文档库 最新最全的文档下载
当前位置:文档库 › 840D参数34100[0]和34210[0] 34090 区别

840D参数34100[0]和34210[0] 34090 区别

840D参数34100[0]和34210[0] 34090 区别

MD 34100:REFP_SET_POS

设定系统找到参考点后,屏幕上显示的数值,即参考点数值。

MD 34210:ENC_REFP_STATE

用于绝对值编码器的调整,调整时设为"1",调整后系统自动改为"2"

MD 34090:REFP_MOVE_DIST_CORR

是将参考点偏移,即系统找到电机上或光栅尺上零标记后,额外移动的量。

840d主要参数设定

西门子840D数控系统的参数设定 摘要本文主要针对以西门子840D为控制乐境的数控机床,对算机床数据的调整进行了分析,同时对机床限住的设定与驱神的配王 进行了论述。 关键词保护级别有效方式设定配置 l 概述 随着电站经济的飞跃发展,对电站产品的加工设备的要求越来越高,对机械加工的要求也越来越高,如高低压加热器的管板,冷凝器 的隔板等加工,这些都必须用数控机床来完成。我国在80年代初进口了许多数控机床,其采用的数控系统十分多样化,其中西门子 840D数控系统由于其强大的功能,优越的性能,已越来越被广大厂商的各种数控机床所采用,但西门子公司所提供的标准数据并不一 定完全适合机床,因些很有必要进行参数的设定与调整。 2 相关问题 在对机床参数进行调整前,有两个与数据调整有关的问题需要特别注意的:西门子数据的保护级别和数据写入有效的方式。 2.1 数据的保护级别 西门子共设有7个等级的数据保护级别(见表1),级别0是最高的而级别7是最低的,高级别向下兼容低级别。在修改数据的时候,若设 定的Password级别不够高,将无法修改某些特定的机床参数。具体修改密码的方法是在操作面板(OP)上依次按如下的软

2.2 数据有效的方式 数据修改后并不全是简单的就能有效,840D数控系统提供了多种数据有效的方式,而具体采用哪种方式又取决于所修改数据的参数类型。数据的类型及其生效的方式共有如下几种: (1)POWER ON(of)生效方式是按操作 (2)NEW-CONF(cf)生效方式是按操作 面板的或者按机床控制面 (3)RESET(re)按机床控制面板上的l 键生效 (4)II~ F_,DLt,TE(s0)数据输人后即可生效 3 参数的设定与调整 西门子840D数控的控制系统参数是由机床数据(MD)与设定数据(sD)组成,机床数据与设定数据的数据范围及其定义见表2所示。由表2中可以看出,机床数据(MD)主要由通用,特别通道,特别轴等机床数据构成;设定数据(sD)由通用,特别轴,特别通道设定数据组成。西门子840D数控数据的调整

840D五轴联动的参数

SINUMERIK 840D涉及五轴转换的主要参数 10620 EULER_ANGLE_NAME_TAB Euler角名称 10630 NORMAL_VECTOR_NAME_TAB 正常矢量名称 10640 DIR_VECTOR_NAME_TAB 方向矢量名称 10642 ROT_VECTOR_NAME_TAB 旋转矢量的名称 10644 INTER_VECTOR_NAME_TAB 暂时矢量的名称 10646 ORIENTATION_NAME_TAB 编程一个第二方向路径的名称 10648 NUTA TION_ANGLE_NAME 垂头角名称 10670 STAT_NAME 状态信息名称:笛卡儿PTP行程中模糊点解决的状态信息标识符 10672 TU_NAME 轴的状态信息名:笛卡儿行程中模糊点解决的状态信息标识符,必须选择一个与其他不冲突的标识符(如轴,Euler角,通常矢量,方向矢量,中间点坐标) 10674 PO_WITHOUT_POLY 无G功能的POLY的多项式编程 20150 GCODE_RESET_V ALUES G组的初始设定,选择一些G组 [0]1=G0,2=G01(std) [5]1=G17(std)2 =G18,3=G19 [7]1=G500(std)2 =G54,3=G55,4=G56,5=G57 [9]1=G60(std)2 =G64,3=G641 [11]1=G601(std)2 =G602,3=G603 [12]1=G70 2 =G71(std) [13]1=G90(std)2 =G91 [14]1=G93 2 =G94(std),3=G95 [20] 1=BRISK(std),2=SOFT

西门子PLC变量与参数的分析

“变量”与“参数”是西门子PLC中常用的名词,在不同的使用场合有不同的含义。为了防止概念的混淆,根据不同的用途,将S7中的变量分为“程序变量”与“诊断变量”两大类:将参数分为“程序参数”与“配置参数(组态参数)”两大类。 “诊断变量”用于PLC调试阶段,“变量表调试”所指的就是“诊断变量”。诊断变量包括的范围很广,凡是PLC中可以赋值或进行显示的信号与数据统称为诊断变量(Variable),它包括输入、输出、内部标志寄存器、定时器、计数器、数据块中的内容等。 “程序变量”与“程序参数”是在PLC程序设计阶段需要使用的“变量”与“参数”。因此,除非特别说明,本章所述的“变量”均是指“程序变量”,“参数” 均是指“程序参数”;而在调试部分、硬件组态(配置)部分所述的“变量”均是指“诊断变量”,“参数”均是指“配置参数”。 西门子S7系列PLC可以使用的”程序变量”包括程序参数、局部变量(又称临时变量Temporary)、静态变量(Static)3种基本类型,并且有规定的使用范围。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解台达PLC、西门子PLC、施耐德plc、欧姆龙PLC的选型,报价,采购,参数,图片,批发等信息,请关注艾驰商城https://www.wendangku.net/doc/3717910864.html,/

siemens 840D常用参数含义诠释

siemens 840D常用参数含义诠释 通道机床数据 20000 通道名称20050 几何轴-通道轴的分配20060 通道中的几何轴名称20070 通道中机床轴号20080 通道中的通道轴名称20090 主导主轴的号 20092 主轴旋转的使能/使能取消20094 轴运行的M运行(西门子模式) 20095 轴运行的M功能(外部模式) 20096 T,M 刀具地址代号改变20098 在MMC上显示轴20100 带面对轴功能的几何轴20108 事件驱动程序调用的设置20109 Prog-Events 的属性20110 RESET复位时的基本功能设置20112 NC启动的基本功能设置20114 方式改变中断了MDI 20116 带读限制的中断程序关闭20117 带信号的中断程序关闭20118 几何轴改变自动使能20120 复位时刀具生效20121 复位的预选刀具 20122 RESET复位/启动和TC时刀具生效20123 RESET时$P_USEKT 的预选值 20124 刀具夹持装置号20126 RESET复位时刀架生效20128 换刀在搜索中 20130 RESET复位时刀沿生效20132 有效总偏差复位20140 用复位健使转换生效。20150 G代码组的初始设定20152 G代码组复位20154 G代码组的初始设定20156 外部G 组复位方式20160 C 样条程序块的数量 20170 COMPRESS压缩的最大程序块长度20172 COMPRESSION压缩方式计算的最大路径进给率20180 带刀架的旋转轴增量20182 带刀架的旋转轴偏置 20184 零件偏置的基本FRAME号20200 倒角/圆角的空程序段20201 斜面圆整行为 20202 有/无带SA的传输运动程序块数量20204 在趋近/回退时的方向反转 20210 带TRC的补偿程序块的最大角度20220 DISC的最大值 20230 带TRC的插值计算的最大角度20240 带TRC的程序段轮廓计算 20250 有/无带TR的传输运动程序块数量20252 带刀具补偿的最大程序块数量 20254 在线刀具补偿使能20256 多项式插值是可能的 20260 对样条插补的速度控制20262 执行SPLINE(样条)时路径速度出错 20270 没有程序的初始位置边沿20272 不带编程的初始位置总校验 20310 刀具管理功能有效20320 刀架中刀具的时间监控20350 激活刀具监控20360 刀具参数的定义20380 带G43 / G44的刀具补偿模式20382 刀具补偿的活动20384 从动轴刀具长度补偿模拟20390 温度补偿激活20392 刀具长度温度补偿的最大值20396 在刀具方向DRF偏置20400 预处理随后程序块的速度 20430 预处理倍率速度字符的数量20440 程序预处理状态速度特征的倍率 20450 程序块循环时间的释放系数20455 预测未来的特殊功能 20460 预见功能的平滑系数20462 带编程进给的进给率20465 轨迹动态进给率的匹配20470 轮廓编程精度20480 带G64x的平滑特性20482 压缩机的方式 20484 压缩机功率20490 G641/G642不受倍率系数约束 20500 固定速度的最小时间20550 G00/G01精确定位条件 20552 G00/G01-chan确定的精确定位条件20600 与路径有关的最大冲击 20602 动态路径的曲线效果20603 在路径撞击时的曲线效果20610 覆盖的反加速度20620 几何轴手轮增量的限定20621 轴手轮增量的限定20622 路径速度覆盖20623 定向速度倍率20624 PLC停止手轮进给20650 加工螺纹时轴的加速特性20660 快升角度的检测方式(螺纹) 20700 没有参考点NC启动被禁止20730 G0插补模式20732 G00插补20734 语言功能光标20750 带G96的G0逻辑20800 子程序结束/停止信号到PLC 20850 在SPOS/SPOA时输出M19给PLC 20900 随动轴的带跳动的曲线平台20905 曲线平台默认存储器类型 21000 圆末端点的监控系数21010 圆末端点的监控系数21015 渐开线终点监控系数21016 自动限制无效21020 工作区限制的刀具半径21050 轮廓-通道-监控公差21060 轮廓通道监控响应21070 轮廓错误的模拟量输出

Informatica_PowerCenter 参数和变量使用指南

Informatica PowerCenter 参数和变量使用指南 中国区唯一总代理 神州数码(中国)有限公司 2014年

目录 第一章参数和变量 (3) 1、概述 (3) 2、参数与变量存在的三种形式 (4) 2.1系统级变量 (4) 2.2 Mapping级参数与变量 (4) 2.3 参数文件级参数与变量 (10) 第二章参数文件格式 (12) 1、标题格式和适用范围 (12) 2、参数和变量类型 (13) 3、实例 (13) 第三章参数文件使用要点 (15) 1、创建准则和使用注意事项 (15) 2、PMCMD中使用参数文件 (17) 第四章应用案例介绍 (18) 1、定义M APPING的变量。 (18) 2、在E XPRESSION组件中引用变量 (19) 3、定义W ORKFLOW变量 (19) 4、在E VENT W AIT组件中引用变量 (20) 5、在S ESSION中引用变量 (21) 6、在C OMMAND组件中引用变量 (22) 7、参数文件定义 (22) 8、S ESSION参数文件引用设置 (23) 9、W ORKFLOW参数文件引用设置 (24) 10、W ORKFLOW流程图 (24)

第一章参数和变量 1、概述 参数和变量可以定义在工作流、工作集或会话中。您可以使用WordPad 或Notepad 等文本编辑器来创建参数文件。您在参数文件中列出参数或变量及其值。 参数文件可以包含以下类型的参数和变量: ◆Integration Service变量 ◆Integration Service process变量 ◆Workflow变量 ◆Worklet变量 ◆Session参数 ◆Mapping参数和变量 当您在工作流、工作集或会话中使用参数或变量时,PowerCenter Server将检查参数文件以确定参数或变量的开始值。您可以使用参数文件来初始化工作流变量、工作集变量、映射参数和映射变量。如果您不定义这些参数和变量的开始值,PowerCenter Server将在其它位置检查参数或变量的开始值。 您可以将参数文件放置在PowerCenter Server计算机上,也可以放置在本机上。如果您无法访问PowerCenter Server计算机上的参数文件,请使用本地参数文件。使用本地参数文件时,pmcmd会将文件中的变量和值传递到PowerCenter Server。本地参数文件可以与startworkflow pmcmd命令配合使用。 您必须在参数文件中定义会话参数。由于会话参数没有默认值,因此如果PowerCenter Server 在参数文件中找不到会话参数的值,就无法初始化会话。 通过为参数文件中的每个对象单独创建分区,您可以在一个参数文件中包含多个工作流、工作集或会话的参数或变量信息。 您还可以为单个工作流、工作集或会话创建多个参数文件,并在必要时更改这些任务使用的文件。要指定PowerCenter Server 用于工作流、工作集或会话的参数文件,您可以执行以下任一项操作: ◆在工作流、工作集或会话属性中输入参数文件名和目录。 ◆使用pmcmd 启动工作流、工作集或会话,然后在命令行中输入参数文件名和目录。 如果您同时在工作流、工作集或会话属性以及pmcmd 命令行中输入参数文件名和目录,PowerCenter Server 将使用您在pmcmd 命令行中输入的信息。 参数文件的应用体现在以下几个方面: ◆对源文本文件名进行参数化

西门子Siemens840D全参数详解

西门子840D主要参数意译 西门子840D的主要参数释义 文字一、通道机床数据 20000 通道名称 20050 几何轴-通道轴的分配 20060 通道中的几何轴名称 20070 通道中机床轴号 20080 通道中的通道轴名称 20090 主导主轴的号 20092 主轴旋转的使能/使能取消 20094 轴运行的M运行(西门子模式) 20095 轴运行的M功能(外部模式) 20096 T,M 刀具地址代号改变 20098 在MMC上显示轴 20100 带面对轴功能的几何轴 20108 事件驱动程序调用的设置 20109 Prog-Events 的属性 20110 RESET复位时的基本功能设置 20112 NC启动的基本功能设置 20114 方式改变中断了MDI 20116 带读限制的中断程序关闭 20117 带信号的中断程序关闭 20118 几何轴改变自动使能 20120 复位时刀具生效 20121 复位的预选刀具 20122 RESET复位/启动和TC时刀具生效 20123 RESET时 $P_USEKT 的预选值 20124 刀具夹持装置号 20126 RESET复位时刀架生效 20128 换刀在搜索中 20130 RESET复位时刀沿生效 20132 有效总偏差复位 20140 用复位健使转换生效。 20150 G代码组的初始设定 20152 G代码组复位 20154 G代码组的初始设定 20156 外部 G 组复位方式 20160 C 样条程序块的数量 20170 COMPRESS压缩的最大程序块长度 20172 COMPRESSION压缩方式计算的最大路径进给率20180 带刀架的旋转轴增量 20182 带刀架的旋转轴偏置 20184 零件偏置的基本FRAME号 20200 倒角/圆角的空程序段

西门子840D G指令

840D综合 G00快速定位; G01直线插补; G02顺时针圆弧插补; G03逆时针圆弧插补; G04暂停; G09准确停止; G17 XY平面选择; G18 ZX平面选择; G19 YZ平面选择;G 20英制指令; G21公制指令; G27返回参考点检查; G28返回参考点; G29返回第二参考点; G30返回第三/四参考点; G40刀具半径补偿取消; G41刀具半径补偿左; G42刀具半径补偿右; G43刀具长度补偿+; G44刀具长度补偿-; G45刀具偏置+; G46刀具偏置-; G47刀具偏置++; G48刀具偏置--; G49刀具长度补偿取消; G52局部坐标系; G53选择机床坐标系; G54~G59预置工件坐标系1~6; G60单向定位; G61准确停止(模态指令); G62拐角减速; G63倍率禁止; G64切削模式; G65宏调用;G66模态宏调用; G73深孔钻循环1;G74攻丝循环(反螺纹);G76镗循环1;G80取消固定循环; G81钻孔循环;G82镗循环2;G83深孔钻循环;G84攻丝循环(正螺纹);G85~G89镗循环3~7; G90绝对值编程; G91增量值编程; G94每分进给; G95每转进给;

G98固定循环回起始点; G99固定循环回R点。 M00程序停止; M01可选程序停止; M02程序结束; M03主轴正转; M04主轴反转; M05主轴停止; M06自动刀具交换; M08冷却开; M09冷却关; M29刚性攻丝; M30程序结束并回程序头。

G54G18G90 或G91增量。 编程找出点在GO1走直线(这直线是垂直于那个面的线,这个你自己算点)就可以加工了,刀具开始要调整好角度,垂直于那个面。 G17是XY平面 G18是zx平面 G19是YZ平面 这个也比较好办。 比如在G17平面上。钻孔用的z方向,如果面不平的情况,比如他往x方向倾斜的多少度。那么钻孔时候走的线应该是斜线(你应该是想做一个垂直于斜面的孔吧)那么你可以先在cad里面画出来,把要钻的那个孔走的那条直线画出来,在找到起始点,坐标值和终点坐标值都找的到,最后就是用G01走出来了,走斜线不是一样走吗. 不管在哪个面都一样,不愿计算,就用cad画出来再标出起始点和终点。 补充回答,ye可以不算。 用G16 极坐标编程。 比如在G17平面 xy 比如G90G16GO1x10y20 X表示切入x10 Y表示的是角度20度。 在G18平面上是zx。 z表示长度,x表示角度 在G19平面式yz y表示长度,z表示角度。 这样你就不用算点了 用完了后用G15取消极坐标编程。 主要用绝对坐标的极坐标编程,那个角度指的是根据你坐标系为原点,跟你坐标轴之间的夹角。(以第一坐标轴为准)比如xy平面是以x轴为准逆时针为角度正方向。 zx平面就以z轴为为准(也就是以第一轴之间的夹角)。 如果还不能理解,那你就麻烦点用原来的笛卡尔坐标编程算出来好了

西门子840D主要参数意译

西门子840D主要参数意译西门子840D的主要参数释义 文字一、通道机床数据 20000 通道名称 20050 几何轴-通道轴的分配 20060 通道中的几何轴名称 20070 通道中机床轴号 20080 通道中的通道轴名称 20090 主导主轴的号 20092 主轴旋转的使能/使能取消20094 轴运行的M运行(西门子模式) 20095 轴运行的M功能(外部模式) 20096 T,M 刀具地址代号改变 20098 在MMC上显示轴 20100 带面对轴功能的几何轴 20108 事件驱动程序调用的设置 20109 Prog-Events 的属性 20110 RESET复位时的基本功能设置20112 NC启动的基本功能设置 20114 方式改变中断了MDI 20116 带读限制的中断程序关闭 20117 带信号的中断程序关闭 20118 几何轴改变自动使能 20120 复位时刀具生效 20121 复位的预选刀具 20122 RESET复位/启动和TC时刀具生效 20123 RESET时$P_USEKT 的预选值20124 刀具夹持装置号 20126 RESET复位时刀架生效20128 换刀在搜索中 20130 RESET复位时刀沿生效 20132 有效总偏差复位 20140 用复位健使转换生效。 20150 G代码组的初始设定 20152 G代码组复位 20154 G代码组的初始设定 20156 外部G 组复位方式 20160 C 样条程序块的数量 20170 COMPRESS压缩的最大程序 块长度 20172 COMPRESSION压缩方式计 算的最大路径进给率 20180 带刀架的旋转轴增量 20182 带刀架的旋转轴偏置 20184 零件偏置的基本FRAME号 20200 倒角/圆角的空程序段 20201 斜面圆整行为 20202 有/无带SA的传输运动程序 块数量 20204 在趋近/回退时的方向反转 20210 带TRC的补偿程序块的最大 角度 20220 DISC的最大值 20230 带TRC的插值计算的最大角 度 20240 带TRC的程序段轮廓计算 20250 有/无带TR的传输运动程序 块数量 20252 带刀具补偿的最大程序块数 量 20254 在线刀具补偿使能 20256 多项式插值是可能的 20260 对样条插补的速度控制 20262 执行SPLINE(样条)时路径速度 出错 20270 没有程序的初始位置边沿 20272 不带编程的初始位置总校验 20310 刀具管理功能有效 20320 刀架中刀具的时间监控 20350 激活刀具监控 20360 刀具参数的定义 20380 带G43 / G44的刀具补偿模式 20382 刀具补偿的活动 20384 从动轴刀具长度补偿模拟 20390 温度补偿激活 20392 刀具长度温度补偿的最大值 20396 在刀具方向DRF偏置 20400 预处理随后程序块的速度 20430 预处理倍率速度字符的数量 20440 程序预处理状态速度特征的倍率 20450 程序块循环时间的释放系数 20455 预测未来的特殊功能 20460 预见功能的平滑系数 20462 带编程进给的进给率 20465 轨迹动态进给率的匹配 20470 轮廓编程精度 20480 带G64x的平滑特性 20482 压缩机的方式 20484 压缩机功率 20490 G641/G642不受倍率系数约束 20500 固定速度的最小时间

当前参数化和变量化设计技术最新发展动向的综述

参数化技术与变量化技术的发展综述 参数化设计是PTC(Pro/E)为代表。参数化技术用“顺序方法”对约束求解。达到全数据相关、全尺寸约束、用尺寸设计结果的修改。 变量化设计是前SDRC(I-DEAS)为代表。变量化技术有“几何图形约束和工程议程耦合”来求解。达到将参数化技术中的全尺寸约束细分为“尺寸约束”和“几何约束”,而工程关系就可以直接与几何约束耦合处理,实现基于装配关系的关联设计。 两者的主要不同在于,是否需要全尺寸约束,是否可以在装配树中进行增删,用什么方法实现完事约束。 参数化技术必须事先礼义好了求解过程、苛求有序求解和全约束的基础条件,这就是明确的父子关系,因此软运行比较稳定,但是对于自顶向下的创成设计,也因此支持得不是很好,很难在装配创建全新零件,而设计的更改将完全依赖于尺寸驱动。 变量化技术实际上是参数化技术的扩展,是参数化技术方法的超集 能处理局部约束的更改、能基于工程关系求解能显示处理约束……因此更容易理解、更适合于完成工程师原始设计构思的表达和实现创成设计提供了有效的支持,可以基于装配关系,利用再有结构全新零件。设计更改可以依赖于尺寸驱动和装配约束两种方法。 目前学术界认为变量化技术能够更好地表达人的设计思维规则,能够更好地在几何设计的全过程中实现辅助的功能。而软件的使用者也能体会到:变量化技术能在更完事的程度上表达人的设计思维。尤其是对创成设计中自顶向下的设计过程,有更好的支持。 参数化设计是CAD技术在实际应用中提出的课题,它不仅可使CAD系统具有交互式绘图功能,还具有自动绘图的功能。目前它是CAD技术应用领域内的一个重要的且待进一步研究的课题。利用参数化设计手段开发的专用产品设计系统,可使设计人员从大量繁重而琐碎的绘图工作中解脱出来,可以大大提高设计速度,并减少信息的存储量。 由于上述应用背景,国内外对参数化设计做了大量的研究,目前参数化技术大致可人为如下三种方法:1、基于几何约束的数学方法2、基于几何原理的人工智能方法3、基于特征模型的造型方法。 其中数学方法又分为初等方法和代数方法。初等方法利用预先设定的算法,求解一些特定的几何约束。这种方法简单,易于实现,但仅适用于只有水平和垂直方向约束的场合:代数法则将几何约束转换成代数方程,形成一个非线性方程组。该方程组求解较困难,因此实际应用受到限制:人工智能方法是利用专家系统,对图形中的几何关系和约束进行理解,运用几何原理推导出新的约束,这种方法的速度较慢,交互性不好:特征造型法是三维实体造型技术的发展,目前正在探讨之中。 参数化设计有一种驱动机制即参数,参数驱动机制是基于对图形数据的操作。通过参数驱动机制,可以对图形的几何数据进行参数给修改,但是,在修改的同时,还要满足图形的约束条件,需要约束间关联性的驱动手段即约束联动,约束联运是通过约束间的关系实现的驱动方法。对于一个图形,可能的约束十分复杂,而且数量很大。而实际由用户控制的,即能够独立变化的参数一般只有几个,称之为主参数或主约束;其他约束可由图形结构特征确定或主约束有确定关系,称它们为次约束。对主约束是不能简化的,对次约束的简化可以有图形特征联动和相关参数联动两种方式。 所谓图形特征联动就是保证在图形拓扑关系不变的情况下,对次约束的驱动,亦即保证lpxf相切、垂直、平等关系不变。反映到参数驱动过程就是要根据各种几何相关性准则去判识与被动点有上述拓扑关系的实体及其几何数据,在保证原关系不变的前提下,求也新的几何数据。称这些几何数据为从动点。这样,从动点的约束就与驱动参数有了联系。依这一联系,从动点等到了驱动点的驱动,驱动机制则扩大了其作用范围。 所谓相关参数联去就是建立资助约束与主约束在数值上和逻辑上的关系。在参数驱动过程中,始终要保持这种关系不变。相关参数的联动方法使某些不能用拓扑关系判断的从动点与驱动点建立的联系。使用这种方式时,常引入驱动树,以建立主动点,从动点等之间的约束关系的树形表示,便于直观地判断图形的驱动与约束情况。 由于参数驱动是基于对图形数据的操作,因此供给制一张图的过程,就是在建立一个参数模型。绘图系统将图形映射到图形数据库中,设置也图形实体的数据结构,参数驱动时将这些结构中填写也不同内容,以生成所需要的图形。 参数驱动可以被看作是沿驱动树操作数据库内容,不同的驱动树,决定了参数驱动不同

西门子840D系统各类循环定义

西门子840D系统各类循环定义 (1) CYCLE81: 中心钻孔循环 编程格式:CYCLE81 (RTP, RFP, SDIS, DP, DPR) 参数意义: RTP: Return plane (absolute) 退刀平面距离(绝对坐标尺寸) RFP:Reference plane (absolute)基准平面距离(绝对坐标尺寸) SDIS: Safety distance (enter without sign)安全距离(输入值均为正) DP :Final drilling depth (absolute):最终钻孔深度(绝对坐标尺寸) DPR: Final drilling depth relative to reference plane (enter without sign) 相对基准平面最终钻孔深度(输入值均为正) (2) CYCLE82:钻锪沉孔循环: 有暂停时间 编程格式:CYCLE82 (RTP, RFP, SDIS, DP, DPR, DTB) 参数意义: RTP: Return plane (absolute) 退刀平面距离(绝对坐标尺寸) RFP:Reference plane (absolute)基准平面距离(绝对坐标尺寸) SDIS: Safety distance (enter without sign)安全距离(输入值均为正) DP :Final drilling depth (absolute):最终钻孔深度(绝对坐标尺寸) DPR: Final drilling depth relative to reference plane (enter without sign) 相对基准平面最终钻孔深度(输入值均为正) DTB: Dwell time at final drilling depth (chip breaking): 在最终钻孔深度时的暂停时间(断屑式) (3) CYCLE83: 深孔钻循环 编程格式:CYCLE83 (RTP, RFP, SDIS, DP, DPR, FDEP, FDPR, DAM,DTB, DTS, FRF, VARI) 参数意义: RTP: Return plane (absolute) 退刀平面距离(绝对坐标尺寸) RFP:Reference plane (absolute)基准平面距离(绝对坐标尺寸) SDIS: Safety distance (enter without sign)安全距离(输入值均为正) DP :Final drilling depth (absolute):最终钻孔深度(绝对尺寸) DPR: Final drilling depth relative to reference plane (enter without sign) 相对基准平面最终钻孔深度(输入值均为正) DTB: Dwell time at final drilling depth (chip breaking): 在最终钻孔深度时的暂停时间(断屑式) FDEP:First depth (absolute):第一次钻孔深度(绝对坐标尺寸) (4)CYCLE84:刚性攻丝循环:不用浮动夹头

西门子变频器基本参数设置

6SE70调试基本参数设置 恢复缺省设置 P053=6 允许参数存取 6:允许通过PMU和串行接口OP1S变更参数 P060=2 固定设置菜单 P366=0 0:具有PMU的标准设置 1:具有OP1S的标准设置 P970=0 参数复位 参数设置P060=5 系统设置菜单 P071= 装置输入电压 P095=10 异步/同步电机,国际标准 P100= 1:V/f控制 3:无测速机的速度控制 4:有测速机的速度控制 5:转矩控制 P101= 电机额定电压 P102= 电机额定电流 P103= 电机励磁电流,如果此值未知,设P103=0 当离开系统设置,此值自动计算。 P104= 电机额定功率因数 P108= 电机额定转速 P109= 电机级对数 P113= 电机额定转矩 P114=3 3:高强度冲击系统(在:P100=3,4,5时设置)P115=1 计算电机模型 参数值P350-P354设定到额定值 P130= 10:无脉冲编码器 11:脉冲编码器 P151= 脉冲编码器每转的脉冲数 P330= 0:线性(恒转矩) 1:抛物线特性(风机/泵) P384.02= 电机负载限制 P452= % 正向旋转时的最大频率或速度 P453= % 反向旋转时的最大频率或速度 数值参考P352和P353 P060=1 回到参数菜单 P128= 最大输出电流 P462= 上升时间 P464= 下降时间 P115=2 静止状态电机辩识(按下P键后,20S之内合闸)P115=4 电机模型空载测量(按下P键后,20S之内合闸)

6SE70 变频装置调试步骤 一.内控参数设定 1.1 出厂参数设定 P053=7 允许CBP+PMU+PC 机修改参数 P60=2 固定设置,参数恢复到缺省 P366=0 PMU 控制 P970=0 启动参数复位 执行参数出厂设置,只是对变频器的设定与命令源进行设定,P366 参数选择不同,变频器的设定和命令源可以来自端子,OP1S,PMU。电机和控制参数未进行设定,不能实施电机调试。 1.2 简单参数设定 P60=3 简单应用参数设置,在上述出厂参数设置的基础上,本应用设定电机控制参数 P071 进线电压(变频器400V AC / 逆变器540V DC) P95=10 IEC 电机 P100=1 V/F 开环控制 3 不带编码器的矢量控制 4 带编码器的矢量控制 P101 电机额定电压 P102 电机额定电流 P107 电机额定频率HZ P108 电机额定速度RPM P114=0 P368=0 设定和命令源为PMU+MOP P370=1 启动简单应用参数设置 P60=0 结束简单应用参数设置 执行上述参数设定后,变频器自动组合功能图连接和参数设定。P368 选择的功能图见手 册S0-S7,P100 选择的功能图见手册R0-R5。电机控制效果非最优。 1.3 系统参数设置 P60=5 P115=1 电机模型自动参数设置,根据电机参数设定自动计算 P130=10 无编码器 11 有编码器(P151 编码器每转脉冲数) P350=电流量参考值A P351=电压量参考值V P352=频率量参考值HZ 3 3 P353=转速量参考值1/MIN P354=转矩量参考值NM P452=正向旋转最大频率或速度%(100%=P352,P353) P453=反向旋转最大频率或速度%(100%=P352,P353) P60=1 回到参数菜单,不合理的参数设置导致故障 1.4 补充参数设定如下 P128=最大输出电流A P571.1=6 PMU 正转 P572.1=7 PMU 反转

CAD系统变量参数解析(最全最详细)

CAD系统变量参数详细解析 变量名称说明 ACADLSPASDOC 0 仅将acad.lsp 加载到AutoCAD 任务打开的第一个图形中; 1 将acad.lsp 加载到每一个打开的图形中 ACADPREFIX 存储由ACAD 环境变量指定的目录路径(如果有的话),如果需要则附加路径分隔符 ACADVER 存储AutoCAD 的版本号。这个变量与DXF 文件标题变量$ACADVER 不同,"$ACADVER" 包含图形数据库的级别号 ACISOUTVER 控制ACISOUT 命令创建的SAT 文件的ACIS 版本。ACISOUT 支持值15 到18、20、21、30、40、50、60 和70。 AFLAGS 设置ATTDEF 位码的属性标志:0无选定的属性模式:1.不可见2.固定4.验证.8.预置ANGBASE 类型:实数;保存位置:图形初始值:0.0000 相对于当前UCS 将基准角设置为0 度。 ANGDIR 设置正角度的方向初始值:0;从相对于当前UCS 方向的0 角度测量角度值。0 逆时针1 顺时针 APBOX 打开或关闭AutoSnap 靶框。当捕捉对象时,靶框显示在十字光标的中心。0 不显示靶框1 显示靶框 APERTURE 以像素为单位设置靶框显示尺寸。靶框是绘图命令中使用的选择工具。初始值:10 AREA AREA 既是命令又是系统变量。存储由AREA 计算的最后一个面积值。 ATTDIA 控制INSERT 命令是否使用对话框用于属性值的输入:0.给出命令行提示1.使用对话框中国热模网首发 ATTMODE 控制属性的显示:0 关,使所有属性不可见;1.普通,保持每个属性当前的可见性; 2.开,使全部属性可见 ATTREQ 确定INSERT 命令在插入块时默认属性设置。0.所有属性均采用各自的默认值;1.使用对话框获取属性值 AUDITCTL 控制AUDIT 命令是否创建核查报告(ADT) 文件:0.禁止写ADT 文件 1.写ADT 文件 AUNITS 设置角度单位:0.十进制度数1.度/分/秒2.百分度3.弧度4.勘测单位 AUPREC 设置所有只读角度单位(显示在状态行上)和可编辑角度单位(其精度小于或等于当前AUPREC 的值)的小数位数。 AUTOSNAP 0.关(自动捕捉);1.开2.开提示4.开磁吸8.开极轴追踪16 开捕捉追踪32 开极轴追踪和捕捉追踪提示 BACKZ 以绘图单位存储当前视口后向剪裁平面到目标平面的偏移值。VIEWMODE 系统变量中的后向剪裁位打开时才有效。 BINDTYPE 控制绑定或在位编辑外部参照时外部参照名称的处理方式:0.传统的绑定方式1.类似"插入"方式 BLIPMODE 控制点标记是否可见。BLIPMODE 既是命令又是系统变量。使用SETVAR 命令访问此变量:0.关闭1.打开 CDATE 设置日历的日期和时间,不被保存。

西门子Siemens-840D参数详解

西门子Siemens-840D参数详解

西门子840D主要参数意译 西门子840D的主要参数释义 文字一、通道机床数据 20000 通道名称 20050 几何轴-通道轴的分配 20060 通道中的几何轴名称 20070 通道中机床轴号 20080 通道中的通道轴名称 20090 主导主轴的号 20092 主轴旋转的使能/使能取消20094 轴运行的M运行(西门子模式) 20095 轴运行的M功能(外部模式) 20096 T,M 刀具地址代号改变20098 在MMC上显示轴 20100 带面对轴功能的几何轴20108 事件驱动程序调用的设置20109 Prog-Events 的属性 20110 RESET复位时的基本功能设置20112 NC启动的基本功能设置20114 方式改变中断了MDI 20116 带读限制的中断程序关闭20117 带信号的中断程序关闭

20118 几何轴改变自动使能 20120 复位时刀具生效 20121 复位的预选刀具 20122 RESET复位/启动和TC时刀具生效20123 RESET时$P_USEKT 的预选值20124 刀具夹持装置号 20126 RESET复位时刀架生效 20128 换刀在搜索中 20130 RESET复位时刀沿生效 20132 有效总偏差复位 20140 用复位健使转换生效。 20150 G代码组的初始设定 20152 G代码组复位 20154 G代码组的初始设定 20156 外部G 组复位方式 20160 C 样条程序块的数量 20170 COMPRESS压缩的最大程序块长度20172 COMPRESSION压缩方式计算的最大路径进给率 20180 带刀架的旋转轴增量 20182 带刀架的旋转轴偏置 20184 零件偏置的基本FRAME号

批处理进阶之变量和参数

目录 批处理进阶之变量和参数 第一节基本概念 1、数据类型 2、常量和变量 3、参数和参数变量 第二节变量的分类 1、环境变量 2、参数变量 3、迭代变量 第三节SET命令详细用法 1、显示、设置或删除环境变量 2、/P 交互模式开关与菜单设计 3、/A 数学开关与简单数学计算 第四节增强的变量引用 1、增强的环境变量引用 2、增强的参数变量/循环变量引用 第五节参数传递和漂移 1、参数传递 2、参数漂移 第六节变量的局部化 1、SETLOCAL和ENDLOCAL 2、环境变量延迟扩展

====================================================================== 第一节基本概念 本节内容推荐有一定的批处理基础或者编程基础的人看。 1 数据类型 任何程序都是由指令和数据组成的,类推到批处理上面就是命令和数据了。 数据有类型之分,不同类型的数据在计算机内部的存储方式,取值范围和支持的运算都是不同的。 从目前来看,批处理涉及的数据类型有两种:字符串类型、数字类型。 字符串类型:任意数量的字符,可以用双引号来界定一个字符串,这在很多语言里面是通用的。 例子:s、doom "12.3+78" "TRUE LOVE"。 字符串类型可以进行字符运算,例如替换、合并等。 数字类型:批处理支持数字类型为整数。 例如60、312 等。 数字类型可以进行数学计算,而数字形式的字符串是不能直接进行数学计算的。 批处理是一种“弱类型”的脚本语言。它的数据类型极少,而且对数据类型的界定也很模糊。目前批处理已经实现数据类型的自动化处理,即在需要时可以自动转化数据类型,而这个转换过程用户是感觉不到的。用户完全不必理会数据的类型或者数据类型是否需要转化,或者我们可以简单理解为批处理只有一种数据类型——字符串类型。其实这是脚本类语言的共同特点,“弱类型”大大简化了脚本代码。 2 常量和变量 借用其他高级编程语言的概念,来分析一下批处理里面的常量和变量…… 根据运行时存储位置所存储的值能否被改变,我们可以把数据可以分为常量(数据)和变量(数据)。 常量是系统内置的或用户预定义的,在执行过程中其值是明确而唯一的,不能被改变。例如,"hello"等字符(串)都是系统内置常量,可以直接使用,不一定需要标识符。批处理里面的常量概念很弱,也没有相关的操作命令支持自定义常量,因此可以不理会常量。 变量也是由系统或者用户预定义的,但其存储的内容在运行期间可以发生改变。批处理里面的变量都必须有标识符,即变量名,每一个变量名都指向一个具体的存储空间。变量名或由系统预定义,或由用户自定义。批处理中,变量的设置(定义,初始化,赋值)一般是通过SET语句来完成的。由于批处理是“弱类型”脚本语言,定义变量时不必理会变量的类型,命令解释器会自动决定使用哪种类型或者在使用时自动完成类型转换。 在批处理中使用变量,有两重好处: (1)用简单的名称替代复杂的字符,简化代码。 (2)使用统一的代码段,通过改变变量值来实现重用。 3 参数和参数变量

840D sl常用参数PDF.pdf

840D sl常用参数 1:MD9422 预置功能0---未出现任何软键 1---出现“预设”软键 2---出现“设计实际值”软键 2:整定值分配MD 30110 CTRLOUT_MODULE_NR 整定值分配:通讯时隙。 用作MD13050 中I/O 地址表中的指针。 若不使用p978,则它相应于驱动器编号,例如: CU 或CU/ALM 之后的6 个驱动器: 1 ~ 6 NX10 的3 个驱动器:7 ~ 9 整定值类型MD 30130 CTRLOUT_TYPE 1 整定值输出 0 仿真 编号MD 30200 NUM_ENCS 测量系统 1 单位置测量系统 2 双位置测量系统 可通过IS DB31.DBX1.5/1.6 来选择测量系统1 或2 索引[n] 测量系统机床数据具有索引[0] 或[1]。 [0] 第1 个测量系统的值 [1] 第2 个测量系统的值 实际值分配MD 30220 ENC_MODULE_NR[n] 实际值分配: 通讯时隙。实际值输入MD 30230 ENC_INPUT_NR[0] SINAMICS 编码器编号(值1/2/3 表示第1/2/3 个SINAMICS 编码器) 编码器类型MD 30240 ENC_TYPE[n] 1 增量型编码器(MD34200=1) 4 绝对值编码器(MD34200=0) 0 仿真 极性实际值MD 32110 ENC_FEEDBACK_POL [n] 0/1 默认值 -1 极性改变 运动方向MD 32100 AX_MOTION_DIR 0/1 默认值 -1 返回方向 3:光栅尺MD 31000 ENC_IS_LINEAR [n] 1 用于实际位置值采集的编码器为直线编码器(光栅尺)。 0 用于实际位置值采集的编码器是旋转编码器。 直接MD 31040 ENC_IS_DIRECT [n] 测量系统 1 用于检测实际位置值的编码器直接位于机床上。 0 用于检测实际位置值的编码器直接位于电机上。 增量数MD 31020 ENC_RESOL [n] 旋转测量系统中编码器旋转一圈的增量数。 电机测量系统每圈的增量数为2048。 光栅尺刻度MD 31010: ENC_GRID_POINT_DIST 直线测量系统的刻度格间距,[mm]

相关文档