文档库 最新最全的文档下载
当前位置:文档库 › 复变函数第四章练习题

复变函数第四章练习题

复变函数第四章练习题
复变函数第四章练习题

第四章例题

例4.1考察级数的敛散性。

解因发散,故虽收敛,我们仍断定原级数发散。

例4.2试求下列各幂级数的收敛半径。

(1)

解。

(2)。

解因,

故。

(3)。

解因,

故。

(4)

解应当是平方数时,其他情形。因此,相应有,于是数列{}的聚点是0和1,从而。

例4.3将在展开成幂级数。

解因在内解析,故展开后的幂级数在内收敛。已经知道:

在时将两式相乘得(按对角线方法)

例4.4求的展开式。

解因的支点为及,故其指定分支在内单值解析。

其一般表达式为:当时

例4.5将及展为的幂级数。

解因,同理

两式相加除以2得

,,两式相减除以得

。例4.6试将函数

按的幂展开,并指明其收敛范围。

例4.7考察函数

在原点的性质。

解显然在解析,且。

由,

或由

知为的三级零点。

例4.8求的全部零点,并指出它们的级。

解在平面上解析。由得

故,

这就是在平面上的全部零点。显然

都是函数的二级零点。

例4.9设(1)及在区域内解析;

(2)在内,

试证:在内或。

证若有使。因在点连续,故由例1.28知,存在的邻域,使在内恒不为零。而由题设

,

故必.

由唯一性定理(推论4.21)。

例4.10试用最大模原理证明例3.9。即证:“设在闭圆上解析,如果存在,

使当时

而且

则在圆内,至少有一个零点。”

证如果在内,无零点。而由题设在上,且在上解析。故

在上解析。此时

且在上,

于是必非常数,在上

由最大模原理,这就得到矛盾。

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+= 11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3 )2(π = +z arc ,6 5)2(π = -z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2 123+- 3.复数)2 ( tan πθπ θ<<-=i z 的三角表示式是( ) (A ))]2 sin()2 [cos(sec θπ θπθ+++i (B ))]2 3sin()23[cos(sec θπ θπθ+++i (C ))]23sin()23[cos(sec θπθπθ+++-i (D ))]2 sin()2[cos(sec θπ θπθ+++-i 4.若z 为非零复数,则2 2z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 22 2=- (C )z z z z 22 2≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点),(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转 3 π ,向右平移3个单位,再向下平移1个单位后对应的复数为 i 31-,则原向量对应的复数是( ) (A )2 (B )i 31+ (C )i -3 (D )i +3

7.使得2 2 z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +- 43 (B )i +43 (C )i -4 3 (D )i --43 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232= -+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A ) 22 1 =+-z z (B )433=--+z z (C ) )1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44--(B )i 44+(C )i 44-(D )i 44+- 13.0 0) Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i -(C )等于0(D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( ) (A )),(y x u 在),(00y x 处连续(B )),(y x v 在),(00y x 处连续 (C )),(y x u 和),(y x v 在),(00y x 处连续(D )),(),(y x v y x u +在),(00y x 处连续

复变函数习题答案第4章习题详解

第四章习题详解 1. 下列数列{}n a 是否收敛?如果收敛,求出它们的极限: 1) mi ni a n -+= 11; 2) n n i a -?? ? ? ?+=21; 3) ()11++ -=n i a n n ; 4) 2i n n e a π-=; 5) 21i n n e n a π-= 。 2. 证明:??? ????≠==>∞<=∞→1111110a a a a a a n n ,,,,lim 不存在, 3. 判别下列级数的绝对收敛性与收敛性: 1) ∑∞ =1n n n i ; 2) ∑∞ =2n n n i ln ; 3) ()∑∞=+0856n n n i ; 4) ∑∞=0 2n n in cos 。 4. 下列说法是否正确?为什么? 1) 每一个幂级数在它的收敛圆周上处处收敛;

2) 每一个幂级数的和函数在收敛圆内可能有奇点; 3) 每一个在0z 连续的函数一定可以在0z 的邻域内展开成泰勒级数。 5. 幂级数()∑∞ =-02n n n z c 能否在0=z 收敛而在3=z 发散? 6. 求下列幂级数的收敛半径: 1) ∑∞ =1n p n n z (p 为正整数); 2) ()∑∞=12n n n z n n !; 3) ()∑∞=+01n n n z i ; 4) ∑∞=1n n n i z e π; 5) ()∑∞=-??? ??1 1n n z n i ch ; 6) ∑∞=??? ? ?1n n in z ln 。 7. 如果 ∑∞=0n n n z c 的收敛半径为R ,证明()∑∞=0n n n z c Re 的收敛半径R ≥。[提示:()n n n n z c z c

最新复变函数第二章答案

第二章 解析函数 1.用导数定义,求下列函数的导数: (1) ()Re .f x z z = 解: 因 0()()lim z f z z f z z ?→+?-?0()Re()Re lim z z z z z z z z ?→+?+?-=? 0Re Re Re lim z z z z z z z z ?→?+?+??=? 0Re lim(Re Re )z z z z z z ?→?=+?+? 0 00 Re lim(Re )lim(Re ),z x y z x z z z z z x i y ?→?→?→??=+=+??+? 当0z ≠时,上述极限不存在,故导数不存在;当0z =时,上述极限为0,故导数为0. 2.下列函数在何处可导?何处不可导?何处解析?何处不解析? (1) 2().f z z z =? 解: 22222222()||()()()(), f z z z z z z z z x y x iy x x y iy x y =?=??=?=++=+++ 这里2222(,)(),(,)().u x y x x y v x y y x y =+=+ 2222222,2,2, 2. x y y x u x y x v x y y u xy v xy =++=++== 要,x y y x u v u v ==-,当且当0,x y ==而,,,x y x y u u v v 均连续,故2().f z z z =?仅在0z =处可导,处处不解析. (2) 3223()3(3).f z x xy i x y y =-+- 解: 这里322322(,)3,(,)3.33,x u x y x xy v x y x y y u x y =-=-=- 226,6,33,y x y u xy v xy v x y =-==- 四个偏导数均连续且,x y y x u v u v ==-处处成立,故()f z 在整个复平面上处处可导,也处处解析. 3.确定下列函数的解析区域和奇点,并求出导数. (1) (,).az b c d cz d ++至少有一不为零

复变函数与积分变换(修订版-复旦大学)第四章课后的习题答案

习题四 1. 复级数1 n n a ∞=∑与1 n n b ∞=∑都发散,则级数1 ()n n n a b ∞ =±∑和 1 n n n a b ∞ =∑发散.这个命题是否成立?为什 么? 答.不一定.反例: 2211111111 i ,i n n n n n n a b n n n n ∞∞∞∞ =====+=-+∑∑∑∑发散 但2 1 1 2()i n n n n a b n ∞ ∞ ==+=? ∑∑收敛 112()n n n n a b n ∞ ∞ ==-=∑∑发散 2411 11 [()]n n n n a b n n ∞∞ ===-+∑∑收敛. 2.下列复数项级数是否收敛,是绝对收敛还是条件收敛? (1)2111i n n n +∞ =+∑ (2)115i ( )2n n ∞=+∑ (3) π 1 e i n n n ∞=∑ (4) 1i ln n n n ∞ =∑ (5) 0 cosi 2n n n ∞=∑ 解 (1) 21111 1i 1(1)i 1(1)i n n n n n n n n n n +∞ ∞∞===++-?-==+?∑∑∑ 因为11n n ∞ =∑发散,所以21 1 1i n n n +∞ =+∑发散 (2)11 15i (22n n n n ∞ ∞ ==+=∑∑发散 又因为15i 15lim()lim(i)0222 n n n n →∞ →∞+=+≠ 所以1 15i ()2n n ∞ =+∑发散 (3) πi 1 1e 1 n n n n n ∞ ∞===∑ ∑发散,又因为π11 1 ππcos isin e 1ππ(cos isin )i n n n n n n n n n n n ∞ ∞ ∞ ===+==+∑∑∑收敛,所以不绝对收敛.

复变函数课后习题答案(全)

习题一答案 1.求下列复数的实部、虚部、模、幅角主值及共轭复数: (1) 1 32i + (2) (1)(2) i i i -- (3)13 1 i i i - - (4)821 4 i i i -+- 解:(1) 132 3213 i z i - == + , 因此: 32 Re, Im 1313 z z ==-, 232 arg arctan, 31313 z z z i ==-=+ (2) 3 (1)(2)1310 i i i z i i i -+ === --- , 因此, 31 Re, Im 1010 z z =-=, 131 arg arctan, 31010 z z z i π ==-=--(3) 133335 122 i i i z i i i -- =-=-+= - , 因此, 35 Re, Im 32 z z ==-, 535 ,arg arctan, 232 i z z z + ==-= (4)821 41413 z i i i i i i =-+-=-+-=-+ 因此,Re1,Im3 z z =-=, arg arctan3,13 z z z i π ==-=--

2. 将下列复数化为三角表达式和指数表达式: (1)i (2 )1-+ (3)(sin cos )r i θθ+ (4)(cos sin )r i θθ- (5)1cos sin (02)i θθθπ-+≤≤ 解:(1)2 cos sin 2 2 i i i e π π π =+= (2 )1-+2 3 222(cos sin )233 i i e πππ=+= (3)(sin cos )r i θθ+()2 [cos()sin()]22i r i re π θππ θθ-=-+-= (4)(cos sin )r i θ θ-[cos()sin()]i r i re θθθ-=-+-= (5)2 1cos sin 2sin 2sin cos 222 i i θ θθ θθ-+=+ 2 2sin [cos sin ]2sin 22 22 i i e πθ θπθ πθ θ ---=+= 3. 求下列各式的值: (1 )5)i - (2)100100(1)(1)i i ++- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+-- (4) 23(cos5sin 5)(cos3sin 3)i i ????+- (5 (6 解:(1 )5)i -5[2(cos()sin())]66 i ππ =-+- 5 552(cos()sin()))66 i i ππ =-+-=-+ (2)100 100(1) (1)i i ++-50505051(2)(2)2(2)2i i =+-=-=- (3 )(1)(cos sin ) (1)(cos sin ) i i i θθθθ-+--

复变函数试题与答案

第一章 复数与复变函数 一、 选择题 1.当i i z -+=11时,5075100z z z ++的值等于( ) (A )i (B )i - (C )1 (D )1- 2.设复数z 满足3)2(π =+z arc ,6 5)2(π=-z arc ,那么=z ( ) (A )i 31+- (B )i +-3 (C )i 2321+- (D )i 2123+- 3.复数)2( tan πθπθ<<-=i z 的三角表示式是( ) (A ))]2sin()2[cos(sec θπθπθ+++i (B ))]2 3sin()23[cos(sec θπθπθ+++i (C ))]23sin()23[cos( sec θπθπθ+++-i (D ))]2sin()2[cos(sec θπθπθ+++-i 4.若z 为非零复数,则22z z -与z z 2的关系是( ) (A )z z z z 222≥- (B )z z z z 222=- (C )z z z z 222≤- (D )不能比较大小 5.设y x ,为实数,yi x z yi x z +-=++=11,1121且有1221=+z z ,则动点) ,(y x 的轨迹是( ) (A )圆 (B )椭圆 (C )双曲线 (D )抛物线 6.一个向量顺时针旋转3 π,向右平移3个单位,再向下平移1个单位后对应的复数为i 31-,则原向量对应的复数是( )

(A )2 (B )i 31+ (C )i -3 (D )i +3 7.使得22z z =成立的复数z 是( ) (A )不存在的 (B )唯一的 (C )纯虚数 (D )实数 8.设z 为复数,则方程i z z +=+2的解是( ) (A )i +-43 (B )i +43 (C )i -43 (D )i --4 3 9.满足不等式 2≤+-i z i z 的所有点z 构成的集合是( ) (A )有界区域 (B )无界区域 (C )有界闭区域 (D )无界闭区域 10.方程232=-+i z 所代表的曲线是( ) (A )中心为i 32-,半径为2的圆周 (B )中心为i 32+-,半径为2的圆周 (C )中心为i 32+-,半径为2的圆周 (D )中心为i 32-,半径为2的圆周 11.下列方程所表示的曲线中,不是圆周的为( ) (A )22 1=+-z z (B )433=--+z z (C ))1(11<=--a az a z (D ))0(0>=-+++c c a a z a z a z z 12.设,5,32,1)(21i z i z z z f -=+=-=,则=-)(21z z f ( ) (A )i 44-- (B )i 44+ (C )i 44- (D )i 44+- 13.0 0)Im()Im(lim 0z z z z x x --→( ) (A )等于i (B )等于i - (C )等于0 (D )不存在 14.函数),(),()(y x iv y x u z f +=在点000iy x z +=处连续的充要条件是( )

复变函数D卷答案

湖南科技学院二○○ 年 学期期末考试 专业 年级 试题 考试类型:闭卷 试卷类型:D 卷 考试时量: 120 分钟 一(共7分,每小题1分) 1.nLnz Lnz n =(n 为正整数) ( ) 2.),(),()(y x iv y x u z f +=在区域D 内解析,则在区域D 内),(y x u 是),(y x v 的共轭调 函数。 ( ) 3.函数在可去奇点处的留数为0。 ( ) 4.0是2sin )(z z z f = 的一阶极点。 ( ) 5.复数0的辐角主值为0。 ( ) 6.在复变函数中,0cos ,0sin ,1|cos |,1|sin |2 2 ≥≥≤≤z z z z 同样成立。 ( ) 7.解析函数),(),()(y x iv y x u z f +=的实部),(y x u 和虚部),(y x v 都是其解析区域内的调 和函数。 ( ) 二 、填空题(共28分,每小题4分) 1. i i -1=_________. 2.? =-2 |1|2 z z dz = 。 3. dz z c ?=__________。 (其中c 是从1到的直线段) 4.幂级数n n n z n ∑ +∞ =1 的收敛半径R =

5.0为 )1()(2-=z e z z f 的 阶零点。 6.2 ||2(1)(3)z dz z z =--?=____________ 7. )1(Re z z s z +∞== 。 8.1z =+arg z =_______________。 三 、计算题(共39分) 1. 已知),(),()(y x iv y x u z f +=在z 平面上是解析函数,且2 33),(xy x y x u -=,求解)(z f , 使得i f 2)0(=。(12分) 2. 求 ) 1(1 -z z 在10<z 内的展开式。(15分) 3. 利用留数求定积分20 1 .51sin 82 I d π θθ=-? (12分) 四、证明题(共12分) 若函数)(),(z f z f 在区域D 内都解析,证明在D 内)(z f 为常数。

第1章复变函数习题-答案~习题详解

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231 + 解: ()()()13 2349232323231231i i i i i i -=+-=-+-=+ 实部:13 3 231= ??? ??+i Re 虚部:132231-=?? ? ??+i Im 共轭复数:1323231i i += ?? ? ??+ 模:131 1323231 2 22=+= +i 辐角:πππk arctg k arctg k i i Arg 232213 3132 2231231+? ?? ??-=+-=+??? ??+=??? ??+arg 2) i i i -- 131 解: ()()()2 532332113311131312i i i i i i i i i i i i i i -=-+-=++---=+-+-=-- 实部:2 3131=??? ??--i i i Re 虚部:25131-=?? ? ??--i i i Im 共轭复数:253131 i i i i +=?? ? ??-- 模:2 34 4342531312 22= =+= --i i i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+??? ??-=+???? ? ??-=+??? ??--=??? ??--arg

3) ()()i i i 25243-+ 解: ()()()2 26722672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=?? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292522627252432 2 =?? ? ??-+??? ??-=-+i i i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+??? ??=+????? ? ?--=??? ??-+ 4) i i i +-21 8 4 解:i i i i i i 3141421 8-=+-=+- 实部:( )1421 8=+-i i i Re 虚部:( )3421 8-=+-i i i Im 共轭复数:() i i i i 314218+=+- 模:103142221 8 =+=+-i i i 辐角:( )()πππk arctg k arctg k i i i i i i Arg 2321324421821 8 +-=+?? ? ??-=++-=+-arg 2. 当x 、y 等于什么实数时,等式 ()i i y i x +=+-++13531成立? 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ?? ?=-=+8321y x ? ??==?111 y x 即1=x 、11=y 时,等式成立。

复变函数习题及解答

第一章 复变函数习题及解答 1.1 写出下列复数的实部、虚部;模和辐角以及辐角的主值;并分别写成代数形式,三角形式和指数形式.(其中,,R αθ为实常数) (1)1--; (2) ππ2(cos isin )33-; (3)1cos isin αα-+; (4)1i e +; (5)i sin R e θ; (6)i + 答案 (1)实部-1;虚部 2;辐角为 4π 2π,0,1,2,3 k k +=±±; 主辐角为 4π3 ;原题即为代数形式;三角形式为 4π4π2(cos isin )33+;指数形式为 4π i 3 2e . (2)略为 5π i 3 5π5π 2[cos sin ], 233i e + (3)略为 i arctan[tan(/2)][2sin()]2c e αα (4)略为 i ;(cos1isin1)ee e + (5)略为:cos(sin )isin(sin )R R θθ+ (6)该复数取两个值 略为 i i isin ),arctan(1isin ),πarctan(1θθθθθθθθ+==+==+ 1.2 计算下列复数 1)() 10 3i 1+-;2)()3 1i 1+-; 答案 1)3512i 512+-;2)()1 3π/42k π i 6 3 2e 0,1,2k +=; 1.3计算下列复数 (1 (2 答案 (1

(2)(/62/3)i n e ππ+ 1.4 已知x 为实数,求复数的实部和虚部. 【解】 令i ,(,)p q p q R =+∈,即,p q 为实数域(Real).平方得 到 22 12()2i x p q xy +=-+,根据复数相等,所以 即实部为 ,x ± 虚部为 说明 已考虑根式函数是两个值,即为±值. 1.5 如果 ||1,z =试证明对于任何复常数,a b 有| |1 az b bz a +=+ 【证明】 因为||1,11/z zz z z =∴=∴=,所以 1.6 如果复数b a i +是实系数方程 ()011 10=++++=--n n n n a z a z a z a z P 的根,则b a i -一定也是该方程的根. 证 因为0a ,1a ,… ,n a 均为实数,故00a a =,11a a =,… ,n n a a =.且 ()()k k z z =,故由共轭复数性质有:()()z P z P =.则由已知()0i ≡+b a P .两端 取共轭得 即()0i ≡-b a P .故b a i -也是()0=z P 之根. 注 此题仅通过共轭的运算的简单性质及实数的共轭为其本身即得证.此结论说明实系数多项式的复零点是成对出现的.这一点在代数学中早已被大家认识.特别地,奇次实系数多项式至少有一个实零点. 1.7 证明:2222 12 1212||||2(||||)z z z z z z ++-=+,并说明其几何意义. 1.8 若 (1)(1)n n i i +=-,试求n 的值. 【解】 因为 22 2244444444(1)2(cos sin )2(cos sin ) (1)2(cos sin )2(cos sin )n n n n n n n n n n n n i i i i i i ππππππππ+=+=+-=-=-

复变函数习题解答(第4章)

p178第四章习题(一)[ 3, 4, 6, 7(4), 10, 12, 13, 14 ] 3. 如果lim n (c n + 1/c n )存在( ),试证下列三个幂级数有相同的收敛半径: (1) n 0 c n z n ;(2) n 0 (c n /(n + 1)) z n + 1;(3) n 0 (n c n ) z n – 1. 【解】事实上,我们只要证明下面的命题: 若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . 从这个命题,就可以得到幂级数(1)的收敛半径与幂级数(2)的收敛半径相同,幂级数(3)的收敛半径与幂级数(1)的收敛半径相同. step 1. 当R 是正实数或+时.若| z | < R ,则存在r 使得| z | < r < R . 因 n 0 c n z n 的收敛半径为R ,根据收敛半径定义及Abel 定理, 知 n 0 | c n r n |收敛. 因| (n c n ) z n – 1 | = ( | n /r | · ( | z | /r )n – 1 ) · | c n r n |; 而lim n ( | n /r | · ( | z | /r )n – 1 ) = 0,故M > 0使得0 | n /r | · ( | z | /r )n – 1 M . 所以| (n c n ) z n – 1 | M · | c n r n |. 由Weierstrass 判别法知 n 0 | (n c n ) z n – 1 |收敛,所以 n 0 (n c n ) z n – 1收敛. 因此 n 0 (n c n ) z n – 1的收敛半径R 1 R . 特别地,若 n 0 c n z n 的收敛半径为+,则 n 0 (n c n ) z n – 1的收敛半径也为 +. step 2. 当R 是非负实数时.对任意的满足R < r < | z |的实数r , 根据收敛半径定义, n 0 c n r n 发散.从而 n 0 | c n r n |发散. 当n > r + 1时,| c n r n | = | r /n | · | (n c n ) r n – 1 | | (n c n ) r n – 1 |; 因此, n 0 | (n c n ) r n – 1 |发散. 由Abel 定理, n 0 (n c n ) z n – 1的收敛半径R 1 r . 由r 的任意性,得R 1 R . 特别地,若 n 0 c n z n 的收敛半径为0,则 n 0 (n c n ) z n – 1的收敛半径也为0. step 3. 综合step 1和step 2的结论,当R 为正实数时,也有R 1 = R . 即若 n 0 c n z n 的收敛半径为R ,则 n 0 (n c n ) z n – 1的收敛半径也为R . [这个证明中,我们没有用到条件lim n (c n + 1/c n )存在( ),说明该条件是 可以去掉的.因为一般的幂级数并不一定满足这个条件,因此去掉这个条件来证明结论是有意义的.] 4. 设 n 0 c n z n 的收敛半径为R (0 < R < +),并且在收敛圆周上一点绝对收 敛,试证明这个级数对所有的点z : | z | R 为绝对收敛且一致收敛. 【解】设z 0在收敛圆周上,且 n 0 | c n z 0 n |绝对收敛. 那么对于点z : | z | R ,都有| z | | z 0 |. 因此级数 n 0 | c n z n |收敛,即 n 0 c n z n 绝对收敛. 而由Weierstrass 判别法知知级数 n 0 c n z n 对所有的在闭圆| z | R 上一致收 敛. 6. 写出e z ln(1 + z )的幂级数展式至含z 5项为止,其中ln(1 + z )|z = 0 = 0. 【解】在割去射线L = { z | Im(z ) = 0,Re(z ) 1}的z 平面上,能分出 Ln(1 + z )的无穷多个单值解析分支(Ln(1 + z ))k = ln| (1 + z ) | + i arg(1 + z ) + 2k i ,k .

复变函数论 第四章 复级数

第四章 复级数 §1.级数的基本性质 教学目的与要求:了解复数项级数收敛、发散及绝对收敛一致收敛等概念,掌握解析函数项级数的性质. 重点: 解析函数项级数. 难点:一致收敛的函数项级数;解析函数项级数. 课时:2学时 1.复数项级数 定义4.1 复数项级数就是 其中为复数 定义4.2 对于复数项级数,设 若存在,则称级数收敛,否则为发散. 据此定义,我们立即推出:若级数收敛,则 其次,由复数的性质易于推得 定理4.1 设 其中均为实数,则级数收敛的充要条件为基数与均收敛,复数项级数具有与实数项级数完全相同的性质,不再一一给出. 定理4.2(柯西收敛准则)级数收敛的充要条件是,使及,均有定义4.3 若级数收敛,则称级数为绝对收敛. 由关系式及 及定理4.1即可推得. 定理4.3 级数绝对收敛的充要条件为:级数及绝对收敛. 再由定理4.2可知:绝对收敛级数必为.收敛级数. 例1.对于级数当时,由于 , 而当时,,于是 因此级数收敛且有, 显然,当时,级数亦为绝对收敛的级数. 2.复函数项级数 定义4.4设函数在复平面点集上有定义,则称级数 为定义在上的复函数项级数. 定义4.5 设函数在上有定义,如果,级数均收敛于,则称级数收敛于,

或者说级数和函数记作 定义4.6 如果,使得当时,对任一,均有 则称级数在一致收敛于. 与定理4.2类似地我们有 定理4.4 级数在上一致收敛的充要条件是: ,使当时,对任一及均有 由此我们即得一种常用的一致收敛的判别法: 定理4.5 魏尔斯特拉斯-判别法设在点集上有定义 为一收敛正项级数,若在上成立则级数 在上一致收敛于,则在上一致收敛. 与实数项级数一样,不难证明以下定理: 定理4.6 设在复平面点集上连续,级数在上一致收敛于,则在上连续. 定理4.7 设在简单曲线上连续,级数在上一致收敛于,则. 对于复函数项级数的逐项求导问题,我们考虑解析函数项级数,首先,引入一个新概念. 定义4.7 设函数在区域内解析,如果级数在内任一有界闭区域上一致收敛于函数,则称级数在内闭一致收敛于. 由此,我们有下列重要的魏尔斯特拉斯定理. 定理设函数在区域内解析,级数在内中闭一致收敛于函数,则在内解析,且在内成立 证明: ,取,使得.在内任作一条简单闭曲线,根据定理及柯西定理推得.因而由莫勒拉定理知在内解析,再由的任意性即得在内解析. 其次,设的边界,由已知条件得在上一致收敛于,从而 在上一致收敛于,根据定理,我们有 即 于是定理结论成立. 作业:第178页 1. §2幂级数 教学目的与要求:了解幂级数收敛圆的概念,掌握简单的幂级数收敛半径的求法.掌握幂级数在收敛圆内一些基本性质及幂级数在收敛圆周上的性质. 重点: 幂级数收敛半径的求法; 幂级数在收敛圆内一些基本性质. 难点:幂级数在收敛圆周上的性质.

复变函数论第三版课后习题答案解析

第一章习题解答 (一) 1 .设z ,求z 及Arcz 。 解:由于3i z e π-== 所以1z =,2,0,1, 3 Arcz k k ππ=-+=±。 2 .设121z z =,试用指数形式表示12z z 及12 z z 。 解:由于6412,2i i z e z i e ππ -==== 所以()6 46 41212222i i i i z z e e e e π πππ π --=== 54()14612 26 11222i i i i z e e e z e πππππ +-===。 3.解二项方程44 0,(0)z a a +=>。 解:1 244 4 (),0,1,2,3k i i z a e ae k ππ π+====。 4.证明2 2 21212122()z z z z z z ++-=+,并说明其几何意义。 证明:由于2 2 2 1212122Re()z z z z z z +=++ 2 2 2 12 12122Re()z z z z z z -=+- 所以2 2 21212 122()z z z z z z ++-=+ 其几何意义是:平行四边形对角线长平方和等于于两边长的和的平方。 5.设z 1,z 2,z 3三点适合条件:0321=++z z z ,1321===z z z 。证明z 1,z 2,z 3 是内 接于单位圆 1 =z 的一个正三角形的顶点。 证 由于1 321 ===z z z ,知 321z z z ?的三个顶点均在单位圆上。 因为 3 33 31z z z == ()[]()[]212322112121z z z z z z z z z z z z +++=+-+-= 21212z z z z ++= 所以, 1212 1-=+z z z z , 又 ) ())((1221221121212 21z z z z z z z z z z z z z z +-+=--=- ()322121=+-=z z z z

《复变函数论》第四章-22页文档资料

第四章 解析函数的幂级数表示方法 第一节 级数和序列的基本性质 1、复数项级数和复数序列: 复数序列就是: 111222,,...,,...n n n z a ib z a ib z a ib =+=+=+在这里,n z 是复数, ,Im ,Re n n n n b z a z ==一般简单记为}{n z 。按照|}{|n z 是有界或无界序列, 我们也称}{n z 为有界或无界序列。 设0z 是一个复常数。如果任给0ε>,可以找到一个正数N ,使得当 n>N 时 ε<-||0z z n , 那么我们说{}n z 收敛或有极限0z ,或者说{}n z 是收敛序列,并且收敛于0z ,记作 0lim z z n n =+∞ →。 如果序列{}n z 不收敛,则称{}n z 发散,或者说它是发散序列。 令0z a ib =+,其中a 和b 是实数。由不等式 0||||||||||n n n n n a a b b z z a a b b --≤-≤-+-及 容易看出,0lim z z n n =+∞ →等价于下列两极限式: ,lim ,lim b b a a n n n n ==+∞ →+∞ → 因此,有下面的注解: 注1、序列{}n z 收敛(于0z )的必要与充分条件是:序列{}n a 收敛(于a )以及序列{}n b 收敛(于b )。 注2、复数序列也可以解释为复平面上的点列,于是点列{}n z 收敛于 0z ,或者说有极限点0z 的定义用几何语言可以叙述为:任给0z 的一个

邻域,相应地可以找到一个正整数N ,使得当n N >时,n z 在这个邻域内。 注3、利用两个实数序列的相应的结果,我们可以证明,两个收敛复数序列的和、差、积、商仍收敛,并且其极限是相应极限的和、差积、商。 定义4.1复数项级数就是 12......n z z z ++++ 或记为1 n n z +∞ =∑,或n z ∑,其中n z 是复数。定义其部分和序列为: 12...n n z z z σ=+++ 如果序列{}n σ收敛,那么我们说级数n z ∑收敛;如果{}n σ的极限是 σ,那么说n z ∑的和是σ,或者说n z ∑收敛于σ,记作 1 n n z σ+∞ ==∑, 如果序列{}n σ发散,那么我们说级数n z ∑发散。 注1、对于一个复数序列{}n z ,我们可以作一个复数项级数如下 121321()()...()...n n z z z z z z z -+-+-++-+ 则序列{}n z 的敛散性和此级数的敛散性相同。 注2级数 n z ∑收敛于σ的N ε-定义可以叙述为: 0,0,,N n N ε?>?>>使得当时有 1 ||n k k z σε=-<∑, 注3如果级数n z ∑收敛,那么

复变函数习题答案第4章习题详解

第四章习题详解 1.下列数列a是否收敛?如果收敛,求出它们的极限: n 1)a n 1 1 ni mi ; 2) a n n i 1; 2 3)a i n n1; n1 4) ni 2 a n e; 1ni a n e。 n 5)2 0,a1 2.证明:lim n a n 1 , , a a1 1 不存在,a1,a1 3.判别下列级数的绝对收敛性与收敛性:n i 1) ;n n1 n i 2) ;ln n n2 3) 65i n 08 n;

4) n cos 02 n in 。 4.下列说法是否正确?为什么? 1)每一个幂级数在它的收敛圆周上处处收敛; 1

2)每一个幂级数的和函数在收敛圆内可能有奇点; 3)每一个在z连续的函数一定可以在z 0的邻域内展开成泰勒级数。 5.幂级数 n c能否在z0收敛而在z3发散? n z2 n0 6.求下列幂级数的收敛半径: 1) n1 n z p n (p为正整数); 2 n! n 2)z ; n nn1 3) 1 n n iz; n0 4) i n ez; n n1 5) n1 i n chz1; n nz 6) 。ln in n1 7.如果 n c n z的收敛半径为R,证明 n Re的收敛半径R。[提示: c n z n n Re c n zcz] n n0n0 8.证明:如果 c n1 lim存在,下列三个幂级数有相同的收敛半径 nc n n c n z; c n1z n1 n1 ; n1 nc n z。

2

9.设级数c收敛,而 n c发散,证明 n n c n z的收敛半径为1。 n0n0n0 10.如果级数 n c n z在它的收敛圆的圆周上一点z0处绝对收敛,证明它在收敛圆所围的闭区域上绝对收n0 敛。 11.把下列各函数展开成z的幂级数,并指出它们的收敛半径: 1) 11 3 z ; 2) 11 z 22 ; 3) 2 cos z; 4)shz; 5)chz; 6)e 2 z sin; 2 z z 7) z1 e; 8) 1 sin。 1z 12.求下列各函数在指定点z处的泰勒展开式,并指出它们的收敛半 径: 1) z z 1 1 ,z1; 2) z z 1z2 ,z2; 3

复变函数第一章答案

第一章 复数与复变函数 1.1计算下列各式: (1) (1)(32);i i +-- 解: (1)(32)(1)3223.i i i i i +--=+-+=-+ (2) ;(1)(2) i i i -- 解: 2 (13)3.(1)(2)22 1310 10 10 i i i i i i i i i i i i +-= = = = + ----+- (3) 1(1);1z z x iy z -=+≠-+ 解: 22 2 2 2 2 2 2 11(1)(1) 12.1 1 (1)(1)(1)z x iy x iy x iy x y y i z x iy x y x y x y -+--++-+-=== ++++++++++ 1.2 将直线方程2 20(0)ax by c a b ++=+≠写成复数形式.[提示: 记.x iy z +=] 解: 由,22z z z z x y i +-= = 代入直线方程,得 ()()0, 2 2()20,()()20, 0,,2. a b z z z z c i az a z bi z z c a bi z a bi z c Az A z B A a ib B c ++-+=+--+=-+++=++==+=故其中 1.3 将圆周方程22 ()0(0)a x y bx cy d a ++++=≠写成复数形式(即可z 与z 表示,其中 z x iy =+). 解: 把22 ,,2 2z z z z x y x y z z i +-= =+=?代入圆周方程得: ()()0, 2 22()()20,0. b c az z z z z z d i az z b ic z b ic z d A z z B z B z C ?+++-+=?+-+++=?+++=故 其中2,,2.A a B b ic C d ==+= 1.4 求下列复数的模与辐角主值.

复变函数(第四版)课后习题答案

习题一解答 1.求下列复数的实部与虚部、共轭复数、模与辐角。 (3)(3+ 4i )(2 5i ) ; (4)i 8 4i 21 + i 1 3+ 2i 1 3i 1 i (1) ; (2) ; i 2i 3+ 2i = (3+ 2i )(3 2i ) = 1 (3 2i ) 1 3 2i 13 解 (1) 所以 ? 1 ?3+ 2i ↑ 13 ? = ← 3, Im ?? ←= 2 1 ? Re ? , 13 ?3+ 2i ↑ 2 2 1 3+ 2i = 1 1 3+ 2i = ?? 3 ? +?? 3 ? 13 (3+ 2i ), , 13 13 ? 13 ? = 13 Arg ? 1 3+ 2i ? ? = arg ? 1 3+ 2i ? ? + 2k π 2 = arctan + 2k ,k = 0,±1,±2," 3 1 3i i 3i (1+ i ) = i 1 ( 3+ 3i )= 3 5 (2) 1 i = i ( i ) (1 i )(1+ i) i, i 2 2 2 所以 ?1 3i ? 3 , Re ? ?i 1 i ↑←= 2 ?1 3i ? ←= 5 Im ? ?i 1 i ↑ 2 2 2 1 3i = + i 5, 3 1 3i 1 i = ? ? +? ? = 34, 3 5 i 1 i ? 1 3i 2 2 i 2 2 2 1 3i ? + 2k π Arg = arg i 1 i ? i 1 i ? = arctan 5 + 2k π, k = 0,±1,±2,". 3 (3) (3+ 4i )(2 5i ) = (3+ 4i )(2 5i )( 2i ) = (26 7i )( 2i ) 2i (2i )( 2i ) 4 = 7 26i = 7 13i 2 2 所以 ?(3+ 4i )(2 5i )? Re ? ←= 7 , ? 2i ↑ 2 ?(3+ 4i )(2 5i )? Im ? ←↑= 13, ? 2i

第1章复变函数习题答案习题详解

第一章习题详解 1. 求下列复数z 的实部与虚部,共轭复数、模与辐角: 1) i 231 + 解: ()()()13 2349232323231231i i i i i i -=+-=-+-=+ 实部:13 3 231= ??? ??+i Re 虚部:132231-=?? ? ??+i Im 共轭复数:1323231i i += ?? ? ??+ 模:131 1323231 2 22=+= +i 辐角:πππk arctg k arctg k i i Arg 232213 3132 2231231+? ?? ??-=+-=+??? ??+=??? ??+arg 2) i i i -- 131 | 解: ()()()2 532332113311131312i i i i i i i i i i i i i i -= -+-=++---=+-+-=-- 实部:2 3131=??? ??--i i i Re 虚部:25131-=?? ? ??--i i i Im 共轭复数:253131 i i i i += ?? ? ??-- 模:2 34 4342 531312 2 2= =+= --i i i 辐角:πππk arctg k arctg k i i i i i i Arg 235223252131131+??? ??-=+???? ? ??-=+??? ??--=??? ??--arg

3) ()()i i i 25243-+ 解: ()()()2 26722672 72625243i i i i i i i --= -+= --= -+ 实部:()()2725243-=?? ? ??-+i i i Re 虚部:()()1322625243-=- =?? ? ??-+i i i Im · 共轭复数:()()226725243i i i i +-= ?? ? ??-+ 模: ()() 292522627252432 2 =?? ? ??-+??? ??-=-+i i i 辐角:()()ππk arctg k arctg i i i Arg 272622722625243+??? ??=+????? ? ?--=??? ??-+ 4) i i i +-21 8 4 解:i i i i i i 3141421 8-=+-=+- 实部:( )1421 8=+-i i i Re 虚部:( )3421 8-=+-i i i Im 共轭复数:() i i i i 314218+=+- 模:103142221 8 =+=+-i i i 辐角:( )()πππk arctg k arctg k i i i i i i Arg 2321324421821 8 +-=+?? ? ??-=++-=+-arg 2. ! 3. 当x 、y 等于什么实数时,等式 ()i i y i x +=+-++13531成立 解:根据复数相等,即两个复数的实部和虚部分别相等。有: ()()()i i i y i x 8235131+=++=-++ ???=-=+8321y x ?? ?==?11 1 y x

相关文档
相关文档 最新文档