文档库 最新最全的文档下载
当前位置:文档库 › 管壳式换热器 GB151讲义

管壳式换热器 GB151讲义

管壳式换热器 GB151讲义
管壳式换热器 GB151讲义

管壳式换热器 GB151-1999

一.适用范围 1.型式

固定——P t 、P S 大,△t 小

浮头、U 形——P t 大,△t 大

*

一般不用于MPa P D 5.2>,易燃爆,有毒,易挥发和贵重介质。

结构型式:外填料函式、滑动管板填料函、双填料函式(径向双道) 2.参数

41075.1,35,2600X PN DN MPa P mm D N N ≤?≤≤。参数超出时参照执行。 D N :板卷按内径,管制按外径。

3.管束精度等级——仅对CS ,LAS 冷拔换热管

Ⅰ级——采用较高级,高级精度(通常用于无相变和易产生振动的场合) Ⅱ级——采用普通级精度 (通常用于再沸,冷凝和无振动场合) 不同精度等级管束在换热器设计中涉及管板管孔,折流板管孔的加工公差。 GB13296不锈钢换热管,一种精度,相当Ⅰ级;有色金属按相应标准。 4.不适用范围

受直接火焰加热、受核辐射、要求疲劳分析、已有其它行业标准(制冷、造纸等)P D <0.1MPa 或真空度<0.02MPa

+

二.引用标准

1.压力容器安全技术监察规程——监察范围,类别划分*等

*按管、壳程的各自条件划类,以其中类别高的为准,制造技术可分别要求。

*壳程容积不扣除换热管占据容积计,管程容积=管箱容积+换热管内部容积。壳程容积=内径截面积X管板内侧间长度。

2. GB150-1998《钢制压力容器》——设计界限、载荷、材料及许用应力、

各受压元件的结构和强度计算。

3.有关材料标准。管材、板材、锻件等

4.有关零部件标准。封头、法兰(容器法兰、管法兰)紧固件、垫片、膨胀

节、支座等

三.设计参数

1.有关定义同GB150

2.设计压力Mpa

分别按管、壳程设计压力,并取最苛刻的压力组合(一侧为零或真空)。

管板压差设计仅适用确能保证管、壳程同时升降压,如1)自换热 2)P

t P s

均较高,操作又能绝对保证同时升降压。 3.设计温度℃

0℃以上,设计温度≥最高金属温度。

0℃以下,设计温度≤最低金属温度。

(一般可参照HG20580《设计基础》)

材料允许使用温度)

≧(元件表面温度算用最高部位温度,强度计

壳程元件平均温度壳程元件厚度截面金属管程元件平均温度管程元件厚度截面金属???

--t t ][][σσ()()固定管板式温差可不计环境温度壳材线胀系数温壳程筒体沿全长平均壁按附录F确定管材线胀系数换热管沿全长平均壁温??

?

??**-*

-S

t αα 应力计算用

* 对气-气或液-液可近似取管、壳程介质平均温度的平均值。其它按

c

h c

m h m t t T t αααα++=

估算。

** 可近似取壳程介质平均温度。外有保温或流体温度近似等于环境温度 4.腐蚀裕量C 2(仅对管,壳程均匀腐蚀)

2压缩空气、水蒸汽、水对CS 、LAS ≦1mm,

双面考虑的元件——管板、浮头法兰、浮头盖、钩圈,

管板、平盖的槽深作C 2或加差值。(槽深与C 2取大值)

不另考虑C 2的元件——换热管*、拉杆、定距管、折流板、支持板等。 *流动性较好腐蚀相对轻,换热元件要求给热系数α小,管头胀接不宜过厚。 5.许用应力

CS 、LAS 、SS 按GB150, 有色金属按GB151附录D 。 铝、铜及其合金 n b =4、n s =1.5 钛及其合金 n b =3、n s =1.5

复合板结合率≥B2级,可计入复层 ][]][[2

12

211··δδδσδσ

σ

++=t t t

6.焊接接头系数

CS 、LAS 、SS 按GB150, 有色金属按GB151附录D ,

管板——圆筒环向接头,用氩弧焊打底或有垫板焊接Φ=0.6。 7.换热面积 m 2

管束外表面积 d ?πn Le O ??,L e ——管板内侧有效长度。 U 形管一般不包括弯管段面积。 8.换热器公称长度 m

??

?.,形管的直管段长度

直管的全长度

换热管长度U 9.压力试验、气密试验

气密试验常用于易燃、极度、高度毒性介质或管、壳介质互漏时会有严重危害(例如加重腐蚀、引起爆炸、影响产品质量、催化剂中毒、吸附剂粉化等)。 试验压力值同GB150

管板按压差设计时,须规定管、壳程升、降压的具体压差值,

?

??

??Φ≤->氨渗漏试验壳程自身水压试验后增

(便于查管头连接),壁厚不扣除壳程校核壳程适用压差不大条件,且提高壳程试验压力时试2

9.0C p p s s t σσ A 法: 100%NH 3,2~3KPa

B 法: 10~30%,NH 3,0.15~1.0Mpa

C 法: 1% NH 3,1~1.05P

D 四.材料

1. CS 、LAS 、SS 按GB150

2.有色金属按GB151附录D

1) 铝和铝合金≤8Mpa ,-269~200℃,对>65℃不宜用含Mg>3%的Al-Mg 合金*, 2) 铜和铜合金 纯铜≤150℃,铜合金≤200℃ 3) 钛和钛合金 纯钛≤300℃,钛合金≤350℃

*Mg 在Al 中的室温溶解度0.34%,极限溶解度14.9%,Mg 含量较高,会在晶间析出β相(Mg 2Al 3, Mg 8Al 5),在某些介质中会产生应力腐蚀敏感性,只有在65℃以下不会产生。析出相过多也会降低冲击韧性。 3.锻件

1) 带凸肩与圆筒或管箱对接焊的管板, 2) 厚度>60mm 的管板, 3) 形状复杂的管板 4) 锻件级别≥Ⅱ级。 4.复合材料

1) 筒体、封头复合板(轧制、爆炸复合)

2) 管板、平盖复合或堆焊,堆焊分2层,第1层打底后热处理.

3) 轧制复合不锈钢管板Ⅰ级,平盖Ⅲ级, 爆炸复合管板≥B1级,平盖B3级。

(贴合率与剪切强度指标不同) 5.换热管

通常用无缝管,

附录C 的SS 有缝管用于PD ≤6.4Mpa ,非极度危害介质,并考虑接头系数0.85。 五.设计 1.管箱

1) 管箱深度

a) 轴向开孔 开孔中心处最小深度≥31d i

b) 侧向开孔 满足元件焊接距离要求 c) 对多管程管箱、相邻两程之间最小流通面积≥每程换热管流通面积的1.3

2) 平盖厚度(用于平盖管箱)

a) 无分程隔板(强度条件) 操作时 Φ=t

C G KP

D ][1σδ 37.13.0G

C D P WLG

K += 预紧时 Φ

'=t

C G P K

D ][2σδ 3

7.1G

C D P WLG K =

b) 有分程隔板(含刚度条件)

3

/13

3)]][5.00435.0([G G b t b C G G D L A P EY D D σδ+= 中心扰度Y : DN ≤600 Y=0.75

DN>600 Y=800DN

(mm )

最终取1δ、2δ、3δ中之大值

3) 分程隔板

a) 分程原则 ——每程换热管数大致相等,

——隔板槽形状简单,容易加工,

——密封面长度较短(计算隔板槽面积时,包括未被换热管

支承的面积——槽两测) b) 常用分程形式

c) 最小厚度

DN

δmin mm CS 、LAS SS

≤60086>600~≤1200108>1200~≤20001410>2000~≤26001410

压差大时按(式12)进行计算 []

t

PB b σδ5.1?= B :尺寸系数—与隔板结

构尺寸有关

叠式局部应力;以及P T>P s时,壳侧试压值要提高

δmin (CS、LAS) mm

DN400~≤700>700~≤1000>1000~≤1500>1500~≤2000>2000~≤2600浮头、U形810121416固定68101214

* 表中含1mm C

2值,当设计C

2

>1mm 时,增加差值。

δmin (SS) mm

DN

δmin

3)制造要求 e≤0.5%DN,且DN≤1200 e≧5,

DN>1200 e≧7;

周长

10-+ 内表面焊缝磨平。

直线度L/1000且L ≤6000 ≧4.5,

L>6000 ≧8

3.接管

1) 与圆筒内表面齐平 2) 径向或轴向设置

3) T D ≥300℃,用带颈对焊法兰,

4) 高点排气,低点排液,DN ≥20(或螺塞)

4.换热管(GB/T8163流体输送,GB9948石油裂解,GB13296锅炉、换热器S.S.无缝管)

1) 公称长度(m )1.0,1.5,2.0,2.5,3.0,4.5,6.0,7.5,9.0,12.0(有利于提

高管材利用率)

2) 规格 按各自材料标准(见表10),其中CS ,LAS ,SS 常用规格: (d 0)14,19,25,32,38,45,57

3) 偏差分Ⅰ、Ⅱ级精度,SS 均相当Ⅰ级精度 4) U 形管

a) 弯曲半径 R ≦2d 0(R ——管中心半径) 10121416192022253032353845505557Rmin 202430324040455060657076901001101150d

b) 弯前最小δmin )41(min 0

1R

d +

≥δδ 1δ——直管计δ R ——弯曲半径(指到管中心)0d ——管外径 c) 弯后圆度偏差≧10% 0d ,R<2.5 0d 的可15% 0d

d) 热处理 对有应力腐蚀且冷弯,则弯管段+150mm 直段:

CS 、 LAS ——消应处理;SS 商定方法;有色金属一般不做

5) 长度拼接

a) 不允许拼接的图样要注明, b) 允许拼接的相关要求: ——焊接工艺评定

——接头数,直管1条,U 形管2条,最短300mm ,弯管段+50mm 直段内无接头

——坡口机械加工,错边量e<0.15δ,且≤0.5mm ,直线度不影响穿管 ——接头数10%作XT ——逐根液压试验 P T =2P D ——通球检查

球径(mm )

5.管板

1)有效厚度

a)整板 ???-???-=槽壳

槽管管t C t C n e 22max max δδ

a) 整板 复合板 复合质量符合要求时,计入212

][][δσσδδ?=t

t e 的当量复 2) 最小厚度(不含C2),与计算厚度比较取大值 a)

胀接 ——易燃易爆,有毒介质 0min d ≦δ

——一般场合 250≤d 075.0min d ≥δ 50250<d 060.0min d ≥δ b) 焊接 满足结构设计和制造要求,但≦12mm c)

复合板 复δ≦3mm ,且表层2mm 理化性能达标——焊接连接换热管

复δ≦10mm ,且表层8mm 理化性能达标——胀接连接换热管 3) 拼接

a) 全焊透接头

b) 100%XT-Ⅱ或UT-Ⅰ c) PWHT (SS 除外) 4) 堆焊

a) 基层表面检测Ⅱ级

b) 不允许管桥间补焊堆焊法

c) 分层堆焊,保证最小有效层厚度——带级堆焊,2层,每层4mm , ——手工堆焊,分区、对称、同时——表面机加工 5) 布管

a) 排列形式

(流向垂直于折流板缺口边) b) 中心距 ≦1.25d 0 10121416192022253032353845505557S 13~14161922252628323840444857647072Sn 283032353840424450525660687678800d Sn —分程隔板两侧相邻管中距离 c) 布管限定圆

——固定管板、U 形管板 最外层换热管外壁至圆筒内壁距b 3=0.25d 0,且≦8mm

——浮头管板 Di-2(b1+b2+b)

b1—浮头管板与圆筒间隙 b2—密封垫片台阶宽

b —台阶与换热管外壁距离

6) 管孔

b) 有色金属管不分级(详见GB151表18~表21)≈I 级范围 7) 孔桥宽度

出钻一侧管板表面,相邻两管孔之间的实际桥宽,由钻头偏移量引起,偏移量随管板厚度增大而增大,孔桥宽相应减小。

a)孔桥宽度名义孔桥宽度-孔桥偏差,B=(S-d)-Δ1

孔桥偏差△

1=2△

2

+C

2钻头扁移量,△

2

=0.0016Xδ

C 附加量d

<16,C=0.508

d

≥16,C=0.762

b)最小孔桥宽度仅允许存在≤4%的孔数

其值为名义孔桥宽度的一半+附加量,

Bmin=1/2(S-d)+C1 d

0≤32,C

1

=0.1

d

0>32,C

1

=0

(详见表51,表52—钢换热管)

6.换热管与管板连接(抗拉脱+密封)

1)强度胀—不可焊接或d

>14mm(机械胀)或习惯制造工艺

a)胀接原理换热管屈服变形,管板弹性变形(或管孔表面屈服)

硬度:换热管<管板,有应力腐蚀不采用局部退火软化

管头.

——管壁厚减薄率6~8%,拉脱力最强

b)最适宜间隙曾有分析:一对#10、#20钢,胀接的最佳间隙值:

do×δ19×225×232×338×4

C0.10.160.20.19按GB151管孔尺寸,采用Ⅰ级管适宜。

c)适用(开槽)P

D ≤4.0Mpa,T

D

≤300℃,无剧烈振动,无过大温度变

化,无明显应力腐蚀

d)要求:管孔不允许存在纵向或螺旋贯通刻痕Al、Cu管用翻边胀,提高[q]

e)最小胀接长度 L=mm

3

-

管孔

δ,或50mm的较小值

f)采用液压胀时,第一道加工沟槽后退到12mm左右

g)管头外表面清理至金属光泽,l≦2δ

管板

h)不开槽[q]=2Mpa,开槽[q]=4Mpa,有色金属开槽[q]=3Mpa

2)强度焊

a)适用 GB151规定的压力范围,不适用有较大振动、有间隙腐蚀场

b)焊口 45°倒角,倒角深度随换热管直径增大而加大,高压换热器

已广泛采用U形坡口。

a)结构强度胀+密封焊或强度焊+贴胀、(消除间隙,轻度胀)

b)适用——密封要求高

——有振动或疲劳载荷

——有间隙腐蚀

——复合管板

7.筒体与管板连接焊接结构详见附录G,其中带≥10mm对接段结构,板材若

有分层,不抗撕裂。与筒体对接焊的带凸肩管板应采用锻

件,就是此原因.

8.折流板和支持板

1)作用

c)最小厚度mm

无支撑跨距L

DN≤300>300~600>600~900>900~1200>1200~1500>1500

最小厚度

<40034581010

>400~≤700456101012

>700~≤900568101216

>900~≤15006810121616

>1500~≤20001012162020

>2000~≤26001214182022

d)管孔钢管分Ⅰ、Ⅱ级管束

有色金属换热管详见表37~表40.—无诱导振动,并对传热影响不大时

可适当放大管孔尺寸,但不超越钢管的Ⅱ级孔.

i

4)折流板布置

a)两端的尽量靠近壳程进、出口管,缺口位于远离接管方位

·以流体无诱导振动为前提,否则按附录E (管束振动)调整流速或结 构参数,必要时改用折流杆 d) 缺口方向(卧式换热器)

——水平上下布置:单相清洁流体,若气中含液,下部开切口;若液中含气,上部开切口

——垂直左右布置:冷凝、再沸、气液共存或液中含固体,低处开通液切口

e) U 形管束尾部支撑跨距 A+B+C ≤L

5)加工要求板的外圆尖角倒钝,管孔边缘去毛刺

6)折流杆(尚未列入GB151)

a)用折流杆栅取代折流板,壳程流体由横向错流变为轴向平行流

b)流过杆栅时有节流湍动作用,提高给热系数

c)且消除错流滞流死区,增加传热面利用率

d)防管束诱导振动,减轻管头焊缝附加载荷,强度和密封性提高

e)加工简单,安装较复杂,适宜成批生产(需要安装模具)

9.拉杆、定距管

1)形式 a ) 螺纹端拉杆+定距管+双螺母用于换热管d0≧19mm ,

b ) 点焊拉杆用于换热管d0≦14mm 。

2)直径和数量——保证管束的整体刚性

*在保证不小于给定拉杆总截面积下,直径和数量可做变动,但d 10mm, n 4 3)布置均匀布置在管束的外边缘,对D N较大时,布入布管区或折流板缺口区,每块板

不得少于3根。

4)固定端应远离圆筒焊有防冲板的接管端,便于圆筒的组装。

5)拉杆孔孔d1=d,+1mm d n≤d,

l1≥d,(焊接); l2>l a(螺纹深)

10.防冲与导流

1)作用减轻冲蚀,改善流体不均匀分布。

2)防冲板

a)设置条件——轴向进口流速>3m/s

——壳程进口流体的νρ2值:非腐蚀、磨蚀单相>2230Kg/m·s2

其他液体>740Kg/m·s2

——有腐蚀、磨蚀气体、蒸汽、气液混合物。

b)尺寸——间距≧1/4接管外径

——板的直径或边长=接管外径+50mm。

——厚度δ:CS≥4.5mm,SS≥3mm

c)组合式单片防冲罩(适用于满布管)

3)导流筒——防冲与均布作用

a)设置条件壳程进出口管距管板较远,流体停滞区过大,

b)作用减少流体停滞区,增加有效换热长度,提高换热面积利用率,

c)——内导流筒筒壳间隙≧1/3接管外径,筒端空距以流通面积对等为准,即F环隙=F周向

——外导流筒筒壳间隙:接管外径≦200mm 为≧50mm,接管外径>200mm为≧

75mm。

11. 双壳程

1)纵向隔板

a)δ=6mm,端部与管板连接(焊接或螺栓)(δ取决于刚度和压差)

b)回流端通道面积≥折流板缺口面积

2)密封单向密封和双向密封2种结构,单向的应设置在压力高的一侧(进流侧)。

常用于可抽式管束,固定管板式可焊死或插入壳体槽口

12.防短路

1)旁路挡板(密封条)

a)设在与折流流向相垂直处,焊于折流板槽口,厚度δ=δ折

b)数量D N≦500mm 1对

500<D N<1000mm 2对

DN>1000mm 3对

对DN小的,管数少的效果明显

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

管壳式换热器的设计和选用的计算步骤

管壳式换热器的设计和选用的计算步骤 设有流量为m h的热流体,需从温度T1冷却至T2,可用的冷却介质入口温度t1,出口温度选定为t2。由此已知条件可算出换热器的热流量Q和逆流操作的平均推动力 。根据传热速率基本方程: 当Q和已知时,要求取传热面积A必须知K和则是由传热面积A的大小和换热器 结构决定的。可见,在冷、热流体的流量及进、出口温度皆已知的条件下,选用或设计换热器必须通过试差计算,按以下步骤进行。 初选换热器的规格尺寸 初步选定换热器的流动方式,保证温差修正系数大于0.8,否则应改变流动方式,重 新计算。计算热流量Q及平均传热温差△t m,根据经验估计总传热系数K估,初估传热面积A 选取管程适宜流速,估算管程数,并根据A估的数值,确定换热管直径、长度及排列。 计算管、壳程阻力在选择管程流体与壳程流体以及初步确定了换热器主要尺寸的基础上,就可以计算管、壳程流速和阻力,看是否合理。或者先选定流速以确定管程数N P和折流板间距B再计算压力降是否合理。这时N P与B是可以调整的参数,如仍不能满足要求,可另选壳径再进行计算,直到合理为止。 核算总传热系数 分别计算管、壳程表面传热系数,确定污垢热阻,求出总传系数K计,并与估算时所取用的传热系数K估进行比较。如果相差较多,应重新估算。 计算传热面积并求裕度 根据计算的K计值、热流量Q及平均温度差△t m,由总传热速率方程计算传热面积A0,一般应使所选用或设计的实际传热面积A P大于A020%左右为宜。即裕度为20%左右,裕度的计算式为: 某有机合成厂的乙醇车间在节能改造中,为回收系统内第一萃取塔釜液的热量,用其釜液将原料液从95℃预热至128℃,原料液及釜液均为乙醇,水溶液,其操作条件列表如下: 表4-18设计条件数据

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

标准系列化管壳式换热器的设计计算步骤(精)

标准系列化管壳式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取经验传热系数 (7)计算传热面积 (8)查换热器标准系列,获取其基本参数 (9)校核传热系数,包括管程、壳程对流给热系数的计算。假如核算的K与原选的经验值相差不大,就不再进行校核。若相差较大,则需重复(6)以下步骤 (10)校核有效平均温度差 (11)校核传热面积 (12)计算流体流动阻力。若阻力超过允许值,则需调整设计。 非标准系列化列管式换热器的设计计算步骤 (1)了解换热流体的物理化学性质和腐蚀性能 (2)计算传热量,并确定第二种流体的流量 (3)确定流体进入的空间 (4)计算流体的定性温度,确定流体的物性数据 (5)计算有效平均温度差,一般先按逆流计算,然后再校核 (6)选取管径和管内流速 (7)计算传热系数,包括管程和壳程的对流传热系数,由于壳程对流传热系数与壳径、管束等结构有关,因此,一般先假定一个壳程传热系数,以计算K,然后再校核 (8)初估传热面积,考虑安全因素和初估性质,常采用实际传热面积为计算传热面积值的1.15~1.25倍(9)选取管长 (10)计算管数 (11)校核管内流速,确定管程数 (12)画出排管图,确定壳径和壳程挡板形式及数量等 (13)校核壳程对流传热系数 (14)校核平均温度差 (15)校核传热面积 (16)计算流体流动阻力。若阻力超过允许值,则需调整设计。 甲苯立式管壳式冷凝器的设计(标准系列) 一、设计任务 1.处理能力: 2.376×104t/a正戊烷; 2.设备形式:立式列管式冷凝器。 二、操作条件 1.正戊烷:冷凝温度51.7℃,冷凝液于饱和温度下离开冷凝器; 2.冷却介质:为井水,流量70000kg/h,入口温度32℃; 3.允许压降:不大于105Pa; 4.每天按330天,每天按24小时连续运行。 三、设计要求 选择适宜的列管式换热器并进行核算。 附:正戊烷立式管壳式冷却器的设计——工艺计算书(标准系列)

管壳式换热器传热计算示例(终)-用于合并

管壳式换热器传热设计说明书 设计一列管试换热器,主要完成冷却水——过冷水的热量交换设计压力为管程(表压),壳程压力为(表压),壳程冷却水进,出口温度分别为20℃和50℃,管程过冷水进,出口温度分别为90℃和65℃管程冷水的流量为80t/h。 2、设计计算过程: (1)热力计算 1)原始数据: 过冷却水进口温度t1′=145℃; 过冷却水出口温度t1〞=45℃; 过冷却水工作压力P1=(表压) 冷水流量G1=80000kg/h; 冷却水进口温度t2′=20℃; 冷却水出口温度t2〞=50℃; 冷却水工作压力P2= Mp a(表压)。改为冷却水工作压力P2= Mp 2)定性温度及物性参数: 冷却水的定性温度t2=( t1′+ t1〞)/2=(20+50)/2=35℃; 冷却水的密度查物性表得ρ2= kg/m3; 冷却水的比热查物性表得C p2= kJ/kg.℃ 冷却水的导热系数查物性表得λ2= W/m.℃ 冷却水的粘度μ2=×10-6 Pa·s; 冷却水的普朗特数查物性表得P r2=; 过冷水的定性温度℃; 过冷水的密度查物性表得ρ1=976 kg/m3; 过冷水的比热查物性表得C p1=kg.℃; 过冷水的导热系数查物性表得λ1=m.℃; 过冷水的普朗特数查物性表得P r2; 过冷水的粘度μ1=×10-6 Pa·s。 过冷水的工作压力P1= Mp a(表压) 3)传热量与水热流量 取定换热器热效率为η=; 设计传热量: 过冷却水流量: ; 4)有效平均温差 逆流平均温差:

根据式(3-20)计算参数p、R: 参数P: 参数R: 换热器按单壳程2管程设计,查图3—8得温差校正系数Ψ=; 有效平均温差: 5)管程换热系数计算: 附录10,初定传热系数K0=400 W/m.℃; 初选传热面积: m2; 选用φ25×无缝钢管作换热管; 管子外径d0=m; 管子内径d i=×=0.02 m; 管子长度取为l=3 m; 管子总数: 取720根管程流通截面积: m2 管程流速: m/s 管程雷诺数: 湍流管程传热系数:(式3-33c) 6)结构初步设计: 布管方式见图所示: 管间距s=0.032m(按GB151,取); 管束中心排管的管数按所给的公式确定: 取20根;

管壳式换热器的型号表示方法

6.3.8 管壳式换热器的型号表示方法 (t t s s P N LN XXXDN A I II P d N ----------------或) ---- -- ---- --- ----- ------ ① ② ③ ④ ⑤ ⑥ 1. 1〉第一个字母代表前端管箱形式 2〉第二个字母代表壳体形式 3〉第三个字母代表后端结构形式 2. 公称直径(mm ) 对于釜式重沸器用分数表示,分子为管箱内直径,分母为圆筒内直径 3. 管/壳程设计压力,MPa 。压力相等时只写P t 4. 公称换热面积 ㎡ 5. 当采用Al,Cu,Ti 换热管时,应在LN/d 后面加材料琼等号,如LN/D Cu LN --公称长度 ,m d --换热管外经 mm 6. 管/壳程数。单壳程时 只写N t 7. I----I 级(换热器)管束 采用较高级冷拔换热管,适用于无相变传热和易产生振动场合 II---II 级(换热器)管束 采用普通级冷拔换热管,适用于受沸、冷凝传热和无振动一般场合 例如: (1) 浮头式换热器:S---钩圈式浮头 6500 1.65442.5A E S I ------------ 平盖管箱,公称直径500㎜,管壳程设计压力均为1.6MPa ,公称换热面积254mm ,较高 级冷拔换热器外经25mm,管长6m,4管程但壳程的I 级浮头式换热器 (2) 固定管板式换热器: 2.5970020041.625B E M I ------------ 封头管箱,公称直径700mm,管程设计压力2.5MPa ,壳程设计压力1.6MPa,,公称换热面积2200m , 较高级冷拔换热管外经25mm,管长9mm,4管程,但壳程的固定管板式换热器,M--与B 相似的固定管板(封头)结构。

管壳式换热器的常见问题

管壳式换热器标准的一些常见问题 换热器-1 GB151-1999管壳式换热器的适用范围是什么? 答:1.适用于固定管板式、浮头式、U形管式和填料函式换热器。 2.适用的参数为: 公称直径DN ≤2600mm; 公称压力PN ≤35MPa; 且公称直径(mm)和公称压力(MPa)的乘积不大于1.75×104。 换热器-2 对于管、壳程设计压力均为内压的管壳式换热器,其受压元件在什么情况下可按压差设计?还应考虑什么问题? 答:对于同时受管、壳程内压作用的元件,仅在能保证管、壳程同时升、降压时,才可以按压差设计。压差的取值还应考虑在压力试验过程中可能出现的最大压差值,同时设计者应提出压力试验的步进程序。 换热器-3 试述管壳式换热器中管、壳程设计温度与管壁、壳壁温度的差异及作用。 答:管、壳程设计温度分别为管程管箱和壳程壳体的设计温度,是对应于管、壳程设计压力分别设定的管、壳程受压元件金属温度(沿元件金属横截面的温度平均值)的最高值或最低值。用于确定元件材料的许用应力。 管壁、壳壁温度分别为沿长度平均的换热管、壳程圆筒金属温度,分别是传热过程中形成的换热管、壳程圆筒金属温度沿长度方向的平均值。用于计算壳程圆筒与换热管的热膨胀差在管板、换热管和壳程圆筒中引起的应力。 这两组温度不仅定义、性质和作用不同,而且数值上也会有较大差异,因此,在计算时一定要注意,不可混用。 换热器-4 管壳式换热器中同时受管、壳程温度作用的元件的设计温度如何确定? 答:管壳式换热器中同时受管、壳程温度作用的元件的设计温度可按金属温度确定,也可取较高侧的设计温度。 换热器-5 管壳式换热器主要元件腐蚀裕量的考虑原则是什么? 答:管壳式换热器主要元件腐蚀裕量的考虑原则: a)管板、浮头法兰、球冠形封头和钩圈两面均应考虑腐蚀裕量; b)平盖、凸形封头、管箱和圆筒的内表面应考虑腐蚀裕量; c)管板和平盖上开槽时,可把高出隔板槽底面的金属作为腐蚀裕量,但当腐蚀裕量大于槽深时,还应加上两者的差值; d)压力容器法兰和管法兰的内直径面上应考虑腐蚀裕量; e)换热管不考虑腐蚀裕量; f)拉杆、定距管、折流板和支持板等非受压元件,一般不考虑腐蚀裕量。 换热器-6 对于无法进行无损检测的钢制固定管板式换热器壳程圆筒的环向焊接接头,其焊接接头系数如何选取? 答:对于无法进行无损检测的钢制固定管板式换热器壳程圆筒的环向焊接接头,当采用氩弧焊打底或沿焊接接头根部全长有紧贴基本金属的垫板时,其焊接接头系数φ=0.6。

(完整版)管壳式换热器简介及其分类

管壳式换热器简介及分类 概述 换热器是在具有不同温度的两种或两种以上流体之间传递热量的设备。在工业生产中,换热器的主要作用是使热量从温度较高的流体传递给温度较低的流体,使流体温度达到工艺流程规定的指标,以满足过程工艺条件的需要。换热器是化工、炼油、动力、食品、轻工、原子能、制药、航空以及其他许多工艺部门广泛使用的一种通用设备。在华工厂中,换热器的投资约占总投资的10%-20%;在炼油厂中该项投资约占总投资的35%-40%。 目前,在换热器中,应用最多的是管壳式换热器,他是工业过程热量传递中应用最为广泛的一种换热器。虽然管壳式换热器在结构紧凑型、传热强度和单位传热面的金属消耗量无法与板式或者是板翅式等紧凑换热器相比,但管壳式换热器适用的操作温度与压力范围较大,制造成本低,清洗方便,处理量大,工作可靠,长期以来人们已在其设计和加工方面积累了许多经验,建立了一整套程序,人么可以容易的查找到其他可靠设计及制造标准,而且方便的使用众多材料制造,设计成各种尺寸及形式,管壳式换热器往往成为人们的首选。 近年来,由于工艺要求、能源危机和环境保护等诸多因素,传热强化技术和换热器的现代研究、设计方法获得了飞速发展,设计人员已经开发出了多种新型换热器,以满足各行各业的需求。如为了适应加氢装置的高温高压工艺条件,螺纹锁紧环换热器、Ω密封环换热器、金属垫圈式换热器技术获得了快速发展,并在乙烯裂解、合成氨、聚合和天然气工业中大量应用,可达到承压35Mpa、承温700℃的工艺要求;为了回收石化、原子能、航天、化肥等领域使用燃气、合成气、烟气等所产生的大量余热,产生了各种结构和用途的废热锅炉,为了解决换热器日益大型化所带来的换热器尺度增大,震动破坏等问题,纵流壳程换热器得到飞速的发展和应用;纵流壳程换热器不仅提高了传热效果,也有效的克服了由于管束震动引起的换热器破坏现象。另外,各种新结构的换热器、高效重沸器、高效冷凝器、双壳程换热器等也大量涌现。 管壳式换热器按照不同形式的分类 工业换热器通常按以下诸方面来分类:结构、传热过程、传热面的紧凑程度、所用材料、

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构 随着科技高速发展的今天,换热器已广泛应用国内各个生产领域,换热器跟人们生活息息相关。换热器顾名思义就是用来热交换的机械设备。换热器是一种非常重要的换热设备,能够把热量从一种介质传递给另一种介质,在各种工业领域中有很广泛的应用。尤其在化工、能源、交通、机械、制冷、空调等领域应用更广泛。换热器能够充分利用工业的二次能源,并且能够实现余热回收和节能。换热器分为很多类型,管壳式换热器是很普遍的一种。管壳式换热器的传热强化技术主要包括管程和壳程的传热强化研究。本文对管壳式换热器的原理进行简单介绍。 一、管壳式换热器的工作原理 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常的工作压力可达4兆帕,工作温度在200℃以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图 1 [固定管板式换热器]为固定管板式换热器的构造。A 流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m (℃)。 二、管壳式换热器的形式与结构 管壳式换热器是把管子与管板连接,再用壳体固定。它的形式大致分为固

TEMA管壳式换热器设计原则

TEMA规格的管壳式换热器设计原则 ——摘引自《PERRY’S CHEMICAL ENGINEER’S HANDBOOK 1999》 设计中的一般考虑 流程的选择在选择一台换热器中两种流体的流程时,会采用某些通则。管程的流体的腐蚀性较强,或是较脏、压力较高。壳程则会是高粘度流体或某种气体。当管/壳程流体中的

某一种要用到合金结构时,“碳钢壳体+合金管侧部件”比之“接触壳程流体部件全用合金+碳钢管箱”的方案要较为节省费用。 清洗管子的内部较之清洗其外部要更为容易。 假如两侧流体中有表压超过2068KPa(300 Psig)的,较为节约的结构形式是将高压流体安排在管侧。 对于给定的压降,壳侧的传热系数较管侧的要高。 换热器的停运最通常的原因是结垢、腐蚀和磨蚀。 建造规则“压力容器建造规则,第一册”也就是《ASME锅炉及压力容器规范Section VIII , Division 1》, 用作换热器的建造规则时提供了最低标准。一般此标准的最新版每3年出版发行一次。期间的修改以附录形式每半年出一次。在美国和加拿大的很多地方,遵循ASME 规则上的要求是强制性的。最初这一系列规范并不是准备用于换热器制造的。但现在已包含了固定管板式换热器中管板与壳体间焊接接头的有关规定,并且还包含了一个非强制性的有关管子-管板接头的附件。目前ASME 正在开发用于换热器的其他规则。 列管式换热器制造商协会标准, 第6版., 1978 (通常引称为TEMA 标准*), 用在除套管式换热器而外的所有管壳式换热器的应用中,对ASME规则的补充和说明。TEMA “R级”设计就是“用于石油及相关加工应用的一般性苛刻要求。按本标准制造的设备,设计目的在于在此类应用时严苛的保养和维修条件下的安全性、持久性。”TEMA “C级”设计是“用于商用及通用加工用途的一般性适度要求。”而TEMA“B级”是“用于化学加工用途” *译者注:这已经不是最新版的,现在已经出到1999年第8版 3种建造标准的机械设计要求都是一样的。各TEMA级别之间的差异很小,并已由Rubin 在Hydrocarbon Process., 59, 92 (June 1980) 上做了归列。 TEMA标准所讨论的主题是:命名原则、制造公差、检验、保证、管子、壳体、折流板和支撑板,浮头、垫片、管板、管箱、管嘴、法兰连接端及紧固件、材料规范以及抗结垢问题。 API Standard 660, 4th ed., 1982*,一般炼油用途的管壳式换热器是由美国炼油协会出版的,以补充TEMA标准和ASME规范。很多从事化学和石油加工的公司都有其自己的标准以对以上各种要求作出补充。关于规范、标准和个客户的规定之间的关系已由F. L. Rubin编辑结集,由ASME 在1979年出版了(参见佩里化学工程师手册第6章关于压力容器规则的讨论)。 *译者注:这已经不是最新版的,现在已经出到2001年第6版 换热器的设计压力和设计温度通常在确定时都在预计的工作条件上又给了一个安全裕量。一般设计压力比操作中的预计最高压力或关泵时的最高压力要高大约172KPa(25 Psi);而设计温度则通常较最高工作温度高14°C (25°F)。 管束振动随着折流板换热器被设计用于流量和压降越来越高的场合,由管子振动带来的损 标准分享网 https://www.wendangku.net/doc/3b17875786.html, 免费下载

管壳式换热器设计说明书

1.设计题目及设计参数 (1) 1.1设计题目:满液式蒸发器 (1) 1.2设计参数: (1) 2设计计算 (1) 2.1热力计算 (1) 2.1.1制冷剂的流量 (1) 2.1.2冷媒水流量 (1) 2.2传热计算 (2) 2.2.1选管 (2) 2.2.2污垢热阻确定 (2) 2.2.3管内换热系数的计算 (2) 2.2.4管外换热系数的计算 (3) 2.2.5传热系数 K计算 (3) 2.2.6传热面积和管长确定 (4) 2.3流动阻力计算 (4) 3.结构计算 (5) 3.1换热管布置设计 (5) 3.2壳体设计计算 (5) 3.3校验换热管管与管板结构合理性 (5) 3.4零部件结构尺寸设计 (6) 3.4.1管板尺寸设计 (6) 3.4.2端盖 (6) 3.4.3分程隔板 (7) 3.4.4支座 (7) 3.4.5支撑板与拉杆 (7) 3.4.6垫片的选取 (7) 3.4.7螺栓 (8) 3.4.8连接管 (9) 4.换热器总体结构讨论分析 (10) 5.设计心得体会 (10) 6.参考文献 (10)

1.设计题目及设计参数 1.1设计题目:105KW 满液式蒸发器 1.2设计参数: 蒸发器的换热量Q 0=105KW ; 给定制冷剂:R22; 蒸发温度:t 0=2℃,t k =40℃, 冷却水的进出口温度: 进口1t '=12℃; 出口1 t " =7℃。 2设计计算 2.1热力计算 2.1.1制冷剂的流量 根据资料【1】,制冷剂的lgp-h 图:P 0=0.4MPa ,h 1=405KJ/Kg ,h 2=433KJ/Kg , P K =1.5MPa ,h 3=h 4=250KJ/Kg ,kg m 04427.0v 3 1=,kg m v 3 400078.0= 图2-1 R22的lgP-h 图 制冷剂流量s kg s kg h h Q q m 667 .0250 4051054 10=-= -= 2.1.2冷媒水流量 水的定性温度t s =(12+7)/2℃=9.5℃,根据资料【2】附录9,ρ=999.71kg/m 3 ,c p =4.192KJ/(Kg ·K)

管壳式换热器课程设计

管壳式换热器课程设计 一、管壳式换热器的介绍 管壳式换热器是目前应用最为广泛的换热设备,它的特点是结构坚固、可靠高、适应性广、易于制造、处理能力大、生产成本低、选用的材料范 围广、换热面的清洗比较方便、高温和高压下亦能应用。但从传热效率、结构的紧凑性以及位换热面积所需金属的消耗量等方面均不如一些新型 高效率紧凑式换热器。管壳式换热器结构组成:管子、封头、壳体、接管、 管板、折流板;如图1-1所示。根据它的结构特点,可分为固定管板式、 浮头式、U形管式、填料函和釜式重沸器五类。 二、换热器的设计 2.1设计参数 参数名称壳程管程 设计压力(MPa) 2.6 1.7 操作压力(MPa) 2.2 1.0/0.9(进口/出口) 设计温度(℃) 250 75

操作温度(℃) 220/175(进口、出口) 25/45(进口/出口) 流量(Kg/h) 40000 选定 物料(-)石脑油冷却水 程数(个) 1 2 腐蚀余度(mm) 3 - 2.2设计任务 1. 根据传热参数进行换热器的选型和校核 2.对换热器主要受压原件进行结构设计和强度校核,包括筒体、前端封头管箱、外头盖、封头、法兰、管板、支座等。 3.设计装配图和重要的零件图。 2.3热工设计 2.3.1基本参数计算 2.3.1.1估算传热面积 -=220-45=175 -=175-25=150 因为,所以采用对数平均温度差 算术平均温度差:= P= R= 查温差修正系数表得 因此平均有效温差为0.82 放热量 考虑换热器对外界环境的散热损失,则热流体放出的热量将大于冷流体吸收的热量,即:

取热损失系数,则冷流体吸收的热量: 由可的水流量: ==31372.8 这里初估K=340W/(),由稳态传热基本方程得传热面积: =16.55 2.3.1.2由及换热器系列标准,初选型号及主要结构参数 选取管径卧式固定管板式换热器,其参数见上表。从而查《换热器设计手 册》表1-2-7,即下表 公称直径管程数管子根数中心排管管程流通换热面积换热管长 换热管排列规格及排列形式: 换热管外径壁厚:d=50mm 排列形式:正三角形 管间距: =32mm 折流板间距: 2.1.1.3实际换热面积计算 实际换热面积按下式计算 2.2计算总传热系数,校核传热面积 总传热系数的计算 式中:——管外流体传热膜系数,W/(m2·K); ——管内流体传热膜系数,W/(m2·K);

管壳式换热器设计讲解

目录 任务书 (2) 摘要 (4) 说明书正文 (5) 一、设计题目及原始数据 (5) 1.原始数据 (5) 2.设计题目 (5) 二、结构计算 (5) 三、传热计算 (7) 四、阻力计算 (8) 五、强度计算 (9) 1.冷却水水管 (9) 2.制冷剂进出口管径 (9) 3.管板 (10) 4支座 (10) 5.密封垫片 (10) 6.螺钉 (10) 6.1螺钉载荷 (10) 6.2螺钉面积 (10) 6.3螺钉的设计载荷 (10) 7.端盖 (11) 六、实习心得 (11) 七、参考文献 (12) 八、附图

广东工业大学课程设计任务书 题目名称 35KW 壳管冷凝器 学生学院 材料与能源学院 专业班级 热能与动力工程制冷xx 班 姓 名 xx 学 号 xxxx 一、课程设计的内容 设计一台如题目名称所示的换热器。给定原始参数: 1. 换热器的换热量Q= 35 kw; 2. 给定制冷剂 R22 ; 3. 制冷剂温度 t k =40℃ 4. 冷却水的进出口温度 '0132t C =" 0136t C = 二、课程设计的要求与数据 1)学生独立完成设计。 2)换热器设计要结构合理,设计计算正确。(换热器的传热计算, 换热面积计 算, 换热器的结构布置, 流体流动阻力的计算)。 3)图纸要求:图面整洁、布局合理,线条粗细分明,符号国家标准,尺寸标注规范,使用计算机绘图。 4)说明书要求: 文字要求:文字通顺,语言流畅,书写工整,层次分明,用计算机打印。 格式要求: (1)课程设计封面;(2)任务书;(3)摘要;(4)目录;(5)正文,包括设计的主要参数、热力计算、传热计算、换热器结构尺寸计算布置及阻力计算等设计过程;对所设计的换热器总体结构的讨论分析;正文数据和公式要有文献来源编号、心得体会等;(6)参考文献。 三、课程设计应完成的工作 1)按照设计计算结果,编写详细设计说明书1份; 2)绘制换热器的装配图1张,拆画关键部件零件图1~2张。

管壳式换热器的设计(化工机械课程设计)

北京理工大学珠海学院 课程设计任务书 2011~2012学年第2 学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目 管壳式换热器的设计 二、课程设计内容 1.管壳式换热器的结构设计 包括:管子数n,管子排列方式,管间距的确定,壳体尺寸计算,换热器封头选择,容器 法兰的选择,管板尺寸确定塔盘结构,人孔数量及位置,仪表接管选择、工艺接管管径计算等等。 2. 壳体及封头壁厚计算及其强度、稳定性校核 (1)根据设计压力初定壁厚; (2)确定管板结构、尺寸及拉脱力、温差应力; (3)计算是否安装膨胀节; (4)确定壳体的壁厚、封头的选择及壁厚,并进行强度和稳定性校核。 3. 筒体和支座水压试验应力校核 4. 支座结构设计及强度校核 包括:裙座体(采用裙座)、基础环、地脚螺栓 5. 换热器各主要组成部分选材,参数确定。 6. 编写设计说明书一份 7. 绘制2号装配图一张,Auto CAD绘3号图一张(塔设备的)。 三、设计条件 (1)气体工作压力 管程:半水煤气(1、0.80MPa;2、0.82 MPa;3、0.85Mpa;4、0.88 MPa ;5、0.90 MPa)壳程:变换气(1、0.75MPa;2、0.78 MPa;3、0.80Mpa;4、0.84 MPa ;5、0.85 MPa)(2)壳、管壁温差50℃,t t>t s 壳程介质温度为320-450℃,管程介质温度为280-420℃。 (3)由工艺计算求得换热面积为120m2,每组增加10 m2。

(4)壳体与封头材料在低合金高强度刚中间选用,并查出其参数,接管及其他数据根据表7-15、7-16选用。 (5)壳体与支座对接焊接,塔体焊接接头系数Φ=0.9 (6)图纸:参考图7-52,注意:尺寸需根据自己的设计的尺寸标注。 四、进度安排 制图地点:暂定CC405 五、基本要求 1.学生要按照任务书要求,独立完成塔设备的机械设计; 2.设计说明书一律采用电子版,2号图纸一律采用徒手绘制; 3.各班长负责组织借用绘图仪器、图板、丁字尺;学生自备图纸、橡皮与铅笔; 4.画图结束后,将图纸按照统一要求折叠,同设计说明书统一在答辩那一天早上8:30前,由班长负责统一交到HF508。 5.根据设计说明书、图纸、平时表现及答辩综合评分。

管壳式换热器

课程设计 6 4.3 吨/年热水的管壳式换热器设计 10 姓名郭宁 院系食品工程学院 专业热能与动力工程 年级热能本1201 学号20122916107 指导教师邹欣华 2015年1月20 日

目录 绪论 (1) 1设计任务 (1) 2换热器设计方案的确定 (1) 2.1确定流体的流量、压力、温度、热负荷 (1) 2.2管壳等材料的选择 (1) 3换热器热力计算 (1) 3.1流体物性数据 (1) 3.2传热温差 (2) 3.3传热面积 (2) 4换热器结构设计 (2) 4.1管数和管程数和管束的分程、管子的排列的确定 (3) 4.2管子在管板上的排列方式 (4) 5换热器校核设计 (4) 5.1核算总传热系数 (5) 5.2确定污垢热阻 (6) 5.3核算压强降 (6) 6图纸绘制 (9) 7主要参考文献 (9)

绪论 换热器的发展动向:换热器的传热与流体流动计算的准确性,取决于物性模拟的准确性。因此,物性模拟一直为传热界重点研究课题之一,特别是两相流物性的模拟。两相流的物性基础来源于实验室实际工况的差别。纯组分介质的物性数据基本上准确,但汽油组成物的数据就与实际工况相差较大,特别是带有固体颗粒的流体模拟更复杂。为此,要求物性模拟在手段上更加先进,测试的准确率更高。从而使换热器计算更准确,材料更节省。物性模拟将代表换热器的经济技术水平。 1设计任务 处理能力为6104.3?吨/年热水的管壳式换热器,热水入口温度90℃,出口温度70℃,冷却介质为循环水,入口温度为30℃,出口温度为40℃,允许压强降不大于105Pa 。每年按照320天计算,每天连续24小时运行。 2换热器设计方案的确定 2.1确定流体的流量、压力、温度、热负荷 流量:热水流量6104.3?吨/年=97.122kg/s 冷却水流量=246kg/s 温度:热水入口温度90℃,出口温度70℃,冷却介质为循环水,入口温度为30℃,出口温度为40℃。 热负荷:()()w t t c m Q 7" 2 '11110033.17090420097.122?=-??=-= 2.2管壳等材料的选择 选取规格为25*2.5mm 的无缝钢管,mm d mm d i 20,250== 3换热器热力计算 管程流体的定性温度: 80270 901=+= T ℃ 壳程流体的定性温度: 352 30 402=+=T ℃ 3.1流体物性数据 两流体在定性温度下的物性数据如下: 水35 993.95 4.174 727.4 0.6265 水80 971.8 4.195 355.1 0.674

管壳式换热器工作原理、分类及其特点

管壳式换热器工作原理、分类及其特点 管壳式换热器(shell and tube heat exchanger)又称列管式换热器。是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。这种换热器结构较简单,操作可靠,可用各种结构材料(主要是金属材料)制造,能在高温、高压下使用,是目前应用最广的类型。 1.1管壳式换热器工作原理 管壳式换热器一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。壳体多为圆筒形,内部装有管束,管束两端固定在管板上。进行换热的冷热两种流体,一种在管内流动,称为管程流体(图1中蓝色箭头示意);另一种在管外流动,称为壳程流体(图1中红色箭头示意)。为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。换热管在管板上可按等边三角形或正方形排列。等边三角形排列较紧凑,管外流体湍动程度高,传热分系数大;正方形排列则管外清洗方便,适用于易结垢的流体。 流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。 图1管壳式换热器工作原理示意图 1.2管壳式换热器分类 1.2.1 固定管板式换热器 固定管板式换热器的两端管板,采用焊接与壳体联成一体,结构简单。由于两个管

板被换热管互相支撑,与其他管壳式换热器相比,管板最薄。当管束与壳体之间的温差太大而产生不同的膨胀时,常会使管子与管板的接口脱开,发生介质泄漏,因此当只适用于冷热流体温度差不大,且壳程不需机械清洗时的换热操作。当温度差稍大而壳程压力又不太高时,可在壳体上安装膨胀节,以减小热应力。 1.2.2 浮头式换热器 浮头式换热器的两断管板只有一端管板与壳体焊接固定,另一端的管板可在壳体内自由浮动,完全消除了热应力,该端成为浮头。整个管束可从壳体中抽出,便于机械清洗和检修。浮头式换热器的应用较广,但结构比较复杂,造价较高。 1.2.3 U型管换热器 U型管换热器的每根换热管皆弯成U形,管子的两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器由于壳体和管子分开,管束可以自由伸缩,热补偿性能好,结构比浮头式简单,但管程不易清洗。U型管式换热器一般用于高温高压的情况下,尤其当压力较高时,在弯管段壁厚要加厚,以补偿弯管后管壁的减薄。

《管壳式换热器机械设计》

设计的目的与意义 管壳式换热器的发展史 管壳式换热器的国内外概况 壳层强化传热 管层强化传热 提高管壳式换热器传热能力的措施设计思路、方法 1.8.2换热器管径的设计 1.8.3换热管排列方式的设计 1.8.4 管、壳程分程设计

1.8.5折流板的结构设计 1.8.6管、壳程进、出口的设计 选材方法 1.9.1 管壳式换热器的选型 1.9.3流速的选择 1.9.4材质的选择 1.9.5 管程结构 2壳体直径的确定与壳体壁厚的计算1管径1 管子数n1 管子排列方式,管间距的确定1 换热器壳体直径的确定1 换热器壳体壁厚计算及校核1 3换热器封头的选择及校核 4容器法兰的选择5

5管板 管板结构尺寸6 管板与壳体的连接 管板厚度6 6管子拉脱力的计算8 7计算是否安装膨胀节0 8折流板设计2 9开孔补强5 10支座7 群座的设计7 基础环设计9 地角圈的设计0 符号说明2 参考文献4 小结

2 壳体直径的确定与壳体壁厚的计算 管径 换热器中最常用的管径有φ19mm ×2mm 和φ25mm ×。小直径的管子可以承受更大的压力,而且管壁较薄;同时,对于相同的壳径,可排列较多的管子,因此单位体积的传热面积更大,单位传热面积的金属耗量更少。所以,在管程结垢不很严重以及允许压力降较高的情况下,采用φ19mm ×2mm 直径的管子更为合理。如果管程走的是易结垢的流体,则应常用较大直径的管子。 标准管子的长度常用的有 1500mm ,2000mm ,2500mm , 3000m,4500,5000,6000m,7500mm,9000m 等。换热器的换热管长度与公称直径之比一般为4—25,常用的为6—10 选用Φ25×的无缝钢管,材质为20号钢,管长。 管子数n L F n d 均π=Θ (2-1) 其中安排拉杆需减少6根,故实际管数n=503-6=497根 管子排列方式,管间距的确定 采用正三角形排列,由《化工设备机械基础》表7-4查得层数为12层,对角线上的管数为25,查表7-5取管间距a=32mm. 换热器壳体直径的确定

管壳式换热器工作原理和结构

管壳式换热器工作原理和结构 来自网络2010-3-2 15:17:39 admin 管壳式换热器由一个壳体和包含许多管子的管束所构成,冷、热流体之间通过管壁进行换热的换热器。管壳式换热器作为一种传统的标准换热设备,管壳式换热器在化工、炼油、石油化工、动力、核能和其他工业装置中得到普遍采用,特别是在高温高压和大型换热器中的应用占据绝对优势。通常管壳式换热器的工作压力可达4兆帕,工作温度在200℃ 以下,在个别情况下还可达到更高的压力和温度。一般壳体直径在1800毫米以下,管子长度在9米以下,在个别情况下也有更大或更长的。 工作原理和结构图1 [固定管板式换热器]

为固定管板式换热器的构造。A流体从接管1流入壳体内,通过管间从接管2流出。B流体从接管3流入,通过管内从接管4流出。如果A流体的温度高于B流体,热量便通过管壁由A流体传递给B流体;反之,则通过管壁由B流体传递给A流体。壳体以内、管子和管箱以外的区域称为壳程,通过壳程的流体称为壳程流体(A流体)。管子和管箱以内的区域称为管程,通过管程的流体称为管程流体(B流体)。管壳式换热器主要由管箱、管板、管子、壳体和折流板等构成。通常壳体为圆筒形;管子为直管或U形管。为提高换热器的传热效能,也可采用螺纹管、翅片管等。管子的布置有等边三角形、正方形、正方形斜转45°和同心圆形等多种形式,前3 种最为常见。按三角形布置时,在相同直径的壳体内可排列较多的管子,以增加传热面积,但管间难以用机械方法清洗,流体阻力也较大。管板和管子的总体称为管束。管子端部与管板的连接有焊接和胀接两种。在管束中横向设置一些折流板,引导壳程流体多次改变流动方向,有效地冲刷管子,以提高传热效能,同时对管子起支承作用。折流板的形状有弓形、圆形和矩形等。为减小壳程和管程流体的流通截面、加快流速,以提高传热效能,可在管箱和壳体内纵向设置分程隔板,将壳程分为2程和将管程分为2程、4程、6程和8程等。管壳式换热器的传热系数,在水-水换热时为1400~2850瓦每平方米每摄氏度〔W/(m(℃)〕;用水冷却气体时,为10~280W/(m(℃);用水冷凝水蒸汽时,为570~4000W/(m(℃)。 管壳式换热器特点:管壳式换热器是换热器的基本类型之一,19世纪80年代开始就已应用在工业上。这种换热器结构坚固,处理能力大、选材范围广,适应性强,易于制造,生产成本较低,清洗较方便,在高温高压下也能适用。但在传热效能、紧凑性和金属消耗量方面不及板式换热器、板翅式换热器和板壳式换热器等高效能换热器先进。 管壳式换热器分类:管壳式换热器按结构特点分为固定管板式换热器、浮头式换热器、U型管式换热器、双重管式换热器、填函式换热器和双管板换热器等。前3种应用比较普遍。

相关文档
相关文档 最新文档