文档库 最新最全的文档下载
当前位置:文档库 › RedHat5 内核升级指南

RedHat5 内核升级指南

RedHat5 内核升级指南
RedHat5 内核升级指南

RedHat5.3 升级内核到2.6.33 版本

错误:insmod: error inserting '/lib/dm-region-hash.ko' : -1 File exists

编译2.6.31内核后重启出现

insmod: error inserting '/lib/dm-region-hash.ko' : -1 File exists

解决方法:

1,解压initrd文件

[root@bogon ~]# cp /boot/initrd-2.6.30.4.img /tmp

[root@bogon ~]# cd /tmp/

[root@bogon tmp]# ls

initrd-2.6.30.4.img

[root@bogon tmp]# mkdir newinitrd

[root@bogon tmp]# cd newinitrd/

[root@bogon newinitrd]# zcat ../initrd-2.6.30.4.img |cpio -i

11537 blocks

释放之后看到如下内容

[root@bogon newinitrd]# ls

bin dev etc init lib proc sbin sys sysroot

2,ok,下边就是编辑init,删掉其中重复的四行中的两行

echo "Loading dm-region-hash.ko module"

insmod /lib/dm-region-hash.ko

echo "Loading dm-region-hash.ko module"

insmod /lib/dm-region-hash.ko

3,重新打包initrd

[root@bogon newinitrd]# find .|cpio -c -o > ../initrd

11538 blocks

[root@bogon newinitrd]# cd ..

[root@bogon tmp]# gzip -9 < initrd > initrd.img

[root@bogon tmp]# ls

initrd-2.6.30.4.img initrd initrd.img newinitrd

好了,initrd.img就是重新打包的initrd了,然后把initrd.img拷贝到/boot,更改grub.conf里边的initrd-2.6.30.4.img为initrd.img就可以了,

这样“insmod: error inserting '/lib/dm-region-hash.ko' : -1 File exists”就不会有了

其实将init文件的第二行“setquiet”去掉,你就知道initrd文件到底在做什么了

本文来自CSDN博客,转载请标明出处:https://www.wendangku.net/doc/3f14155150.html,/jinxl560/archive/2009/09/17/4563716.aspx

linux内核升级图文攻略

linux内核升级图文攻略 一、Linux内核概览Linux是一个一体化内核(monolithic kernel)系统。设备驱动程序可以完全访问硬件。Linux内的设备驱动程序可以方便地以模块化(modularize)的形式设置,并在系统运行期间可直接装载或卸载。1. linux内核linux 操作系统是一个用来和硬件打交道并为用户程序提供一个 有限服务集的低级支撑软件。一个计算机系统是一个硬件和软件的共生体,它们互相依赖,不可分割。计算机的硬件,含有外围设备、处理器、内存、硬盘和其他的电子设备组成计算机的发动机。但是没有软件来操作和控制它,自身是不能工作的。完成这个控制工作的软件就称为操作系统,在Linux的术语中被称为“内核”,也可以称为“核心”。Linux内核的主要模块(或组件)分以下几个部分:. 进程管理(process management) . 定时器(timer). 中断管理(interrupt management). 内存管理(memory management). 模块管理(module management). 虚拟文件系统接口(VFS layer). 文件系统(file system). 设备驱动程序(device driver). 进程间通信(inter-process communication). 网络管理(network management. 系统启动(system init)等操作系统功能的实现。2. linux内核版本号Linux内核使用三种不同的版本编号方式。. 第一种方

式用于1.0版本之前(包括1.0)。第一个版本是0.01,紧接着是0.02、0.03、0.10、0.11、0.12、0.95、0.96、0.97、0.98、0.99和之后的1.0。. 第二种方式用于1.0之后到2.6,数字由三部分“A.B.C”,A代表主版本号,B代表次主版本号,C代表较小的末版本号。只有在内核发生很大变化时(历史上只发生过两次,1994年的1.0,1996年的2.0),A才变化。可以通过数字B来判断Linux是否稳定,偶数的B代表稳定版,奇数的B代表开发版。C代表一些bug修复,安全更新,新特性和驱动的次数。以版本2.4.0为例,2代表主版本号,4代表次版本号,0代表改动较小的末版本号。在版本号中,序号的第二位为偶数的版本表明这是一个可以使用的稳定版本,如2.2.5; 而序号的第二位为奇数的版本一般有一些新的东西加入,是个不一定很稳定的测试版本,如2.3.1。这样稳定版本来源于上一个测试版升级版本号,而一个稳定版本发展到完全成熟后就不再发展。. 第三种方式从2004年2.6.0版本开始,使用一种“time-based”的方式。 3.0版本之前,是一种“A.B.C.D”的格式。七年里,前两个数字A.B即“2.6”保持不变,C随着新版本的发布而增加,D代表一些bug修复,安全更新,添加新特性和驱动的次数。3.0版本之后是“A.B.C”格式,B随着新版本的发布而增加,C代表一些bug修复,安全更新,新特性和驱动的次数。第三种方式中不使用偶数代表稳定版,奇数代表开发版这样的命名

如何自行编译一个Linux内核的详细资料概述

如何自行编译一个Linux内核的详细资料概述 曾经有一段时间,升级Linux 内核让很多用户打心里有所畏惧。在那个时候,升级内核包含了很多步骤,也需要很多时间。现在,内核的安装可以轻易地通过像 apt 这样的包管理器来处理。通过添加特定的仓库,你能很轻易地安装实验版本的或者指定版本的内核(比如针对音频产品的实时内核)。 考虑一下,既然升级内核如此容易,为什么你不愿意自行编译一个呢?这里列举一些可能的原因: 你想要简单了解编译内核的过程 你需要启用或者禁用内核中特定的选项,因为它们没有出现在标准选项里 你想要启用标准内核中可能没有添加的硬件支持 你使用的发行版需要你编译内核 你是一个学生,而编译内核是你的任务 不管出于什么原因,懂得如何编译内核是非常有用的,而且可以被视作一个通行权。当我第一次编译一个新的Linux 内核(那是很久以前了),然后尝试从它启动,我从中(系统马上就崩溃了,然后不断地尝试和失败)感受到一种特定的兴奋。 既然这样,让我们来实验一下编译内核的过程。我将使用Ubuntu 16.04 Server 来进行演示。在运行了一次常规的 sudo apt upgrade 之后,当前安装的内核版本是 4.4.0-121。我想要升级内核版本到 4.17,让我们小心地开始吧。 有一个警告:强烈建议你在虚拟机里实验这个过程。基于虚拟机,你总能创建一个快照,然后轻松地从任何问题中回退出来。不要在产品机器上使用这种方式升级内核,除非你知道你在做什么。 下载内核 我们要做的第一件事是下载内核源码。在 Kernel 找到你要下载的所需内核的URL。找到URL 之后,使用如下命令(我以 4.17 RC2 内核为例)来下载源码文件: wget https://git.kernel/torvalds/t/linux-4.17-rc2.tar.gz

编译在arm板上运行的内核模块

编译在arm板上运行的内核模块 前两天被这个事情搞晕了,看视频的时候感觉编译一个内核模块很简单的, 就是修改makefile 的两个地方,但是自己一做就出现问题了,因为我是自己自 学的,身边没有可以指导的人,所以很多都要靠自己摸索了,我自己编译的时 候出现很多警告信息和错误,提示找不到头文件,还有一些看不懂的信息,到 处找资料,但是都没有说清楚,看了很久也没看出什么对自己有用的东西,看 的头晕,准备放弃了,今天在学习的时候又去看结果看到一篇博文,才焕然大 悟,makefile 里面要改的源代码路径是移植到arm 板上的linux 源代码,才突然 想起来,我自己改错了,就是要把路径指上你开发板上运行的linux 内核源代 码的顶层路径,我是用的通过nfs 启动系统的,是按照国嵌的视频一步步做的, 所以我的路径在我的nfs 所在的路径。这些问题对于一些学了很久的人来说可 能很低级,但是对于初学者来说可能碰到后半天搞不好,所以写下来供参考。 。。下面是我自己找的一个小实验: #include #include MODULE_LICENSE(“GPL”);MODULE_AUTHOR(“David Xie”);MODULE_DESCRIPTION(“Hello World Module”);MODULE_ALIAS(“a simplest module”);static int __init hello_init(){ printk(KERN_EMERG”Hello World!\n”);return 0;}static void __exit hello_exit(){ printk(KERN_EMERG “Goodbye Cruel World!\n”);}module_init(hello_init);module_exit(hello_exit);第一步是编译,首先要做的是设置交叉编译器,修改makefile,打开makefile 文件, 如下:ifneq ($(KERNELRELEASE),)obj-m := hello.oelseKDIR := /forlinux/kernel/linux-2.6.28all:make -C $(KDIR) M=$(PWD) modules ARCH=arm CROSS_COMPILE=arm-linux-clean:rm -f *.ko *.o *.mod.o *.mod.c *.symversendif 首先需要指定kernel 的源代码路径:我的是KDIR

Linux 2.6.19.x内核编译配置选项简介(2)

Linux 2.6.19.x内核编译配置选项简介(2) Security Marking 对网络包进行安全标记,类似于nfmark,但主要是为安全目的而设计,如果你不明白的话就别选 Network packet filtering (replaces ipchains) Netfilter可以对数据包进行过滤和修改,可以作为防火墙("packet filter"或"proxy-based")或网关(NAT)或代理(proxy)或网桥使用.选中此选项后必须将"Fast switching"关闭,否则将前功尽弃 Network packet filtering debugging 仅供开发者调试Netfilter使用 Bridged IP/ARP packets filtering 如果你希望使用一个针对桥接的防火墙就打开它 Core Netfilter Configuration 核心Netfilter配置(当包流过Chain时如果match某个规则那么将由该规则的target来处理,否则将由同一个Chain中的下一个规则进行匹配,若不match所有规则那么最终将由该Chain的policy进行处理) Netfilter netlink interface 允许Netfilter在与用户空间通信时使用新的netlink接口.netlink Socket是Linux用户态与内核态交流的主要方法之一,且越来越被重视 Netfilter NFQUEUE over NFNETLINK interface 通过NFNETLINK接口对包进行排队 Netfilter LOG over NFNETLINK interface 通过NFNETLINK接口对包记录.该选项废弃了ipt_ULOG和ebg_ulog机制,并打算在将来废弃基于syslog 的ipt_LOG和ip6t_LOG模块 Layer 3 Independent Connection tracking 独立于第三层的链接跟踪,通过广义化的ip_conntrack支持其它非IP协议的第三层协议 Netfilter Xtables support 如果你打算使用ip_tables,ip6_tables,arp_tables之一就必须选上 "CLASSIFY" target support 允许为包设置优先级,一些排队规则(atm,cbq,dsmark,pfifo_fast,htb,prio)需要使用它 "CONNMARK" target support 类似于"MARK",但影响的是连接标记的值 "DSCP" target support 允许对ip包头部的DSCP(Differentiated Services Codepoint)字段进行修改,该字段常用于Qos "MARK" target support 允许对包进行标记(通常配合ip命令使用),这样就可以改变路由策略或者被其它子系统用来改变其行为"NFQUEUE" target Support 用于替代老旧的QUEUE(iptables内建的target之一),因为NFQUEUE能支持最多65535个队列,而QUEUE 只能支持一个 "NOTRACK" target support 允许规则指定哪些包不进入链接跟踪/NA T子系统 "SECMARK" target support

Linux kernel内核升级全过程,教你一次成功

序言 由于开发环境需要在linux-2.6内核上进行,于是准备对我的虚拟机上的Linux系统升级。没想到这一弄就花了两天时间( 反复装系统,辛苦啊~~),总算把Linux系统从2.4.20-8内核成功升级到了2.6.18内核。 网上虽然有很多介绍Linux内核升级的文章,不过要么过时,下载链接失效;要么表达不清,不知所云;更可气的是很多 文章在转载过程中命令行都有错误。刚开始我就是在这些“攻略”的指点下来升级的,以致于浪费了很多时间。 现在,费尽周折,升级成功,心情很爽,趁性也来写个“升级攻略”吧!于是特意又在虚拟机上重新安装一个Linux系统 ,再来一次完美的升级,边升级边记录这些步骤,写成一篇Linux内核升级记实录(可不是回忆录啊!),和大家一起分享 ~~! 一、准备工作 首先说明,下面带#号的行都是要输入的命令行,且本文提到的所有命令行都在终端里输入。 启动Linux系统,并用根用户登录,进入终端模式下。 1、查看Linux内核版本 # uname -a 如果屏幕显示的是2.6.x,说明你的已经是2.6的内核,也用不着看下文了,该干什么干什么去吧!~~~如果显示的是 2.4.x,那恭喜你,闯关通过,赶快进行下一步。 2、下载2.6内核源码 下载地址:https://www.wendangku.net/doc/3f14155150.html,/pub/linux/kernel/v2.6/linux-2.6.18.tar.bz2 3、下载内核升级工具 (1)下载module-init-tools-3.2.tar.bz2 https://www.wendangku.net/doc/3f14155150.html,/pub/linux/utils/kernel/module-init-tools/module-init-tools-3.2.tar.bz2 (2)下载mkinitrd-4.1.18-2.i386.rpm https://www.wendangku.net/doc/3f14155150.html,/fedora/linux/3/i386/RPMS.core/mkinitrd-4.1.18-2.i386.rpm (3)下载lvm2-2.00.25-1.01.i386.rpm https://www.wendangku.net/doc/3f14155150.html,/fedora/linux/3/i386/RPMS.core/lvm2-2.00.25-1.01.i386.rpm (4)下载device-mapper-1.00.19-2.i386.rpm https://www.wendangku.net/doc/3f14155150.html,/fedora/linux/3/i386/RPMS.core/device-mapper-1.00.19-2.i386.rpm (2.6.18内核和这4个升级工具我都有备份,如果以上下载地址失效,请到https://www.wendangku.net/doc/3f14155150.html,/guestbook留下你的邮箱,我给你发过去)

ubuntu12.04 升级内核实战

ubuntu12.04 升级内核实战 ubuntu 12.04内核是linux 3.2.0-24,其实升级到最新版本3.3.4也没什么很大意义,主要是集成了一些新的驱动和一些普通用户用不到的功能,所以基本上本文纯属折腾,但不要随便升级当班设备啊!好了,不废话了,我们开始........... 首先是准备条件: ①、有一台装有ubuntu 12.04的机器 ②、先移步到https://www.wendangku.net/doc/3f14155150.html,/下载linux稳定版内核 ③、拥有root权限 ④、并将下载好的内核解压到/usr/src下,使用命令如下: #tar jxvf linux-3.3.4.tar.bz2 这样你就可以得到一个名叫linux-3.3.4 好,现在一切都准备好了,接下来就开始配置,编译,安装新内核吧!1,进入刚才的文件夹/usr/src/linux-3.3.4,输入命令:$ make mrproper 该命令的功能在于清除当前目录下残留的.config和.o文件,这些文件一般是以前编译时未清理而残留的。而对于第一次编译的代码来说,不存在这些残留文件,所以可以略过此步,但是如果该源代码以前被编译过,那么强烈建议执行此命令,否则后面可能会出现未知的问题。2,配置编译选项 作为操作系统的内核,其内容和功能必然非常繁杂,包括处理器调

度,内存管理,文件系统管理,进程通讯以及设备管理等等,而对于不同的硬件,其配置选项也不相同,所以在编译源代码之前必须设置编译选项。其实我觉得这一步是升级内核整个过程中最有技术含量的,因为要根据自己的需要正确选择yes or no需要对计算机方方面面的知识都有所了解。但是这里的选项实在是太多了,大概有几百项之多,我以前曾尝试着一项一项的选,但是最后还是放弃了,因为有很多选项不是很明白。 既然这样,难道没有什么简便的方法么?当然有!那就是make menuconfig 或者make xconfig。我使用的是make menuconfig,但是前提条件是要装ncurses。 ncurses 到https://www.wendangku.net/doc/3f14155150.html,/pub/gnu/ncurses/下载,可以放到任何目录进行安装: tar zxvf ncurses.tar.gz #解压缩并且释放文件包 cd ncurses #进入解压缩的目录(注意版本) ./configure #按照你的系统环境制作安装配置文件 make #编译源代码并且编译NCURSES库 su root #切换到root用户环境 make install #安装编译好的NCURSES库 另外,在make menuconfig过程中也会有一些选项需要你来设置

升级Centos6.5安装光盘中的内核

升级CentOS6.5安装镜像中的Linux内核版本 前言 因为之前笔者所在公司的一款虚拟化平台产品在数据中心服务器上部署时出现不兼容现象,怀疑是安装介质中我们所定制的Linux内核与新服务器硬件不兼容导致,于是就牵涉到升级安装介质中Linux内核的工作。由于这款虚拟化平台产品是在CentOS6.5的基础上定制得到,所以本质上相当于直接更新CentOS6安装介质中Linux内核。关于如何定制一张Linux发行版光盘,以及如何在一个完整现有的Linux系统上升级内核,网上各种文章铺天盖地几乎已成大路货。然而直接升级发行版介质中的内核却少有提及,为此我将整个工作过程记录下来,所用方式方法不一定最优,但意在抛砖引玉。 在我进行这项工作的时候,发现https://www.wendangku.net/doc/3f14155150.html,上的内核最新版本已悄然变为4.8.6,这是一个stable版本,于是乎决定就用它了。 安装光盘目录结构分析 CentOS6.5安装介质目录结构如下图所示: 图1 CentOS发行版ISO目录树 (1)EFI目录主要用于64位的基于EFI的系统引导。其中的BOOT目录下的BOOTX64.conf为grub的配置文件,用于显示引导菜单。

(2) images目录:包含有各种引导镜像。最重要的是引导第二阶段安装程序需要用到的镜像文件install.img(CentOS7安装盘中该文件名称是squashfs.img),该镜像文件内部文件系统类型是squashfs,未经压缩,可以直接挂载(只读),anaconda程序就在这个镜像文件中。该目录中还包含一个pxeboot目录,主要用于制作PXE安装方式引导介质。 (3) isolinux目录:有开机引导系统安装的内核(vmlinuz)及临时文件系统(initrd.img),在引导系统时会载入内存。 (4) Packages目录:包含安装所需的所有二进制RPM包。 (5) repodata目录:一个位于光盘介质上的yum源,内部包含了软件仓库所有的配置文件。 (6) TRANS.TBL文件:记录当前目录的列表,用mkisofs的-T参数重新生成,主要是为了支持长文件名称。 (7) .discinfo文件是安装介质的识别信息。.treeinfo文件记录不同安装方式安装程序所在的目录结构,如PXE方式时,内核kernel=images/pxeboot/vmlinuz,根文件系统initrd=images/pxeboot/initrd.img。 CentOS安装光盘是一张引导盘,启动时,引导程序会分别将vmlinuz和initrd.img载入内存,待内核初始化完成后,会执行initrd中的/sbin/init,/sbin/init 加载/sbin/loader,最终加载运行install.img中的anaconda安装程序。anaconda会根据配置和用户操作分别安装Packages文件夹下的rpm包,操作系统内核也以rpm包的形式存在其中。因此,需要更新的文件主要是光盘中isolinux、image/pxeboot下的vmlinuz和initrd.img文件,Packages目录下的内核RPM包。 编译内核及模块 第一步,从https://https://www.wendangku.net/doc/3f14155150.html,/上下载新版本的内核源码,linux内核版本号中的第二位(即次版本号)为偶数的版本为稳定版,为奇数的版本是处于开发中的非稳定版,本文考虑到更新后的安装程序需要用于生产环境,因此,选择的版本号为4.8.6,即稳定版。下载后直接用tar将源码解压到/usr/src/kernels路径下。 第二步,配置和编译内核。在配置和编译内核前,需先准备好相关工具环境,先执行yum –y install gccncurses-developensslcreaterepo,在源码目录下分别执行下述命令即可生成内核二进制文件: # make menuconfig //启动一个图形化内核配置界面,该配置工具会将当前系统内核配置作为默认配置,配置好后选择按钮,会再内核源码目录中生成

linux内核编译和生成makefile文件实验报告

操作系统实验报告 姓名:学号: 一、实验题目 1.编译linux内核 2.使用autoconf和automake工具为project工程自动生成Makefile,并测试 3.在内核中添加一个模块 二、实验目的 1.了解一些命令提示符,也里了解一些linux系统的操作。 2.练习使用autoconf和automake工具自动生成Makefile,使同学们了解Makefile的生成原理,熟悉linux编程开发环境 三、实验要求 1使用静态库编译链接swap.c,同时使用动态库编译链接myadd.c。可运行程序生成在src/main目录下。 2要求独立完成,按时提交 四、设计思路和流程图(如:包括主要数据结构及其说明、测试数据的设计及测试结果分析) 1.Makefile的流程图: 2.内核的编译基本操作 1.在ubuntu环境下获取内核源码 2.解压内核源码用命令符:tar xvf linux- 3.18.12.tar.xz 3.配置内核特性:make allnoconfig 4.编译内核:make 5.安装内核:make install

6.测试:cat/boot/grub/grub.conf 7.重启系统:sudo reboot,看是否成功的安装上了内核 8.详情及结构见附录 3.生成makefile文件: 1.用老师给的projec里的main.c函数。 2.需要使用automake和autoconf两个工具,所以用命令符:sudo apt-get install autoconf 进行安装。 3.进入主函数所在目录执行命令:autoscan,这时会在目录下生成两个文件 autoscan.log和configure.scan,将configure.Scan改名为configure.ac,同时用gedit打开,打开后文件修改后的如下: # -*- Autoconf -*- # Process this file with autoconf to produce a configure script. AC_PREREQ([2.69]) AC_INIT([FULL-PACKAGE-NAME], [VERSION], [BUG-REPORT-ADDRESS]) AC_CONFIG_SRCDIR([main.c]) AC_CONFIG_HEADERS([config.h]) AM_INIT_AUTOMAKE(main,1.0) # Checks for programs. AC_PROG_CC # Checks for libraries. # Checks for header files. # Checks for typedefs, structures, and compiler characteristics. # Checks for library functions. AC_OUTPUT(Makefile) 4.新建Makefile文件,如下: AUTOMAKE_OPTIONS=foreign bin_PROGRAMS=main first_SOURCES=main.c 5.运行命令aclocal 命令成功之后,在目录下会产生aclocal.m4和autom4te.cache两个文件。 6.运行命令autoheader 命令成功之后,会在目录下产生config.h.in这个新文件。 7.运行命令autoconf 命令成功之后,会在目录下产生configure这个新文件。 8.运行命令automake --add-missing输出结果为: Configure.ac:11:installing./compile’ Configure.ac:8:installing ‘.install-sh’ Configure.ac:8:installing ‘./missing’ Makefile.am:installing ‘./decomp’ 9. 命令成功之后,会在目录下产生depcomp,install-sh和missing这三个新文件和执行下一步的Makefile.in文件。 10.运行命令./configure就可以自动生成Makefile。 4.添加内核模块

Linux 内核编译配置选项简介

General setup常规设置 Local versio n - append to kernel release 在内核版本后面加上自定义的版本字符串(小于64字符),可以用"uname -a"命 令看到 Automatically append version information to the versio n string 自动在版本字符串后面添加版本信息,编译时需要有perl以及git仓库支持 Support for paging of anonymous memory (swap) 使用交换分区或者交换文件来做为虚拟内存 System V IPC System V进程间通信(IPC)支持,许多程序需要这个功能.必选,除非你知道自己 在做什么 POSIX Message Queues POSIX消息队列,这是POSIX IPC中的一部分 BSD Process Accounting 将进程的统计信息写入文件的用户级系统调用,主要包括进程的创建时间/创建者/ 内存占用等信息 Export task/process statistics through netlink 通过netlink接口向用户空间导出任务/进程的统计信息,与BSD Process Accounting的不同之处在于这些统计信息在整个任务/进程生存期都是可用的 UTS Namespaces UTS名字空间支持,不确定可以不选 Auditing support 审计支持,某些内核模块(例如SELinux)需要它,只有同时选择其子项才能对系统 调用进行审计 Kernel .config support 把内核的配置信息编译进内核中,以后可以通过scripts/extract-ikconfig脚本来 提取这些信息 Cpuset support 只有含有大量CPU(大于16个)的SMP系统或NUMA(非一致内存访问)系统才需 要它 Kernel->user space relay support (formerly relayfs) 在某些文件系统上(比如debugfs)提供从内核空间向用户空间传递大量数据的接 口

redhat5.8升级内核版本培训资料

r e d h a t5.8升级内核 版本

一、升级背景 前段时间公司有个项目用到了短信收发的业务,采购了两台16口的Wavecom USB短信猫设备,服务器操作系统是ReadHat5.4,内核2.6.18,插上设备后,操作系统无法自动识别该设备,原因是没有预装该设备USB转串口的驱动程序,可能是只有这个产品不能识别,因为曾经我用过单口的GSM MODEM短信猫测试,可以自动识别出来。后来从供应商处得到信息,说是他们这个产品比较新,版本低的内核没有预装新的USB转串口驱动程序,但现在2.6.32以上内核都自带了USB转串口的驱动,所以最后通过升级系统内核的方式解决了这个问题。 二、升级测试环境 宿主机:Window xp 虚拟机:VM8.0.2 OS:CentOS 5.8 Final 内核(升级前):2.6.18 所有操作步聚使用root权限 三、升级步聚 1、下载内核 到https://www.wendangku.net/doc/3f14155150.html,下载一个新版本内核源码,当前最新稳定版为3.3.4。这里下载的是: https://www.wendangku.net/doc/3f14155150.html,/pub/linux/kernel/v2.6/longterm/v2.6.35/linux-2.6.35.13.tar.bz2

2、解压内核文件 将linux-2.6.35.13.tar.bz2上传到/usr/local/src目录下,使用tar -jxvf linux-2.6.35.13.tar.bz2命令解压,得到linux-2.6.35.13目录 3、清除文件 cd linux-2.6.35.13(下面所有操作都是在此目录,除非切换了新的目录) make distclean 清除以前编译内核生成的所有文件(除了清除可执行文件和目标文件外,configure所产生的Makefile也会清除掉) 如果是第一次编译,这步聚可以省略 4、复制配置文件 将系统默认的内核配置文件复制到linux-2.6.35.13目录下,并命名.config cp /boot/config-2.6.18-308.el5 .config 5、内核配置(make menuconfig) 内核配置,有三种方式: a)、make config:基于文本的最为传统的配置界面,不推荐使用 b)、make menuconfig:基于文本选单的配置界面,字符终端下推荐使用。 注意:使用make menuconfig 需要安装ncurses(yum -y install ncurses-devel),如果未安装会报如下错误:

linux内核配置模块编译安装

Linux内核配置编译和加载 Linux内核模块 Linux内核结构非常庞大,包含的组件也非常多,想要把我们需要的部分添加到内核中,有两个方法:直接编译进内核和模块机制 由于直接编译进内核有两个缺点,一是生成的内核过大,二是每次修改内核中功能,就必须重新编译内核,浪费时间。因此我们一般采用模块机制,模块本身不被编译进内核映像,只有在加载之后才会成为内核的一部分,方便了修改调试,节省了编译时间。 配置内核 (1)在drivers目录下创建hello目录存放hello.c源文件 (2)在hello目录下新建Makefile文件和Kconfig文件 Makefile文件内容: obj-y += hello.o //要将hello.c编译得到的hello.o连接进内核 Kconfig文件内容: 允许编译成模块,因此使用了tristate (3)在hello目录的上级目录的Kconfig文件中增加关于新源代码对应项目的编译配置选项 修改即driver目录下的Kconfig文件,添加

source "drivers/hello/Kconfig" //使hello目录下的Kconfig起作用 (4)在hello目录的上级目录的Makefile文件中增加对新源代码的编译条目 修改driver目录下的Makefile文件,添加 obj-$(CONFIG_HELLO_FOR_TEST) += hello/ //使能够被编译命令作用到 (5)命令行输入“make menuconfig”,找到driver device,选择select,发现test menu 已经在配置菜单界面显示出来 (6)选择test menu进入具体的配置,可以选择Y/N/M,这里我选择编译为M,即模块化 (7)保存退出后出现 (8)进入kernels目录中使用“ls -a”查看隐藏文件,发现多出.config隐藏文件,查看.config 文件

史上最全linux内核配置详解

对于每一个配置选项,用户可以回答"y"、"m"或"n"。其中"y"表示将相应特性的支持或设备驱动程序编译进内核;"m"表示将相应特性的支持或设备驱动程序编译成可加载模块,在需要时,可由系统或用户自行加入到内核中去;"n"表示内核不提供相应特性或驱动程序的支持。只有<>才能选择M 1. General setup(通用选项) [*]Prompt for development and/or incomplete code/drivers,设置界面中显示还在开发或者还没有完成的代码与驱动,最好选上,许多设备都需要它才能配置。 [ ]Cross-compiler tool prefix,交叉编译工具前缀,如果你要使用交叉编译工具的话输入相关前缀。默认不使用。嵌入式linux更不需要。 [ ]Local version - append to kernel release,自定义版本,也就是uname -r可以看到的版本,可以自行修改,没多大意义。 [ ]Automatically append version information to the version string,自动生成版本信息。这个选项会自动探测你的内核并且生成相应的版本,使之不会和原先的重复。这需要Perl的支持。由于在编译的命令make-kpkg 中我们会加入- –append-to-version 选项来生成自定义版本,所以这里选N。 Kernel compression mode (LZMA),选择压缩方式。 [ ]Support for paging of anonymous memory (swap),交换分区支持,也就是虚拟内存支持,嵌入式不需要。 [*]System V IPC,为进程提供通信机制,这将使系统中各进程间有交换信息与保持同步的能力。有些程序只有在选Y的情况下才能运行,所以不用考虑,这里一定要选。 [*]POSIX Message Queues,这是POSIX的消息队列,它同样是一种IPC(进程间通讯)。建议你最好将它选上。 [*]BSD Process Accounting,允许进程访问内核,将账户信息写入文件中,主要包括进程的创建时间/创建者/内存占用等信息。可以选上,无所谓。 [*]BSD Process Accounting version 3 file format,选用的话统计信息将会以新的格式(V3)写入,注意这个格式和以前的v0/v1/v2 格式不兼容,选不选无所谓。 [ ]Export task/process statistics through netlink (EXPERIMENTAL),通过通用的网络输出工作/进程的相应数据,和BSD不同的是,这些数据在进程运行的时候就可以通过相关命令访问。和BSD类似,数据将在进程结束时送入用户空间。如果不清楚,选N(实验阶段功能,下同)。 [ ]Auditing support,审计功能,某些内核模块需要它(SELINUX),如果不知道,不用选。 [ ]RCU Subsystem,一个高性能的锁机制RCU 子系统,不懂不了解,按默认就行。 [ ]Kernel .config support,将.config配置信息保存在内核中,选上它及它的子项使得其它用户能从/proc/ config.gz中得到内核的配置,选上,重新配置内核时可以利用已有配置Enable access to .config through /proc/config.gz,上一项的子项,可以通过/proc/ config.gz访问.config配置,上一个选的话,建议选上。 (16)Kernel log buffer size (16 => 64KB, 17 => 128KB) ,内核日志缓存的大小,使用默认值即可。12 => 4 KB,13 => 8 KB,14 => 16 KB单处理器,15 => 32 KB多处理器,16 => 64 KB,17 => 128 KB。 [ ]Control Group support(有子项),使用默认即可,不清楚可以不选。 Example debug cgroup subsystem,cgroup子系统调试例子 Namespace cgroup subsystem,cgroup子系统命名空间 Device controller for cgroups,cgroups设备控制器

RedHat5 内核升级指南

RedHat5.3 升级内核到2.6.33 版本

错误:insmod: error inserting '/lib/dm-region-hash.ko' : -1 File exists 编译2.6.31内核后重启出现 insmod: error inserting '/lib/dm-region-hash.ko' : -1 File exists 解决方法: 1,解压initrd文件 [root@bogon ~]# cp /boot/initrd-2.6.30.4.img /tmp [root@bogon ~]# cd /tmp/ [root@bogon tmp]# ls initrd-2.6.30.4.img [root@bogon tmp]# mkdir newinitrd [root@bogon tmp]# cd newinitrd/ [root@bogon newinitrd]# zcat ../initrd-2.6.30.4.img |cpio -i 11537 blocks 释放之后看到如下内容 [root@bogon newinitrd]# ls bin dev etc init lib proc sbin sys sysroot 2,ok,下边就是编辑init,删掉其中重复的四行中的两行 echo "Loading dm-region-hash.ko module" insmod /lib/dm-region-hash.ko echo "Loading dm-region-hash.ko module" insmod /lib/dm-region-hash.ko 3,重新打包initrd [root@bogon newinitrd]# find .|cpio -c -o > ../initrd 11538 blocks [root@bogon newinitrd]# cd .. [root@bogon tmp]# gzip -9 < initrd > initrd.img [root@bogon tmp]# ls initrd-2.6.30.4.img initrd initrd.img newinitrd 好了,initrd.img就是重新打包的initrd了,然后把initrd.img拷贝到/boot,更改grub.conf里边的initrd-2.6.30.4.img为initrd.img就可以了, 这样“insmod: error inserting '/lib/dm-region-hash.ko' : -1 File exists”就不会有了 其实将init文件的第二行“setquiet”去掉,你就知道initrd文件到底在做什么了

实验2.3_内核模块_实验报告

<内核模块>实验报告 题目: 内核模块实验 1、实验目的 模块是Linux系统的一种特有机制,可用以动态扩展操作系统内核功能。编写实现某些特定功能的模块,将其作为内核的一部分在管态下运行。本实验通过内核模块编程在/porc文件系统中实现系统时钟的读操作接口。 2、实验内容 设计并构建一个在/proc文件系统中的内核模块clock,支持read()操作,read()返回值为一字符串,其中包块一个空格分开的两个子串,分别代表https://www.wendangku.net/doc/3f14155150.html,_sec和https://www.wendangku.net/doc/3f14155150.html,_usec。 3、实验原理 Linux模块是一些可以作为独立程序来编译的函数和数据类型的集合。在装载这些模块时,将它的代码链接到内核中。Linux模块可以在内核启动时装载,也可以在内核运行的过程中装载。如果在模块装载之前就调用了动态模块的一个函数,那么这次调用将会失败。如果这个模块已被加载,那么内核就可以使用系统调用,并将其传递到模块中的相应函数。 4、实验步骤 编写内核模块 文件中主要包含init_module(),cleanup_module(),proc_read_clock()三个函数。其中init_module(),cleanup_module()负责将模块从系统中加载或卸载,以及增加或删除模块在/proc中的入口。read_func()负责产生/proc/clock被读时的动作。 内核编译部分过程:

过程持续较长时间. ●编译内核模块Makefile文件 Makefile CC=gcc MODCFLAGS := -Wall -D__KERNEL__ -DMODULE –DLINUX clock.o :clock.c /usr/include/linux//version.h $(CC) $(MODCFLAGS) –c clock.c echo insmod clock.o to turn it on echo rmmod clock to turn ig off echo 编译完成之后生成clock.o模块文件。 注:此参考makefile文件包含错误, 于是从网上寻找相关教程自行修改得到合适的Makefile文件 ●内核模块源代码clock.c #define MODULE #define MODULE_VERSION “1.0” #define MODULE_NAME “clock” #include #include #include int proc_read_clock(char* page, char** start, off_t off,int count,int* eof,void* data) { int len; struct timeval xtime;

linux 内核编译编译选项

1.Code maturity level options 代码成熟等级。此处只有一项:prompt for development and/or incomplete code/drivers,如果你要试验现在仍处于实验阶段的功能,就必须把该项选择为Y了;否则可以把它选择为N。 2. Loadable module support 对模块的支持。这里面有三项: Enable loadable module support:除非你准备把所有需要的内容都编译到内核里面,否则该项应该是必选的。 Set version inFORMation on all module symbols:可以不选它。 Kernel module loader:让内核在启动时有自己装入必需模块的能力,建议选上。 3. Processor type and features CPU类型。有关的几个如下: Processor family:根据你自己的情况选择CPU类型。 High Memory Support:大容量内存的支持。可以支持到4G、64G,一般可以不选。 Math emulation:协处理器仿真。协处理器是在386时代的宠儿,现在早已不用了。 MTTR support:MTTR支持。可不选。 Symmetric multi-processing support:对称多处理支持。除非你富到有多个CPU,否则就不用选了。 4. General setup 这里是对最普通的一些属性进行设置。这部分内容非常多,一般使用缺省设置就可以了。下面介绍一下经常使用的一些选项: Networking support:网络支持。必须,没有网卡也建议你选上。 PCI support:PCI支持。如果使用了PCI的卡,当然必选。 PCI access mode:PCI存取模式。可供选择的有BIOS、Direct和Any,选Any 吧。 Support for hot-pluggabel devices:热插拔设备支持。支持的不是太好,可不选。 PCMCIA/CardBus support:PCMCIA/CardBus支持。有PCMCIA就必选了。System V IPC BSD Process Accounting Sysctl support:以上三项是有关进程处理/IPC调用的,主要就是System V 和BSD两种风格。如果你不是使用BSD,就按照缺省吧。 Power Management support:电源管理支持。 Advanced Power Management BIOS support:高级电源管理BIOS支持。

相关文档
相关文档 最新文档