文档库 最新最全的文档下载
当前位置:文档库 › 谐振电路和品质因数Q值的物理意义及教学思路

谐振电路和品质因数Q值的物理意义及教学思路

谐振电路和品质因数Q值的物理意义及教学思路
谐振电路和品质因数Q值的物理意义及教学思路

收稿日期:2012-11-27

作者简介:雷志坤(1966~),广西机电职业技术学院讲师,研究方向:电子技术、实验实训教学。浅谈谐振电路和品质因数Q 值的

物理意义及教学思路

雷志坤

(广西机电职业技术学院,广西南宁 530007)

摘 要:谐振是电路在运行过程中的一个特殊状态,处于谐振状态的电路具有明显而独特的特征;电路品质因数Q 值的物理意义在于揭示了电路谐振程度的强弱,体现了电路对信号源频率的选择性以及电路中无功功率对有功功率的比例。充分理解谐振和品质因数的物理含义对掌握和应用其原理起到事半功倍的效果。本文从实用角度出发,通过对常见应用实例分析引出谐振的概念及其学习重点,并通过对比方法讨论了两种典型谐振的特点及品质因数Q 值物理意义区别,给电路分析相关内容的教学提供了一些有效的参考方法。

关键词:谐振;品质因数Q 值;物理意义;讨论

中图分类号:G642 文献标识码:A 文章编号:1008-7508(2013)01-0123-03

引言

谐振是电路在运行过程中出现的一种特殊物理现象,

其重要性从无线电通信等技术中的应用中可见一斑。具有

电感和电容元件的不含独立激励源二端电路网络,当网络

的输入阻抗等效为纯电阻时,该电路发生了谐振现象,谐

振时电感感抗大小等于电容容抗,网络端口的电压和电流

同相位,在电感或电容上将获得比端口信号大得多的信号

响应量。Q 值的物理意义体现了一个电路发生谐振的强弱

程度和电路对输入信号选频性的好坏。然而,在电路分析

教学中,我们常常发现学生(尤其是高、中职学校的学生)

对谐振其品质因数Q 这些重要概念的物理含义理解不清或

一知半解,究其原因主要是因为其概念较为抽象,教材中

又多采用复杂而繁琐的数学公式推导,直观性不强,造成

学生对这些概念的理解出现一定程度的困难,将影响到他

们后续课程的学习效果。

如何才能便捷有效地理解电路中的谐振和品质因数等

概念呢?笔者在多年的教学实践中总结出一些较为理想的

教学方法,现归纳为以下几点供同行们探讨。

一、举例说明谐振概念及其品质因数Q 值的物理意义

1、谐振的概念及典型应用举例

现以最常见的收音机输入回路(即调台电路)为例。

如图1为简单的收音机信号输入等效电路,由天线和电阻

R 、电感L 及电容C 组成,其中,R 、L 、C 构一个串联谐振回路。 Journal of Jilin Radio and TV University No.1,2013(Total No.133)

吉林广播电视大学学报 2013年第1期(总第133期) 学术论坛

谐振电路的品质因素与计算公式

谐振电路的品质因素与计算公式 谐振电路在电子技术中有着广泛的应用.谐振电路的特性与该谐振电路的品质因数(即Q值)密切相关.求1个电路的Q值应从其定义出发,才能对Q值的意义有更深刻的理解对谐振电路的特性有更全面的认识。在研究各种谐振电路时,常常涉及到电路的品质因素Q值的问题,那么什么是Q值呢?下面我们作详细的论述。 品质因数的原始定义是由能量来定义的,表示了电路中能量之间的转换的关系,即电路的储能效率。从能量定义品质因数可以清楚地表达品质因数的物理意义,对于各种电路具有普遍意义。 对于简单的RLC串联、并联电路品质因数的计算我们可以直接套用品质因数在RLC串联、并联电路中的定义式进行计算,但是对于稍复杂的RLC谐振电路这些公式就不再适用。通过品质因数最原始的定义即能量定义一定是可以计算的任意谐振电路的品质因数,但是却会较为繁琐。 图1是一串联谐振电路,它由电容C、电感L和由电容的漏电阻与电感的线电阻R所组成。此电路的复数阻抗Z为三个元件的复数阻抗之和。

Z=R+jωL+(-j/ωC)=R+j(ωL-1/ωC) ⑴ 上式电阻R是复数的实部,感抗与容抗之差是复数的虚部,虚部我们称之为电抗用X表示, ω是外加信号的角频率。 当X=0时,电路处于谐振状态,此时感抗和容抗相互抵消了,即式⑴中的虚部为零,于是电路中的阻抗最小。因此电流最大,电路此时是一个纯电阻性负载电路,电路中的电压与电流同相。电路在谐振时容抗等于感抗,所以电容和电感上两端的电压有效值必然相等, 电容上的电压有效值UC=I*1/ωC=U/ωCR=QU品质因素Q=1/ωCR,这里I 是电路的总电流。 电感上的电压有效值UL=ωLI=ωL*U/R=QU品质因素Q=ωL/R 因为:UC=UL 所以Q=1/ωCR=ωL/R 电容上的电压与外加信号电压U之比UC/U= (I*1/ωC)/RI=1/ωCR=Q 电感上的电压与外加信号电压U之比UL/U= ωLI/RI=ωL/R=Q 从上面分析可见,电路的品质因素越高,电感或电容上的电压比外加电压越高。结论 品质因数的能量定义清楚地表达了品质因数的物理意义,对于各种电路具有普遍意义,但是如果利用它去求解较为复杂的谐振电路的品质因数则相当困难,甚至难以求解。串联和并联谐振电路的品质因数的定义,是从电路参数的角度对品质因数直接下了定义,这种定义有利于求解品质因数的计算,但是从理解的角度讲,不如品质因数的能量定义更加明确,更容易看清其所包含的物理意义。从第一部分的证明我们可以看出串联、并联谐振电路的品质因数的定义可以由品质因

物理学史

复习资料---物理学史 1.伽利略的理想斜面试验推翻了亚里士多德的错误结论(力是维持物体运动的原因),得出了力是物体运动变化的原因的正确结论。 2.惠更斯研究单摆振动现象发现单摆周期公式,伽利略首次发现了单摆的等时性。 3.焦耳研究了电流的热效应,得出了焦耳定律:Q=I2 Rt 4.开尔文创立了热力学温标,把—273℃作为零度温标,也叫绝对温标。百分温标(摄氏温标)和热力学温标的分度间隔是相等的。 5.库伦利用扭秤实验精确研究发现库仑定律:静电荷之间的相互作用力与电量成正比,与距离平方成反比,静电力常量:9.0×109 6.麦克斯韦在理论上预言了电磁波的实现,同时发现了电磁波在真空中传播速度跟光速相等。牛顿(英):牛顿三定律和万有引力定律,光的色散,光的微粒说 7.卡文迪许(英):利用卡文迪许扭秤首测万有引力恒量6.67×10-11 8.库仑(法):库仑定律,利用库仑扭秤测定静电力常量 9.奥斯特(丹麦):发现电流周围存在磁场 10.安培(法):磁体的分子电流假说,电流间的相互作用 11.法拉第(英):研究电磁感应(磁生电)现象,法拉第电磁感应定律,法拉第首先引入了虚拟的电场线,后发现了电磁感应现象,实现了“转磁为电”的理想 12.楞次(俄):楞次定律 13.麦克斯韦(英):电磁场理论,光的电磁说 14.赫兹(德):发现电磁波 15.惠更斯(荷兰):光的波动说 16.托马斯·扬(英):光的双缝干涉实验 17.爱因斯坦(德、美):用光子说解释光电效应现象,质能方程 18.汤姆生(英):发现电子 19.卢瑟福(英):α粒子散射实验,原子的核式结构模型,发现质子 20.玻尔(丹麦):关于原子模型的三个假设,氢光谱理论 21.贝克勒尔(法):发现天然放射现象 22.皮埃尔·居里(法)和玛丽·居里(法):发现放射性元素钋、镭 23.查德威克(英):发现中子 24.约里奥·居里(法)和伊丽芙·居里(法):发现人工放射性同位素

浅析物理学史在中学物理教学中的意义和作用

龙源期刊网 https://www.wendangku.net/doc/3f1497883.html, 浅析物理学史在中学物理教学中的意义和作用 作者:王泽秀 来源:《理科爱好者·教育教学版》2011年第01期 摘要:培养和提高中学生的终生体育意识,是体育发展的趋势,是新课程改革的内在要求。而学校体育又是学生终身体育的基础。因此,我们体育教师应积极采取措施来激发学生的运动兴趣,形成对体育的热爱,养成经常参加体育运动的习惯,逐步建立终身体育的意识, 关键词:中学生;终身体育意识;培养;策略 [中图分类号]G633.96[文献标识码]C[文章编号]1671-8437(2011)01-0106-01 一引言 终身体育是90年代以来体育发展和改革中提出的一个新概念。终身体育是指一个人终身进行身体锻炼和接受体育教育。它包含两个方面的内容:一是指人从生命开始至生命结束不停地学习与参加身体锻炼,使体育成为生活中不可或缺的内容;二是在终身体育思想的指导下,以体育的体系化、整体化为目标,为人在不同时期、不同生活领域中提供参加体育活动的机会和实践过程。 中学阶段的学生正处在青春发育期,是培养体育意识,养成体育锻炼习惯,掌握体育知识与技能,全面锻炼身体,促进身心健康的重要时期。这个阶段的身体生长、发育如何,将直接影响他们的一生。所以,学校体育在终身体育的体系中,起着承上启下的作用,其目的、任务具有明显的奠基功能和终身效益。所以,学校体育是学生终身体育的基础和关键的环节。在学校体育教学中推行终身体育,培养学生终身体育的意识、习惯、技巧和能力,使他们离开学校后能够继续经常从事有益的体育活动,将体育看成生活中必不可缺少的组成部分。 二学校体育教育如何培养中学生的终身体育意识 (一)加强体育理论教育

串联谐振电路品质因数的定义

串联谐振电路品质因数的定义 谐振电路中一个非常重要的参数就是品质因数Q,它揭示了谐振电路的各种重要关系,Q值的大小直接影响谐振电路的通频带和选择性等重要指标。然而,在现有的电子教科书中,对谐振电路品质因数的描述大都比较简单,这不利于学生对这一概念与其内涵的真正理解与把握。特别是对品质因数Q值的求解,学生更是感到无从下手。针对于这问题,本文从品质因数的定义出发进行研究,介绍了一种计算品质因数Q值简单而又有效的方法。 1.品质因数的定义 电路的品质因数分为串联电路的品质因数与并联电路的品质因数,以及部分电路的品质因数和整体电路的品质因数。品质因数有以下几种定义方式: 1.1用能量定义品质因数的能量定义清楚地表达了品质因数的物理意义,对于各种电路具有普遍意义,但在电路中利用能量定义来计算品质因数Q值相对比较复杂,有时候甚至难以计算。计算公式如下: 品质因数Q=2π(ω0/ωR0) 式中:0ω———谐振时电路储存的能量,ωR0———谐振时电路在1周期内消耗的能量。 品质因数Q=2π(ωLOM/P0T0) 式中:ωLOM———谐振时电路中电感能量的最大值,P0———谐振时电路中消耗的有功功率,T0———谐振周期。

1.2用功率定义品质因数的功率定义是从另一个角度对品质因数的能量定义的一种解释,它也较好地表达了品质因数的物理意义,用它来计算品质因数Q值的方法相对来说比用能量定义的方法来求解要好得多,不会出现计算不出来的情况。但对较为复杂电路,其计算过程较为繁琐。其计算公式如下: 品质因数Q=Q0/P0 式中:Q0———谐振时的无功功率,P0———谐振时的有功功率。 1.3串联电路品质因数的定义 1.3.1用参数定义如图1所示的RLC串联谐振电路,一般教科书用参数这样定义串联电路的品质因数:谐振时回路感抗值(或容抗值)与回路电阻R的比值称为回路的品质因数,用参数计算公式如下: 品质因数Q=ω0L/R=1/ω0CR=1R·L/R(1) 式中:0ω———电路谐振角频率,L———电路中的电感,C———电路中的电容,R———电路的电阻。

物理学史在物理教学中的作用

物理学史在物理教学中的作用 物理学史集中地体现了人类探索和逐步认识物理世界的现象、特性、规律和本质的历程。而在初中物理教材中没有较系统的介绍物理学的发展史,只是在物理概念和规律的引入时安排了一些物理史实的片段和物理学家的姓名作简单的介绍和提及。在物理教学中通过展现历史上物理学家探索物理世界奥秘的艰辛历程,可以让学生从物理学发展的历史中领悟到科学的本质、科学的人性以及科学思想、科学方法和科学精神,从而全面提高学生的科学素养。所以在物理教学中比较系统地介绍物理学史是很有必要的,其表现为以下四个方面: 一、对物理学发展史有较系统的了解,有利于学生思维的开拓。探索精神的发扬和能力的培养。 通过学生在初中对物理的学习,基本上能掌握《课程标准》中所规定的物理概念和规律,并能应用所学的知识,去解释一些简单的物理现象和解决物理问题,但绝大多数学生对物理学发展的历史过程却是个盲点,不了解所学到的知识在历史发展的过程中属于哪一段,这段在整个物理理论建立和发展的过程中起什么样的作用,是否存在一定的局限性。是否还有发展和完善的可能,只是为了学而学。这样不利于发扬学生的主观能动性,发扬勇于探索和开拓的精神,不利于人才的培养。根据素质教育的要求不仅要教会学生掌握物理基本概念和基本规律,更重要的是让学生对物理的发展历史过程有一个简单的、较系统的了解,根据学生的现有知识水平和理解能力介绍物理思想,物理学的研究方法,介绍物理概念的形成过程,这样不仅有利于学生的各方面能力的培养,还有利于学生的辩证唯物主义世界观的教育有利于物理人才的培养:更有利于培养社会需要的人才。也使他们对近代物理学发展有一个初步的了解。近代物理学的研究对象范围之大、程度之深、内容之复杂是史无前例的,与以往的历史大不相同。但只有对以往历史的了解,才能发展未来。正如获得诺贝尔物理学奖的杨振宁教授所说:“在所有的物理学和数学的最前沿的工作,很大一部分是要在猜想上……当然并不是说可以胡乱猜想的,必须建立在过去的一些知识上面”。这里所指的过去知识就是指已经发展的历史过程,只有了解过去的历史,才有今天有根据的猜想,才有明天的新突破。 二、对物理学史的了解,有助于学生对物理知识的理解和掌握。 根据物理教学情况,不可能有太多的时间来较系统介绍物理学发展的历史,但可以把部分的内容体现在平时的教学中,可以根据教材的编排特点,在单元复习中结合知识结构的整理,系统介绍这些知识获得历史过程和方法以及在物理学史中的位置和作用,逐步地分单元地把物理学史系统而又简单介绍给学生,这样不仅扩大了学生的知识面,而且有利于学生对物理知识的掌握和理解。例如在完成九年级教材第十四章《电和磁》中的《电磁感应》的教学内容后,可以按奥斯特发现电流的磁效应的现象为线索介绍历史上人们对电和磁的认识过程,使学生了解奥斯特以大胆探索不断开拓的进取精神突破了以往认为电和磁割裂的观点,揭示了电和磁的关系,使学生了解奥斯特的电流磁效应现象的发现是物理学史上

物理学史及其物理研究方法 教案

微专题物理学史及常见的思想方法一、人物部分 1.力学部分 (1)胡克:发现了胡克定律. (2)伽利略:在研究自由落体中采用的“逻辑推理+实验研究”方法是人类思想史上最伟大的成就之一.(理想斜面实验) (3)牛顿:得出牛顿运动定律及万有引力定律,奠定了以牛顿运动定律为基础的经典力学. (4)开普勒:发现了行星运动规律——开普勒三定律,研究的是第谷的观察数据 (5)卡文迪许:巧妙地利用扭秤装置测出了万有引力常量,被称作是测出地球质量的人 2.电磁学部分 (1)库仑:,利用库仑扭秤实验发现了电荷之间的相互作用规律——库仑定律,并测出了静电力常量. (2)密立根:测定电荷量 (3)欧姆:德国物理学家,在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系——欧姆定律. (4)奥斯特:,通过试验发现了电流能产生磁场,电流的磁效应 (5)安培:,提出了著名的分子电流假说,总结出了右手螺旋定则和左手定则.安培在电磁学中的成就很多,被誉为“电学中的牛顿”. (6)劳伦斯:,发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步. (7)法拉第:英国科学家,发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念. (8)楞次:概括试验结果,发表了确定感应电流方向的楞次定律. 3.选考部分 (4)麦克斯韦:总结前人研究的基础上,建立了完整的电磁场理论.

(5)赫兹:在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,并测得电磁波传播速度等于光速,证实了光是一种电磁波. (6)惠更斯:在对光的研究中,提出了光的波动说,发明了摆钟. (7)托马斯·杨:,首先巧妙而简单地解决了相干光源问题,成功地观察到光的干涉现象. (8)伦琴:德国物理学家,继英国物理学家赫谢耳发现红外线,德国物理学家里特发现紫外线后,发现了当高速电子打在管壁上,管壁能发射出X射线——伦琴射线. (9)普朗克:德国物理学家,提出量子概念——电磁辐射(含光辐射)的能量是不连续的,其在热力学方面也有巨大贡献. (10)爱因斯坦:他提出了“光子”理论及光电效应方程,建立了狭义相对论及广义相对论. (11)德布罗意:提出一切微观粒子都有波粒二象性;提出物质波概念,任何一种运动的物体都有一种波与之对应. (12)汤姆生:,研究阴极射线时发现了电子,测得了电子的比荷;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象. (13)卢瑟福:通过α粒子的散射现象,提出原子的核式结构.实现人工核转变的第一人,发现了质子. (14)玻尔:,把普朗克的量子理论应用到原子系统上,提出原子的玻尔理论. (15)查德威克:英国物理学家,从原子核的人工转变实验研究中,发现了中子. (16)威尔逊:英国物理学家,发明了威尔逊云室以观察α、β、γ射线的径迹. (17)贝克勒尔:法国物理学家,首次发现了铀的天然放射现象,开始认识原子核结构是复杂的. (18)玛丽·居里夫妇:法国(波兰)物理学家,是原子物理的先驱者,“镭”的发现者. (19)约里奥·居里夫妇:法国物理学家,老居里夫妇的女儿女婿;首先发现了用人工核转变的方法获得放射性同位素.

物理学史的研究现状及教育作用

物理学史的研究现状及教育作用 发表时间:2020-04-01T10:16:30.040Z 来源:《教育学文摘》2019年8月16期5批次作者:刘朋朋[导读] 在新课程改革的大背景下,中学物理课堂中融入物理学史是改革的必然趋势 摘要:在新课程改革的大背景下,中学物理课堂中融入物理学史是改革的必然趋势。这是因为物理学史有着重要的教育作用,物理学史可以激发学生的学习兴趣,启发学生的科学思维,培养学生的科学精神。目前国内外的专家、学者对物理学史做了大量的研究,并取得了一些研究成果。综观这些研究可以发现一些共同特点:在研究方向上,对于物理学史的教育价值、教育意义研究较多,而具体实施方法研究较少;在物理学史的教学建议上,原则性阐述较多,结合物理教材的深入研究较少。本文主要阐述物理学史的研究现状及教育作用。关键字:物理学史;课堂;兴趣;科学方法;科学精神 一、物理学史的研究现状 近年来,物理学史的教育作用引起了国内外专家、学者的重视,他们纷纷投入这方面的研究,并取得了一些重要成果。在这方面美国起步最早,研究的基础也比较深厚,从二十世纪四十年代开始,就对物理学史进行研究,研究物理发展过程,研究物理学家的成果,研究物理学家的研究方法,研究物理学史的教育作用,发展非常迅速,使美国在这一方面的研究一直处于世界领先地位。而我国在这方面的研究就比较晚,物理学史教育的研究最早在二十世纪八十年代,真正进入物理学史的研究行列是在九十年代,这个时期将物理学史引入中学物理教学的呼声越来越高。1982年中国科技史学会在北京召开了第一次物理学史讨论会,会议就物理学史教学进行了专门讨论。1986年中国物理学会召开“物理学史普及工作座谈会”,会议明确提出“用物理学史改进物理教学”的重大问题。1999年中国物理学史学会在北京和杭州召开,为北京市和浙江省100多位中学教师讲授“物理学史引人物理教学”知识,并普及物理学史知识。近几年,物理学史和物理教学的结合发展很快,部分新出版的教材也尝试着将物理学史有机地编入教材。在此过程中,越来越多的教师投入到了探索行列,有关的学术观点和研究成果不断涌现。但是对于物理学史的教育价值、教育意义研究比较多,而具体实施方法研究较少,研究还浮在表面;在物理学史的教学建议上,原则性阐述较多,结合物理教材的深入研究较少。 新课程改革也尝试着将物理学史融入物理教学中,从学习者的角度出发强调学生是学习的主体,教师只是学生学习的引导者,可是实施情况令人担忧。目前只有大学物理课堂上才讲述物理学史,讲得也不是太多,更多还是知识的讲解,部分讲座中也涉及到一些物理学史。而中学物理课堂中却很少融入物理学史,即使教材中涉及到一些物理学史,教师也不愿意花费时间讲述物理学史。有些年轻教师也讲一点,但也是蜻蜓点水,没有讲出实质性的东西。例如2019年一研究者曾对北碚区六所中学的53名高中物理教师在物理教学中融入物理学史的状况进行调查,发现只有24.1%的物理教师经常在物理教学中融入物理学史,62.9%的物理教师偶尔在教学中融入物理学史,13.0%的物理教师在教学中基本不融入物理学史。这是因为高考中很少出现有关物理学史方面的考题,部分教师认为学生学习知识不需要关注它的过去,过去的科学不如现在的,后者已经取代了前者,对前者进行教学研究已经没有任何意义了。还有些教师认为中学物理课时很少,教师几乎没有足够的时间来讲述物理学家的主要研究成果,更没有时间来解释这些成果是如何得到的。 二、物理学史的研究意义 古人云:以铜为鉴可正衣冠,以古为鉴可知兴衰,以人为鉴可以明得失,以史为鉴可以知兴替。学习物理也是一样,我们不仅要了解前人的研究成果,还要学习他们的研究方法,知道他们的研究过程,学习他们对待科学的态度,并从中受到教育。 物理学史是一个巨大的精神宝库,很值得我们去挖掘、去开发、去利用。它具体介绍了一些物理学家的研究成果,揭示了物理学家是在怎样的环境下、怎样的条件下做出这些发明或发现的,在这个过程中受到哪些相关启示而取得突破性进展,又是如何继承前人的研究成果,吸取同行或其他学科科学家的思想与智慧的;运用了怎样的科学思想和科学方法,如何进行逻辑推理和观察实验的,中间经历了哪些曲折,又是在什么样的精神状态下推进研究的;讲述了科学家们的品质和性格是多样的, 有神秘主义者、唯物主义者, 有工匠也有贵族, 有品质高尚的也有卑鄙的人, 科学是人类集体智慧的结晶, 任何有志之士都可以在科学的原野上任意驰骋。 学习物理学史,对教师而言不仅是专业能力的提升,而且也是解决问题的方法源泉。所以老师不仅要传授知识,更重要的是给学生讲前人的研究方法,让他们少走弯路,更早更快出研究成果。对于学生而言,可以激发学生学习物理的兴趣。俗话说,兴趣是最好的老师。学生一旦有了兴趣,那么学习物理的热情,求知欲随即就产生了,这样学习物理就化被动为主动了。总之,物理学史可以激发学生的学习兴趣,启发学生的科学思维,培养学生的科学精神。学习物理学史,可以探索科学发展的历程,领略科学丰富多彩的趣味,弘扬科学名家的丰功伟绩,学习科学家不懈的创新精神与无私的奉献精神。 三、物理学史融入物理课堂的思考 物理学史要融入物理课堂,成为习以为常的事情来做,作为教师本人,由于要时不时给学生讲解物理学史,所以要不断的积累物理学史方面的知识。首先要对物理学的发展过程要非常熟悉,物理学在各个时期取得了哪些成就,又是用什么研究方法得到的,这就要求教师要不停的学习,可以通过看科技报,看科技类方面的期刊,看科技方面的电视,网上查找阅读有关物理学史。具备了这样的知识,在教学的过程中可以信手拈来,课堂更加有趣,高效。作为学生也要时刻关注最新科技成果,科技前沿,与时俱进。对学校而言,应该将更多的科学家及成果展示在走廊、教室,当老师讲课的时候谈到某个科学家,学生发现自己也比较熟悉,因为就在墙上,平时都能见到。 物理是以实验为基础的一个学科,要重视实验。物理学家在研究过程中发明的实验仪器,如果条件允许的话,我们也可以去做,还原当时的研究过程,这也许能激发学生的兴趣,更加热爱物理。有些实验也可以让学生自己做,让他们体会科学研究过程的艰辛不易。 总之,将物理学史融入物理课堂就是要激发学生学习的兴趣,让他们认识到科学家不是神,也是像我们每个人一样会吃饭喝水,他们能做的事,我们同样能做到。更有信心面对这个世界,它并不是那么神秘不可及。 参考文献 [1] 栾玉广.自然物理技术研究方法[M].中国物理技术出版社,2010:23,74.

品质因数计算

电路理论基础论文 名称:电路品质因数的定义及计算方法 学生姓名: 学院: 班级: 学号: 2013年12月

电路品质因数的定义及计算方法 XXX (哈尔滨工业大学 控制科学与工程 哈尔滨150001) 摘要:品质因数是谐振电路中非常重要的一个参数。本文将介绍品质因数的三种定义及之间的相互关系并对谐振电路中品质因数的计算方法进行讨论,给出了一般RLC 电路谐振时品质因数的简单计算方法。 关键词:品质因数;定义;计算方法;谐振电路;等效阻抗;等效导纳; 品质因数是谐振电路中一个非常重要的参数,然而在课程教材只是在RLC 串联、并联谐振电路中直接给出了谐振电路的品质因数的计算公式并由计算公式定义了品质因数,但对于品质因数的原始定义、其物理意义及在较为复杂的RLC 混联电路中的计算方法却并没有说明。本文将介绍品质因数的原始定义,并从原始定义分别推导RLC 串联、并联谐振电路的品质因数定义式,最终给出复杂RCL 谐振电路的品质因数计算的简单方法。 1. 品质因数的定义及相互间的关系 1.1 从能量的角度定义 =2Q π 电路中存储的最大能量电路在一周期内消耗的总能量 品质因数的原始定义是由能量来定义的,表示了电路中能量之间的转换的关系,即电路的储能效率。从能量定义品质因数可以清楚地表达品质因数的物理意义,对于各种电路具有普遍意义,但在电路中利用能量定义来计算品质因数Q 值则相对比较复杂。 1.2 在RLC 串联谐振电路中的定义 R L C 图一:RCL 串联电路 RLC 串联电路图如图所示,电路处于谐振状态时,L 、C 为RLC 串联电路中的电感及电容,C L = ρ,ρ称为RLC 串联电路的特性阻抗。则品质因数R Q ρ=。 1.3 在RLC 并联谐振电路中的定义

品质因数

线圈的品质因数称作q值。它表示线圈在一定频率的交流电压下工作时,其感抗xl和等效损耗电阻之比,即为q值。表示公式为 式中:2---常数 f--频率 l--线圈的电感量 r--线圈的总损耗电阻,在低频下可视为线圈的直流电阻. q值的大小一般在几十到几百。q值越高,电路的损耗越小,效率越高。提高绕制线圈的q值可从以下几方面实施: 1)在线圈中装人磁心,这样可以增大电感值,从而提高q值。 2)尽量使用较粗的导线绕制线圈,在高频时还应采用多股线,这样可以减小导线电阻, 提高q值. 电感器的Q值越高,其损耗越小,效率越高. 电感器品质因数的高低与线圈导线的直流电阻、线圈骨架的介质损耗及铁心、屏蔽罩等引起的损耗等有关. 也有人把电感的Q值特意降低的,目的是避免高频谐振/增益过大.降低Q值的办法可以是增加绕组的电阻或使用功耗比较大的磁芯. Q值过大,引起电感烧毁,电容击穿,电路振荡. Q很大时,将有VL=VC>>V的现象出现.这种现象在电力系统中,往往导致电感器的绝缘和电容器中的电介质被击穿,造成损失.所以在电力系统中应该避免出现谐振现象.而在一些无线电设备中,却常利用谐振的特性,提高微弱信号的幅值. 品质因数又可写成Q=2pi*电路中存储的能量/电路一个周期内消耗的能量 通频带BW与谐振频率w0和品质因数Q的关系为:BW=w0/Q,表明,Q大则通频带窄,Q 小则通频带宽. Q=wL/R=1/wRC 其中: Q是品质因素 w是角频率 L是电感 R是串的电阻 C是电容 品质因数(□值)是表征电子电路中谐振回路特性的基本参数。谐振回路的能量关系为□也可用谐振回路各阻抗参量表示为 □通常,某个元件(如电感器或电容器)的□值,指这一元件与一理想的无损耗元件所组成的谐振回路的□值。品质因数测量有Q表法和变电容或变频率两种方法。 Q表法(电压比法)在高频范围广泛采用Q表法测量□值(图1高频Q表法原理图)。其基本原理是:被测件与Q表内部调谐电容器(及辅助电感)组成谐振回路,通过谐振电压和激励电压之比在谐振电压表上利用直接刻度得出谐振回路的直读□值。用此法还可由调谐电容读数求出被测件的电感或电容值。Q表法具有多用途、宽量程和可在实际工作频率下进行测量等特点。 变电容或变频率(通带)法这种方法是各种微波□□值测量方法的基础(图2变电容或变频率(通带)法原理图)。改变电容□或频率□测出谐振回路的谐振曲线,从而求出回路的□值,□

物理学史

物理学史 ★伽利略(意大利物理学家)对物理学的贡献: ①发现摆的等时性 ②物体下落过程中的运动情况与物体的质量无关 ③伽利略的理想斜面实验:在1683年出版的《两种新科学的对话》一书中,运用观察—假设—数学推理的方法,详细地研究了落体运动。将实验与逻辑推理结合在一起探究科学真理的方法为物理学的研究开创了新的一页(发现了物体具有惯性,同时也说明了力是改变物体运动状态的原因,而不是使物体运动的原因) 经典题目1 伽利略根据实验证实了力是使物体运动的原因(错) 伽利略认为力是维持物体运动的原因(错) 伽俐略首先将物理实验事实和逻辑推理(包括数学推理)和谐地结合起来(对) 伽利略根据理想实验推论出,如果没有摩擦,在水平面上的物体,一旦具有某一个速度,将保持这个速度继续运动下去(对) ★胡克(英国物理学家) 对物理学的贡献:胡克定律 经典题目2 胡克认为只有在一定的条件下,弹簧的弹力才与弹簧的形变量成正比(对) ★牛顿(英国物理学家)对物理学的贡献 ①牛顿在伽利略、笛卡儿、开普勒、惠更斯等人研究的基础上,采用归纳与演绎、综合与分析的方法,总结出一套普遍适用的力学运动规律——牛顿运动定律和万有引力定律,建立了完整的经典力学(也称牛顿力学或古典力学)体系,物理学从此成为一门成熟的自然科学 ②经典力学的建立标志着近代自然科学的诞生 经典题目3 牛顿发现了万有引力,并总结得出了万有引力定律,卡文迪许用实验测出了引力常数(对) 牛顿认为力的真正效应总是改变物体的速度,而不仅仅是使之运动(对)牛顿提出的万有引力定律奠定了天体力学的基础(对) ★卡文迪许 贡献:测量了万有引力常量 典型题目4 牛顿第一次通过实验测出了万有引力常量(错)卡文迪许巧妙地利用扭秤装置,第一次在实验室里测出了万有引力常量的数值(对) ★亚里士多德(古希腊) 观点: ①重的物理下落得比轻的物体快 ②力是维持物体运动的原因 经典题目5 亚里士多德认为物体的自然状态是静止的,只有当它受到力的作用才会运动(对) ★开普勒(德国天文学家) 对物理学的贡献开普勒三定律 经典题目6 开普勒发现了万有引力定律和行星运动规律(错)★托勒密(古希腊科学家) 观点:发展和完善了地心说 ★哥白尼(波兰天文学家)观点:日心说 ★第谷(丹麦天文学家)贡献:测量天体的运动 ★库仑(法国物理学家) 贡献:发现了库仑定律——标志着电学的研究从定性走向定量 典型题目7 库仑总结并确认了真空中两个静止点电荷之间的相互作用(对) 库仑发现了电流的磁效应(错) ★密立根贡献:密立根油滴实验——测定元电荷通过油滴实验测定了元电荷的数值。 e=1.6×10-19C ★昂纳斯(荷兰物理学家)发现超导 ★欧姆:贡献:欧姆定律(部分电路、闭合电路)★奥斯特(丹麦物理学家) 电流可以使周围的磁针偏转的效应,称为电流的磁效应(电流能够产生磁场)

物理学史与物理思想的建构

物理学史与物理思想的建构 大同市实验中学(037010)田雨禾 现代教育科学,心理科学和信息科学技术的综合和相互渗透,已成为教育发展和改革的强大动力。传统的教和学的模式正在酝酿重大的突破,教育面临着有史以来最为深刻的变革。这场教育的大变革不仅仅是教育形式和学习方式的重大变化,更重要的是将对教育的思想、观念、模式、内容和方法产生深刻影响。 物理学是人类对客观物质世界认识的结晶,它的基本使命是认识客观物质世界。研究目标是正确揭示客观物质世界所有现象和过程的本质的规律。研究方法包括观察、实验、假说和科学推理等。物理学特点决定了高中物理教育的功能定位,即以物理学的知识体系为载体,以创新精神和实践能力的培养为重点,以提高学生的科学素质为目标,通过强化物理知识的形成过程和应用过程,认识科学、技术、社会的紧密联系。体验,认识和运用科学研究的过程和方法,进而激发学生学习物理的兴趣,培养学生的观察实验能力、思维能力、分析和解决问题的能力,逐步提高学生的学习能力和研究能力,逐步树立正确的世界观、人生观、价值观,最终达到全面提高素质,发展个性,形成特长的目的。物理学以及高中物理教育的特点,功能定位决定了高中学生在物理课堂学习策略上与其它学科在课堂学习策略上应该也有所不同。 很多物理教育家指出,物理教学不仅要给出物理事实和物理规律,而且要对学生进行科学思想与科学方法教育。这与新一轮课改所提出的“知识与技能、过程与方法、情感态度与价值观”这三个维度的课程目标完全吻合。诺贝尔物理学奖得主,著名物理学家杨振宁博士就曾经这样说过,“进了一个好的研究院,学生都不坏,都得了博士学位。过了15年,他们的成就可以很悬殊。所以悬殊决不是他们的天分差得那么远,也绝对不是他们的技术差得那么多。最主要的是有的人走到一个正确的方向。这个方向在以后5年、10年或15年有了大发展,他们和这个方向与之俱长,就可以有大成就。”由此可见科学思想和科学方法的建构与掌握的重要性。物理学史含有的极为丰富的科学思想、科学精神与人文思想,是进行素质教育的极好内容,能够培养学生多方面的能力,是进行物理教学十分必要的部分。由于物理事实和物理规律具体,较容易把握,而科学思想与科学方法隐含其中,较为抽象,因此容易被忽略。因此,在中学物理的教学中如何从物理学史料中发掘物理思想,引导学生建构物理思想以真正提高学生的科学素养,从而提高全民族的素质,已成为当前中学物理教学的一个重要任务和使命,新课程目标的提出也给物理学史在物理教学中的渗透以及二者的结合提供了发展的天地。 一、新课标提倡的面向过程的教学给物理教学和物理学史的结合提供了广阔的空间。 现代教育理念所提出的教学根本目的,是促进学生的全面发展。新课程标准又把它具体化为“知识与技能、过程与方法、情感态度与价值观”这三个维度的课程目标。教学实践告诉我们,不仅要教给学生现代科技所必需的系统的物理知识,还应教给学生科学的学习和研究方法,科学既是一种人类的知识体系又是人类认识世界的一种方式和探索过程,而通常的科学方法都贯穿在物理学发展的过程中。物理学具有很强的继承性,许多科学家就是从对本学科历史的研究中,开始自己的创造活动的。牛顿说过:“如果说我比别人看的远一点,那是因为我站在巨人肩膀上的缘故”。不仅牛顿如此,凡做出重大贡献的物理学家都善于批判和继承。学习物理学史有助于活跃思维,增强胆识,使学生更自觉地继承前人的事业,有效地进行学习研究。上海教科院顾泠沅教授在《教学任务的变革》一文中提到:早在上世纪五十年代,英国哲学家波兰尼(M.polanyi)就曾说过:“我们所知道的多于我们所能言传的”。他据此推断出人类大脑中的知识分为两类:明确知识和默会知识。所谓明确知识是指能言传的,可以用文字等来表述的知识;而默会知识则是不能言传的,不能系统表述的那部分知识。而且人

谐振电路和品质因数Q值的物理意义及教学思路

收稿日期:2012-11-27 作者简介:雷志坤(1966~),广西机电职业技术学院讲师,研究方向:电子技术、实验实训教学。浅谈谐振电路和品质因数Q 值的 物理意义及教学思路 雷志坤 (广西机电职业技术学院,广西南宁 530007) 摘 要:谐振是电路在运行过程中的一个特殊状态,处于谐振状态的电路具有明显而独特的特征;电路品质因数Q 值的物理意义在于揭示了电路谐振程度的强弱,体现了电路对信号源频率的选择性以及电路中无功功率对有功功率的比例。充分理解谐振和品质因数的物理含义对掌握和应用其原理起到事半功倍的效果。本文从实用角度出发,通过对常见应用实例分析引出谐振的概念及其学习重点,并通过对比方法讨论了两种典型谐振的特点及品质因数Q 值物理意义区别,给电路分析相关内容的教学提供了一些有效的参考方法。 关键词:谐振;品质因数Q 值;物理意义;讨论 中图分类号:G642 文献标识码:A 文章编号:1008-7508(2013)01-0123-03 引言 谐振是电路在运行过程中出现的一种特殊物理现象, 其重要性从无线电通信等技术中的应用中可见一斑。具有 电感和电容元件的不含独立激励源二端电路网络,当网络 的输入阻抗等效为纯电阻时,该电路发生了谐振现象,谐 振时电感感抗大小等于电容容抗,网络端口的电压和电流 同相位,在电感或电容上将获得比端口信号大得多的信号 响应量。Q 值的物理意义体现了一个电路发生谐振的强弱 程度和电路对输入信号选频性的好坏。然而,在电路分析 教学中,我们常常发现学生(尤其是高、中职学校的学生) 对谐振其品质因数Q 这些重要概念的物理含义理解不清或 一知半解,究其原因主要是因为其概念较为抽象,教材中 又多采用复杂而繁琐的数学公式推导,直观性不强,造成 学生对这些概念的理解出现一定程度的困难,将影响到他 们后续课程的学习效果。 如何才能便捷有效地理解电路中的谐振和品质因数等 概念呢?笔者在多年的教学实践中总结出一些较为理想的 教学方法,现归纳为以下几点供同行们探讨。 一、举例说明谐振概念及其品质因数Q 值的物理意义 1、谐振的概念及典型应用举例 现以最常见的收音机输入回路(即调台电路)为例。 如图1为简单的收音机信号输入等效电路,由天线和电阻 R 、电感L 及电容C 组成,其中,R 、L 、C 构一个串联谐振回路。 Journal of Jilin Radio and TV University No.1,2013(Total No.133) 吉林广播电视大学学报 2013年第1期(总第133期) 学术论坛

物理学史教学大纲

《物理学史》课程教学大纲(10学时) (理论课程) 一课程说明 (一)课程概况 课程中文名称:《物理学史》 课程英文名称:history of physics 课程编码:3910252217 开课学院:理学院 适用专业/开课学期:物理学/第7学期 学分/周学时:0.5/ 《物理学史》为物理学专业限定专业选修课。本课程在学习完专业课的基础上,系统介绍物理学发展的历史过程,能帮助学习者还原物理学发展的历史面目,了解与概括物理学基础知识发展的全貌及总体规律,有利于巩固和加深理解已学的物理知识。物理规律的发现包含了物理学家们大量思想和方法的创新,了解掌握物理学思想和方法的发展过程,对于理解物理规律的本质,培养大学生的创新思想和创新意识、创新能力都有着重要的作用。 学习《物理学史》,一般要求已学完物理学方面的专业课程。 (二)课程目标 通过本课程学习,学生应了解物理学各主要分支学科的发展历史,弄清物理学发展历程中重要思想、方法、规律、原理提出的前因后果及其发展的历史线索,掌握其中包含的创新思想和创新方法。并在此基础上形成对物理学历史发展的全面认识。 二教学方法和手段 本课程的教学以讲授为主,以课堂讨论为补充。不管是讲授还是课堂讨论,都要贯彻启发式教学原则,启迪学生思维,引导学生对物理学的历史进行正确理解,培养学生分析、判断历史问题能力。 为达到上述目的,应充分发挥好课堂教学主渠道的作用,并利用计算机辅助教学、网络教学等现代化教育技术的优势,扩大教学信息量,提高教学质量和效率。 三教学内容 第一章中国古代物理学(第一、二章共1学时) 一、教学目标

了解中国古代自然观、中国古代的力学、热学、光学、电磁学、声学知识和中国古代物理学的特点,能分析形成这些特点的原因。 二、教学重、难点 1·重点:中国古代自然观、中国古代的力学、热学、光学、电磁学、声学知识和中国古代物理学的特点 2·难点:分析形成这些特点的原因 三、主要内容 1·中国古代自然观 2·中国古代的力学知识 3·中国古代的热学知识 4·中国古代的光学知识 5·中国古代的电磁学知识 6·中国古代的声学知识 7·中国古代物理学的特点 第二章西方古代物理学(1学时) 一、教学目标 了解古希腊的自然观、古希腊和中世纪的物理知识,能总结出西方古代物理学的特点,与中国古代物理学的特点相区别,并能分析形成这些区别的主要原因。 二、教学重、难点 1·重点:古希腊的自然观、古希腊和中世纪的物理知识 2·难点:总结出西方古代物理学的特点,找出与中国古代物理学特点的区别 三、主要内容 1·古希腊的自然观 2·古希腊的物理知识 3·中世纪的物理知识 第三章经典力学的建立和发展(1学时) 一、教学目标 了解运动定律的建立和万有引力定律的发现过程,牛顿的重大贡献和牛顿后力学的发展情况。理解伽利略在研究运动过程中对逻辑方法的应用。 二、教学重、难点 1·重点:运动定律的建立 2·难点:理解万有引力定律的发现过程

浅议物理学史在物理教学中的作用

浅议物理学史在物理教 学中的作用 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

浅议物理学史在物理教学中的作用 【摘要】本文分析了物理学史在物理教学中的作用。认为通过物理学史可以了解物理学的本来面目,消除对物理的神秘感;可以了解物理学的发展性和近似性,克服对物理知识的僵化认识;可以了解物理学家的研究方法,加强对物理学研究方法的认识。 【关键词】物理学史;物理教学;作用 物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,揭示物理学观念、方法和内容的发生、发展的原因和规律性。研究学习物理学史,不仅会为物理教学注入新的活力,还有利于激发学生学习物理、攀登科学高峰的积极热情。 一、可以了解物理学的本来面目,消除对物理的神秘感 在物理教学中,我们主要是引导学生学习前人已经获得的理论知识。教学中的物理知识都是人们经过多次整理而形成的严密的理论逻辑体系。因此,我们在教学中只重视对知识本身的讲解,而对于一些概念、规律产生的历史事实很少问津。有的物理教师虽然试图引进一些史料,但讲的不够准确,常见的错误有:牛顿因为观察苹果落地而发现万有引力定律、瑞利-金斯定律的失败引导着普郎克提

出量子论等等。这些神话使得学生对物理知识的来源、理论体系的形成等都产生很神秘的感觉,往往会认为各个物理学概念、原理和定律的获得等只是历史上的某些科学伟人们的灵感创造出来的,是历史的巧合和偶然的机遇,对于一般人而言根本就不能及的,这种认识是十分错误的,进而也会阻碍学生创造思维的发展。事实上对于熟悉科学创造历史过程的人都知道,任何一个物理知识的获得,都必须要经历一个动态的过程,即从低级到高级,从感性到理性,从片面到全面,从粗糙到严格的产生、发展和演变的过程,而根本就不是任何天才的脑袋偶然地创造出来的。 经过对这些物理史的本来面目的了解和熟悉,学生们就会慢慢学着具体理解任何一个重要概念、定理和理论的获得,都是经过“试探-除错”的多次选择而得到一个动态的历史过程。在物理教学中,我们可以通过必要的历史回顾,促使学生们了解物理学的各种原理、定律的实验基础,了解各种模型所依据的客观事实的原形,了解各种假说、观点和物理思想的演变。虽然讲述时用的时间不多,但可以使学生了解物理概念、规律、原理产生、形成和发展的过程,这种做法不仅会消除学生对物理知识来源的神秘感和错误认识,还可以培养学生的创造性思维能力。

LC谐振回路的特性分析

lc电路在调谐放大器和lc振荡电路等很多电子电路中具有十分重要的作用,是不可缺少的组成部分,它的性能好坏直接关系到电子设备的质量。为了描述lc回路的性能,引人了一个重要概念即品质固数。但一些教材和资料对各种品质固数没有严格区分,容易使学生产生误解。现对这个问题,进行探讨和分析 1、元件的品质因数 lc回路的组成元件是电感l和电容c,虽然它们都是电抗性元件,但实际上都不是理想电感和理想电容,都存在损耗。 电感线圈一般由铜线绕制而成,有的还采用磁芯,固此都有损耗。实际电感可以看作由电感l及损耗电阻rl串联而成,如图a所示。 但我们需要的毕竟是它的电抗性,即它的感抗ωl必须远大于损耗电阻rl。为此引入品质固数ql来描述它的电抗性:ql=ωl/rl 一个电感线圈的ql值越高,就越接近于理想电感。通常,实用电感线圈的ql值可达50~200。同样,实际电容也存在损耗和泄漏,忽略漏电阻,它可看作电容c及损耗电阻rl串联而成,如图b,也可用品质因数qc来衡量实际电容的容抗性:qc=1/ωcrl。 一般电容的损耗电阻至少比电感的损耗电阻小一个数量级,所以lc回路中,实际电容常被看作无损耗的理想电容,如图c。 当图中实际电感和电容有电流i流过时,电感中的无功功率ql=i2ωl,电容中的无功功率ql=i2/ωc,损耗电阻rl和rl上的有功功率prl和prc分别为:prl=i2rl,prc=i2rc。简单分析可得出,ql和qc即是实际电感和电容上无功功率和有功功率的比值,这就是其实质含义。元件的品质因数愈大,则损耗功率相对愈小,所构成的lc回路谐振特性愈好。 2、谐振回路的品质因数 定义了元件的品质因数,可仿此法定义lc谐振回路的品质因数。固为lc回路在电子电路中大都工作在谐振状态,所以为了描述谐振特性,在谐振频率ω。处定义谐振回路的品质因数为无功功率和有功功率之比。 谐振回路可分为串联谐振回路和并联谐振回路。实际电感、电容和激励源相串联,电路称为串联谐振回路,如图2(a)。电感、电容和激励源相并联,电路是并联谐振回路,如图3(a)。由图2(a)可得等效电路图2 z(jω)=u(jω)/i(jω)=r+jωl+1/jωc |z(jω)|= φ(ω)=argtg(ωl-1/ωc)/r 当ωl=1/ωc,回路工作在谐振状态,|z(jω)|达到最小值,其值为|z(jω)|=r,此时ω=ω0称为谐振频率。 串联谐振时,电容上无功功率qc=i2/ω0c,电感上无功功率qc=i2ω0l,二者相等,回路消耗功率p=i2r,则回路品质因数 q=ω0l/r,因为ω20=1/lc,可得出:q2=l/cr2 对于并联谐振电路,l’和r’的串联支路可等效为l,和r,的并联支路。图3(a)可等效为图3(b)。 对于l和r串联支路,其导纳y(jω)=1/(r+jωl),改成并联支路后,其导纳为y(j ω)=(1/r,+1/jωl.,若使两者等效,导纳应该相等,很容易得出: r`=r(1+ω2l2/r2)=r(1+ql)2 l`=l(1+r2/ω2l2)=l(1+1/ql2)

物理教学中物理学史的重要意义

物理教学中物理学史的重要意义 物理学史是研究人类对自然界各种物理现象的认识史,它的基本任务就是描述物理概念、定律、理论和研究方法的脉络,揭示物理学观念、方法和内容的发生、发展的原因和规律性。研究学习物理学史,不仅会为物理教学注入新的活力,还有利于激发学生学习物理、攀登科学高峰的积极热情。 一、可以了解物理学的本来面目,消除对物理的神秘感 在物理教学中,我们主要是引导学生学习前人已经获得的理论知识。教学中的物理知识都是人们经过多次整理而形成的严密的理论逻辑体系。因此,我们在教学中只重视对知识本身的讲解,而对于一些概念、规律产生的历史事实很少问津。有的物理教师虽然试图引进一些史料,但讲的不够准确,常见的错误有:牛顿因为观察苹果落地而发现万有引力定律、瑞利-金斯定律的失败引导着普郎克提出量子论等等。 这些神话使得学生对物理知识的来源、理论体系的形成等都产生很神秘的感觉,往往会认为各个物理学概念、原理和定律的获得等只是历史上的某些科学伟人们的灵感创造出来的,是历史的巧合和偶然的机遇,对于一般人而言根本就不能及的,这种认识是十分错误的,进而也会阻碍学生创造思维的发展。事实上对于熟悉科学创造历史过程的人都知道,任何一个物理知识的获得,都必须要经历一个动

态的过程,即从低级到高级,从感性到理性,从片面到全面,从粗糙到严格的产生、发展和演变的过程,而根本就不是任何天才的脑袋偶然地创造出来的。 经过对这些物理史的本来面目的了解和熟悉,学生们就会慢慢学着具体理解任何一个重要概念、定理和理论的获得,都是经过"试探-除错"的多次选择而得到一个动态的历史过程。在物理教学中,我们可以通过必要的历史回顾,促使学生们了解物理学的各种原理、定律的实验基础,了解各种模型所依据的客观事实的原形,了解各种假说、观点和物理思想的演变。虽然讲述时用的时间不多,但可以使学生了解物理概念、规律、原理产生、形成和发展的过程,这种做法不仅会消除学生对物理知识来源的神秘感和错误认识,还可以培养学生的创造性思维能力。 二、了解物理学的发展性和近似性,克服对物理知识的僵化认识 在物理教学中,教师不应单纯向学生传播知识,而应向学生揭示物理学的发展规律,了解物理概念、规律的局限性和近似性。但是,教学中常常对此重视不够,在一味追求知识的严密性和精确性的面目下,容易使学生思维单一,认识僵化,使他们感到物理难学,没有兴趣,只能机械的搬用公式,这种对知识绝对化、僵化的理解,影响了学生发展思维能力的发展。 事实上,在物理学的发展史中,经常发生着各种情况的理论变迁,具体表现为:以比较正确的认识代替错误认识,例如以热之唯

相关文档
相关文档 最新文档