从事火电厂环保工程设计、科技研发等工作。 过3×10-6(体积浓度)后,温度为150~200℃范围内,逃逸的氨与烟气中的SO 3将反应生成硫酸铵((NH 4)2SO 4)和硫酸氢铵(NH 4HSO 4)[3]。这些副反应产物会牢固粘附在空气预热器(空预器)传热元件表面,使传热元件发生强烈腐蚀和积灰。通常,对于加装SCR 脱硝装置且燃煤硫分大于1%的机组,建议对空预器进行配套改造[4],但由于部分机组空预器运行时间较短或刚大修完毕,同时出于工程投资考虑,部分燃煤电厂增设脱硝设施后暂未改造空预器[1]。下文以某电厂为例,对烟气采用 SCR 法脱硝后空预器堵塞的成因进行分析。 1 某电厂基本情况 1.1 脱硝设施概况 某电厂9、10号机组为660MW 超临界机组, 采用SCR 脱硝技术控制NO x 排放,还原剂制取采用尿素热解工艺。SCR 烟气脱硝装置设计反应器入口NO x 为600mg/m 3(标准状态,下同),目前机日开始,空预器一、二次风侧及烟气侧阻力出现较快速度的增长。由于烟风系统压差大,机组被迫限出力运行。同样的运行情况及煤质参数下9号机组空预器烟气侧阻力运行正常。 根据2012年11月14日10号机组DCS 烟风系统运行监测,运行负荷为450MW ,空预器烟气侧系统阻力约为3000Pa 。由空预器烟气侧阻力趋势图可知,2012年11月初以来,空预器烟气侧由于堵塞,烟气侧阻力最高接近4500Pa ,远远高于空预器技术协议中的保证值1220Pa ,空预器二次风侧阻力最高达到2000Pa 。空预器堵塞后机组只能够被迫限出力运行,降低机组负荷至450MW ,此时空预器烟气侧阻力降至3000 Pa ,二次风侧阻力降至1200Pa 。 2 运行状况 2.1 燃煤煤质变化 2012年11月入冬后电厂入炉燃煤煤质数据 发电

窑尾预热器结皮堵塞的原因及预防措施

窑尾预热器结皮堵塞的原因及预防措施 1、堵塞原因 1.1 操作判断不及时; 1.2 浇注料脱落卡在下料管处; 1.3 分解炉温度偏高。 2、原因机理解析 原因多且复杂,从工艺、原燃料、设备、热工制度、操作管理方面讲大致有: 2.1 结皮 结皮是高温料在窑尾烟室、上下管道、各级(主要是最后两级)旋风筒锥体内壁上粘结的硬皮,粘结与熔融交替,使皮层数量和厚度渐渐增加,严重时呈圈状缩口,阻碍物料正常运行,影响通风,改变系统物料与气流运行速度,导致堵塞。 1)局部高温 系统温度偏高,煤粉二次燃烧,操作不稳定导致局部高温,液相提前出现,来料不稳,忽大忽小,打乱了烧成系统的正常工作,操作滞后,加减煤不及时,甚至出现断料;点火时部分煤粉跑到预分解系统,温度升高后发生燃烧,导致局部高温;操作上片面强调入窑分解率;分解炉用煤过大,两把火比例失调,造成温度偏高,过早出现液相;炉内物料切线运行速度偏高,离心力大易融物附着在炉壁上形成结皮;炉内煤粉来不及燃烧(炉内物料停留时间短)被带到旋风筒内,导致旋风筒内温度过高结皮。 2)有害成分 原料中K、Na、Cl、S等含量高,循环富集到旋风筒后冷凝在内壁上。 3)漏风 锁风阀烧坏(失灵)使下一级气体直接入上一级旋风筒,将收集下来的生料粉重新带起,造成内循环增加,一旦物料过多,具备沉降条件便大股落下,造成下料不均,分散不好,导致堵塞。 4)操作不当 投料初期或临时停窑,风、煤、料配合不好,使炉、筒温度过高。因故需停料时,排风量不能大幅度减少,否则,会使物料因风速过小沉积在管道内,造成堆积。 重新开窑时,开始排风量过小,堆积的物料增多,严重时导致堵塞。 正常操作时,操作员对管、炉、筒及窑尾温度、压力变化不敏感,对异常情况判断调整不及时或无效。 下料与窑速不同步,窑运转不正常,热工制度不稳定,预打小慢车或满转窑时,减料不及时,物料在窑尾堆积,部分物料受高温熔融粘附在窑尾烟室内壁,在烟室与窑连接处形成棚料,造成烟室及上一级预热器堵塞。(黄河同力 5)外来物 掉砖、旋风筒、分解炉顶盖浇注料剥落,内筒或撒料板烧坏掉下,排灰阀烧坏或转动失灵,检修时耐火材料或工具遗忘在预热器内。 3、预防措施 1)做好开窑前检查 系统检修后一定要对系统详细检查,清理系统杂物,确认耐火材料内衬是否牢固,巡检人员检查所有检查门、法兰、测温孔、排灰阀等是否密封,所有排灰阀转动是否灵活,各级阀板配种是否合适。 2)加强操作管理 加强操作管理,严格执行操作规程,落实工艺管理制度,规范操作行为,稳定工艺制度,

预热器堵塞的原因分析及预防处理措

预热器堵塞的原因分析及预防处理措施 一、结皮堵塞 预分解窑生产工艺线普遍存在着一个常见问题,就是窑尾系统——预热系统与分解炉结皮、积料、堵塞。预热系统一旦发生结皮堵塞,热工制度打乱,严重影响水泥的生产质量,且处理结皮堵塞,恢复生产比较困难,更有甚者,因堵塞塌料而造成人身伤亡。如何正确理解、严肃对待这一客观存在的现象,认识其将给生产带来的种种危害,切实通过一些必要的控制手段和一定的工艺处理措施,科学地进行预测与防范,是保障生产顺利进行,确保工艺设施安全,发挥系统优势的关键所在。针对这些问题,我搜集了水泥生产线的预防解决措施,以期望能够在以后的工作中有所帮助。 结皮的形成 预分解窑最易发生结皮的部位是窑尾烟室、下料斜坡、窑尾缩口、最低两级筒的下料管、分解炉内等处。结皮使通风通道的有效截面积减小,阻力相应增大,影响系统通风,使主排风机拉风加大。结皮塌落时,还容易发生堵塞。 二、堵塞的症状、多发部位 2.1 窑尾系统堵塞症状 预热器发生堵料时在中控室和现场都能判断。正常生产时,双系列预分解窑从中控操作画面上看预热器系统各控制参数是很有规律的:从上至下负压逐级降低,温度逐级升高,且同级两列相差很小。但当某列发生堵料时: (1)以堵塞部位为界,堵塞部位以上多处负压值急剧上升;堵塞部位以下出现正压; 捅料孔、排风阀等处有冒灰现象发生。 (2)窑头负压不足,严重时会有正压产生,且从观测孔等处往外冒火。 (3)窑尾排风机、一级筒出口、分解炉出口及窑尾等多处温度异常。 (4)被堵预热器的锥体负压急剧下降,甚至达到或接近零压。 (5)下料温度异常下降。 (6)进入窑内的物料减少。 通常,上述这些症状中有3种或3种以上同时出现时,就说明窑尾系统已经产生堵塞,应及时采取措施。 预分解系统内很多部位都可能发生堵塞,但主要发生在五级和四级旋风筒内;各级下料管及翻板阀内,若不及时处理,有时能从下料管堵到预热器锥体,甚至整个旋风筒;再是分解炉及其斜坡,连结管、变型或变径管等处。 2.2 堵塞时间 从时间上看,堵塞大部分发生在点火后不久,窑操作不正常,系统热工制度不稳定等情况下。另外,系统事故多,频繁开停窑时,由于风料搭配不当,煤粉不完

空预器堵灰原因分析及防范措施详细版

文件编号:GD/FS-6660 (解决方案范本系列) 空预器堵灰原因分析及防 范措施详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

空预器堵灰原因分析及防范措施详 细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 在企业中为提高经济效益,做到节能减排,提高锅炉热效率,以充分利用烟气余热,降低排烟温度,提高锅炉热效率,工业锅炉的尾部都加装了空气预热器。但是作为锅炉尾部的空气预热器,通常是含有水蒸汽和硫酸蒸汽的低温烟气区域,工作条件比较恶劣,容易出现低温腐蚀和堵灰,从而影响锅炉安全运行。我们采用了当今先进的热管技术对空预器进行了改造,彻底解决了这一问题。 腐蚀机理 造成锅炉尾部受热面低温腐蚀的原因有两点:一是烟气中存在着三氧化硫;二是受热面的金属壁温低

于烟气中的酸露点温度。 锅炉燃料中或多或少的都含有硫。当燃用含硫量较多的燃料时,燃料中的硫份在燃烧后,大部分变成二氧化硫,在一定条件下其中的少部分进一步氧化成三氧化硫气体。三氧化硫气体与水蒸汽能结合成硫酸蒸汽,其凝结露点温度高达120℃以上,露点温度越高,烟气含酸量愈大,腐蚀堵灰愈严重。当空气预热器管壁温度低于所生成的硫酸露点时,硫酸就在管壁上凝结而产生腐蚀,叫做低温腐蚀(见图1)。金属壁面被腐蚀的程度取决于硫酸凝结量的多少,浓度的大小和金属壁面温度的高低。硫酸象一层胶膜,一面粘在管壁上腐蚀,一面不断粘着烟灰,形成多种硫酸盐,并逐渐增厚,这就是低温式结渣。 煤中含硫量的多少,影响锅炉排烟温度的选取。同时,鉴于对锅炉排烟热损失与防止尾部受热面低温

燃煤电厂防止空气预热器腐蚀堵塞工艺 李春宇

燃煤电厂防止空气预热器腐蚀堵塞工艺李春宇 发表时间:2019-09-21T11:40:41.813Z 来源:《基层建设》2019年第19期作者:李春宇 [导读] 摘要:燃煤电厂空气预热器作为燃煤发电的核心部件,其可以提高燃煤电厂的电能产生效率,还可以在一定程度上减少燃煤对环境的污染,但在其实际工作过程中,由于空气预热器受热面壁温较低等缘故,使得其内部出现了腐蚀以及堵塞等相关情况,本文将就燃煤电厂空气预热器工作过程中腐蚀堵塞的原因进行分析,并就如何防止腐蚀堵塞提一些意见和建议。 华润电力(锦州)有限公司 121000 摘要:燃煤电厂空气预热器作为燃煤发电的核心部件,其可以提高燃煤电厂的电能产生效率,还可以在一定程度上减少燃煤对环境的污染,但在其实际工作过程中,由于空气预热器受热面壁温较低等缘故,使得其内部出现了腐蚀以及堵塞等相关情况,本文将就燃煤电厂空气预热器工作过程中腐蚀堵塞的原因进行分析,并就如何防止腐蚀堵塞提一些意见和建议。 关键词:燃煤电厂;空气预热器;腐蚀堵塞工艺 一、引言 空气预热器出现腐蚀以及堵塞的部分主要处于其低温段,其主要原因包括吹灰设备的工作性能有待提高以及部分工作人员的操作不符合相关要求等方面,接下来将对燃煤电厂空气预热器腐蚀堵塞的原因进行简析,并介绍几种有助于防止空气预热器腐蚀堵塞等情况的方式或方法,为燃煤电厂空气预热器的正常运行尽绵薄之力。 二、燃煤电厂空气预热器腐蚀堵塞的主要原因 (一)空气预热器受热面壁温较低 在空气预热器的工作过程中,出现低温腐蚀的主要原因是其受热面壁温较低,其主要是由于在燃煤发电的过程中,相关燃料燃烧之后生成SO2和SO3等气体,而SO2与SO3会与空气中的蒸汽结合,并发生相关的反映过程,最终生成硫酸蒸汽,硫酸蒸汽的出现会使其酸露点大大提高,因此会使空气预热器受热面壁温低于硫酸蒸汽的酸露点,使硫酸蒸汽与外部蒸汽会在受热面壁底结合,产生低温腐蚀,除此之外,在相关金属表面还会形成电化学腐蚀,这主要是由于金属中的铁与燃煤剩余的结渣分别作为微电池的正负极,并由此进行电腐蚀,最终造成空气预热器受热面的低温腐蚀。 (二)吹灰设备的工作性能有待提高 吹灰设备的工作性能有待提高也是造成空气预热器腐蚀堵塞的原因之一,在每个空气预热器内部都会有专门的吹灰设备,其主要包括风机、出入口启动插板门以及水磁线圈等设备,当空气预热器内的硫酸蒸汽充分反应之后,会产生较多的结渣,而当其堆叠到一定程度时,会促使吹灰设备运行,此时,风机会快速启动,出入口启动插板也会开启,空气预热器内的积灰将会被吹灰设备从出口启动插板吹出,而当其内部积灰处理至可允许范围之内,吹灰设备将会停止相关的工作,但在实际的吹灰过程中,由于吹灰设备的工作性能与实际工作需求存在较大的差距,使得防止空气预热器腐蚀堵塞工作不能够顺利地进行[1]。 (三)部分工作人员的操作不符合相关要求 除了空气预热器受热面壁温较低以及吹灰设备的工作性能有待提高两个原因之外,部分工作人员的操作不符合相关要求也是导致空气预热器腐蚀堵塞的重要原因,空气预热器内较多的结渣堆积主要是由于相关人员在进行燃煤掺烧掺配工作时,未及时地分析煤质入炉化验结果,使含硫量较高的煤入炉,加重了其受热面的酸腐蚀,另外,由于相关人员未及时地对暖风器等相关设备进行及时地维修与保养,使得空气预热器综合温度未处于规定范围内,最终造成腐蚀堵塞现象。 三、如何防止燃煤电厂空气预热器的腐蚀堵塞问题 (一)提高空气预热器受热面的壁温 要想防止空气预热器的腐蚀堵塞问题,第一步需要做的是提高空气预热器受热面的壁温,使硫酸蒸汽不会在受热面低温腐蚀或堵塞,一方面提高壁温可以减小硫酸蒸汽的酸露点与受热面壁温之间的差距,使硫酸蒸汽内的含酸量逐渐降低,最终硫酸蒸汽不会在空气预热器受热面产生低温腐蚀,也不会产生硫酸盐而对受热面进行电化学腐蚀,另一方面,通过对暖风器进行必要的调整,使其适应各个季节不同温度的变化,保证空气预热器受热面壁温符合相关部门的温度要求,另外,若在暖风器的调整过程中,发现暖风器内有存水以及漏泄等现象,要及时地向有关部门反映,将暖风器内的存水全部放尽,避免由于存在积水导致破裂,从而使暖风器在不同的季节充分适应温度的落差,为空气预热器受热面的壁温提供较强的温度保障,确保空气预热器不会发生腐蚀堵塞现象[2]。 (二)提高吹灰设备的工作性能 另一个较为有效的措施时提高吹灰设备的工作性能,在空气预热器正常运行时,需要吹灰设备将空气预热器内的积灰清除干净,虽然吹灰设备在一定程度上发挥了防止空气预热器发生低温腐蚀以及堵塞现象的作用,但在其具体实施时,应当根据空气预热器的运行状态进行合理的吹灰处理,例如,当空气预热器在较低频率状态下工作时,硫酸蒸汽由于缺乏足够的动力而使其流速较低,进而在受热面管壁上堆积,造成空气预热器的堵塞现象,这就需要工作人员将积灰上的蒸汽清除干净,并启动吹灰设备使积灰保持足够的过热度,从而更好地清除积灰,而当管壁内积灰较多时,则需要吹灰设备加大吹灰效率,保证空气预热器内的积灰处于合理的范围内,因此,相关部门需要提高吹灰设备的工作性能,进而在技术层面为空气预热器防止低温腐蚀和堵塞提供必要的支持。 (三)提高对工作人员操作的具体要求 除了提高空气预热器受热面的壁温以及提高吹灰设备的工作性能之外,提高对工作人员操作的具体要求也是防止空气预热器腐蚀堵塞情况的重要措施,而对于如何提高对工作人员操作的具体要求,相关部门可以从加强空气预热器水洗工作以及加大对空气预热器运行的监督力度两个角度进行分析。 首先,工作人员要加强对空气预热器的水洗工作,在每次吹灰过程完成后,水洗装置需要对吹灰器进行水洗,当空气预热器工作在低负荷状态时,需要加大水洗频率,尽量避免由于低负荷运行导致硫酸蒸汽在吹灰器管面上沉积,造成堵塞等情况的出现,而当空气预热器发生堵塞现象时,水洗装置要在其运行时进行水洗,将沉积在预热器内的积灰水洗干净,但需要注意的是,在水洗完成之后,空气预热器需要进行脱水以及干燥等过程,从而确保其不会由于未进行干燥使其在运行时再次发生低温腐蚀与堵塞。 其次,相关部门还应该加大对空气预热器运行的监督力度,尤其是对燃煤掺烧掺配以及出入口启动插板,要进行严格的监督,督促相关人员及时地分析入炉煤质化验结果,确保含硫量较高的煤质不会进入到炉内,从而避免SO3在预热器管面进行结露而产生酸腐蚀以及堵

600MW机组锅炉空气预热器堵塞原因分析及治理

600MW机组锅炉空气预热器堵塞原因分析及治理 详细地分析了空气预热器堵塞理论和实际两个方面的原因,从而从控制氨逃逸率、控制空预器壁温、对沉积的NH4HSO4进行及时清理、对空预器进行在线清洗四个方面提出了预防600MW机组锅炉空气预热器堵塞的措施,从而保证空气预热器的安全正常运行。 标签:空气预热器;堵塞;原因;治理 doi:10.19311/https://www.wendangku.net/doc/3017768164.html,ki.1672-3198.2017.18.101 在烟气脱硝的同时,催化剂也可使部分烟气中SO2氧化产生SO3,SO3与SCR过程中未反应的氨(逸出氨)反应生成硫酸氢铵,硫酸氢铵具有的腐蚀性特征会对催化床层和空预器造成危害。空气预热器堵塞会直接造成锅炉废气温升,增加排气热损失,增加阻力,影响风机输出,从而影响整个锅炉输出,堵塞灰尘甚至造成严重的风扇振动,脱硫系统由于烟气温度太高,不能投入运行,这将会对锅炉的安全经济运行造成严重的影响。 1 600MW机组锅炉空气预热器 600MW机组锅炉空气预热器储热部件波纹板是根据烟气流动方向分为热端层、中间层和冷端层,储热部件自上而下分别为0.5mmHE4型碳钢、0.5mmHE4型碳钢和1.2mmHE2型搪瓷钢板,冷段HE2型搪瓷钢板储热部件为耐腐蚀的传热部件,剩余热段储热部件为碳钢。 2 空气预热器堵塞原因分析 对于具有SCR脱硝装置的单元,SCR系统脱硝反应锅炉在燃烧中产生SO3和水,当脱硝逸出的NH3与SO3、水在低温情况下将会生成硫酸氢氨NH4HSO4(公式如下),而在150 ~220℃温度范围,NH4HSO4是一种高粘性液态材料,易粘附装置内的灰尘,从而堵塞热交换器元件的通道;易冷凝在空气预热器金属表面,从而腐蚀金属表面,导致空气预排气横截面积降低,电阻增加,最终使其传热效率降低。 2NH3+SO3+H2O→(NH4)2SO4(NH3∶SO3 2∶1时) 另外,当NOx还原成N2时,SCR催化剂也产生以下反应: SO2 + O2 → SO3 反应产物中的NH 4HSO4在通常位于常规设计预热器的中间温度部分的下部和冷端的上部的150~230℃的温度(高灰尘布置SCR)下开始冷凝,以在传热元件的表面上形成附加的吸附层。通常2~3月,大量的灰分被吸附,导致传

脱硝空预器堵灰原因及措施

1.硫酸氢氨的产生机理在SCR系统脱硝过程中,烟气在通过SCR催化剂时,将进一步强化SO2→SO3的转化,形成更多的SO3。在此过程中,由于NH3的逃逸是客观存在的,它可能在空气预热器处与SO3形成硫酸氢氨,其反应式如下: NH3+ SO3+ H2O→NH4HSO4硫酸氢氨在不同的温度下分别呈现气态、液态、颗粒状。对于燃煤机组,烟气中飞灰含量较高,硫酸氢氨在295F°~405F°温度范围内为液态;对于燃油、燃气机组,烟气中飞灰含量较低,硫酸氢氨在 295F°~450F°温度范围内为液态。这个区域被称为ABS区域。 2.对预热器的影响2.1堵灰和腐蚀产生的原因气态或颗粒状液体状硫酸氢氨会随着烟气流经预热器,不会对预热器产生影响。相反,液态硫酸氢氨捕捉飞灰能力极强,会与烟气中的飞灰粒子相结合,附着于预热器传热元件上形成融盐状的积灰,造成预热器的腐蚀、堵灰等,进而影响预热器的换热及机组的正常运行。硫酸氢氨的反应速率主要与温度、烟气中的NH3、SO3及H2O浓度有关。为此,在系统的规划设计中,应严格控制SO2→SO3的转化率及SCR出口的NH3的逃逸率。同时,应考虑重新调整空气预热器的设计结构或吹灰方式配置,消除硫酸氢氨对空气预热器运行性能的影响。在形成液体状硫酸氢氨的同时,也会产生部分硫酸氨。与硫酸氢氨不同,颗粒状硫酸氨不会与烟气中的飞灰粒子相结合而造成预热器的腐蚀、堵灰等,不会影响预热器的换热及机组的正常运行。2.2防止堵灰和腐蚀产生的改进措施考虑到ABS区域的特定位置及相应特性,在空气预热器的结构设计如:传热元件的高度选择、材质、板型上以及清灰设施配置上应采取相应的措施。(1)、为减少积灰和有较好的清洗效果,采用封闭流通道(Closed Channel)的板型传热元件代替现有的冷端传热元件,此种板型非常有利于飞灰和粘结物的清 除。 (2)、冷端用搪瓷传热元件,以防止硫酸氨(ABS)的沉积,同时有好的抗ABS腐蚀能力。(3)、热端及冷端的吹灰器设计成双介质清洗,吹灰器上设置高压水清洗装

预热器旋风筒堵塞清理安全操作规程示范文本

预热器旋风筒堵塞清理安全操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

预热器旋风筒堵塞清理安全操作规程示 范文本 使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 目的: 用于指导预热器旋风筒异常堵塞清理作业,确保作业 安全,避免伤害事故发生。 2 适用范围: 制造分厂预热器岗位 3 引用标准: 《劳动安全卫生国家标准》 4.作业中的安全风险: 4.1空气炮所处状态,防止意外工作。 4.2被飞溅出来的物料烫伤。 4.3确保通道(包括逃生线路)畅通。

4.4确保所有区域有足够的照明。 4.5清理现场可能产生灰尘的料堆如预热器框架各级平台及篦冷机附近。 4.6周遍及该级旋风筒以下平面的电缆防止被烫坏 5.堵塞判断与消除: 5.1旋风筒锥部压力上升趋于0。 5.2分解炉及窑尾温度急速上升。 当出现上述现象时中控操作员应立即通知预热器工确认是否出现堵塞。 5.3如果确认出现堵塞执行以下程序。 5.3.1操作员释放空气炮3~5次,如果无效,立即止料,止尾煤(送煤风机不停),止头煤,停窑开启辅传转窑,并通知相关人员(值班主任,回转窑巡检工,质控部),减拉风(高温风机转速减至30%,风门关小到50%,保证预热器系统负压以便进行安全清堵作业),开

空预器堵灰原因及预防措施

空预器堵灰原因及预防措施 空预器堵灰现象:空气预热器发生堵灰,表现为一次风、二次风风压增大、炉膛负压难以维持,并出现摆动现象,摆幅逐渐加大,且呈现周期性变化,其摆动周期与空气预热器旋转一周的时间恰好吻合,严重时导致送、引风机发生喘振、引风机无调节余量,影响到燃烧自动装置的投入。空气预热器堵灰后会造成锅炉排烟温度升高, 热风温度下降,风、烟系统阻力上升,一次风、二次风正压侧和烟气负压侧的压差增大,增加了空气预热器漏风;堵灰严重时,影响锅炉的满负荷运行。

1、概述 新疆神火电厂一号锅炉共配有2台由上海锅炉厂生产制造的三分仓回转式空气预热器,两台型号为29.5VI2200空预器,转子转速1.13转/分。旋转方向为烟气/二次风/一次风,气流布置一二次风自下而上逆向流动,烟气自上而下顺向流动。每台空预器配置两支吹灰器,分别安装在空预器入口烟道和出口烟道处,吹灰介质取自屏式过热蒸汽。一号锅炉曾经因空预器堵灰严重,进行空预器高压水冲洗,空预器堵灰已经严重影响锅炉的安全运行。 2、空预器堵灰原因分析 2.1空预器堵灰现象 锅炉运行中,空预器进出口烟气差压增大,引风机电流增加,锅炉总风量大幅波动,炉膛负压摆动,排烟温度偏差增大,堵灰严重时有时引起风机喘振。 表1 1号锅炉空预器堵灰前、后参数对比 机组负荷(MW) A/B空预 器进出口烟 气差压(Kpa) A/B空预 器进出口二 次风差压 (Kpa) A/B引风 机静叶开度 (%) A/B引风 机电流(A) A/B排烟 温度(℃) 540(堵灰前) 540(堵灰后) 1.93/1. 33 5.43/3. 60 1.07/0. 76 2.90/1. 41 74/76 86/84 229/232 314/314 142/145 120/178 2.2空预器堵灰原因 2.2.1锅炉燃煤特性偏离设计值太大。但由于目前燃煤供应相对紧张且受价格,锅炉炉膛结焦等各种因素的影响,锅炉燃煤实际不能按照设计煤种运行,经常出现较大偏差,致使相同负荷下锅炉燃煤量大幅增加,灰分也大量增加。实际煤种1为准东煤,实际煤种2为托浪岗 表2 锅炉设计燃煤与实际燃煤特性对比 煤种特性 全水分 (%) 灰分 (%) 挥发分 (%) 硫分 (%) 低位发 热量(千卡/ 千克) 设计煤种 实际煤种1 实际煤种226.00 22.76 8.37 5.66 7.24 42.05 33.36 26.24 22.80 0.46 0.46 0.85 4600 4690 3641 2.2.2煤质含硫量大,实际燃烧的煤种的含硫量远远超过设计煤种的含硫量,煤中的硫燃烧生成二氧化硫,二氧化硫在催化剂(积灰中的Fe2O3)的作用下进一步氧化生成三氧化硫与烟气中的水蒸汽生成硫酸蒸汽,硫酸蒸汽的存在使烟气的露点显著升高,当燃料中含硫量越高、过剩空气系数越大,烟气中SO3含量越高,露点也越升高。由于空预器中空气的温度较低,烟气温度不高,壁温常低于烟气露点,这样硫酸蒸汽就会凝结在空预器受热面上,烟气中的灰、沙粒便容易粘在空气预热器的受热面上形成积灰,在燃烧托浪岗煤时更为突出,表现为空预器前后差压增大,进一步发展就会造成空预器堵灰。再者氨逃逸率一直大于

相关文档
相关文档 最新文档