文档库 最新最全的文档下载
当前位置:文档库 › FLIR T330红外热像仪参考资料

FLIR T330红外热像仪参考资料

FLIR T330红外热像仪参考资料
FLIR T330红外热像仪参考资料

FLIR T330红外热像仪采用最新的高灵敏度探测器:热灵敏度高达0.06℃。电力设备当内部受潮、损伤、缺陷或放电时,在瓷套外壳反映出的温差很小,只有热灵敏度极高的FLIR T330红外热像仪才能反映出这些温度的变化,查出其内部故障。

1. FLIR T330红外热像仪极高的热灵敏度:极高的热灵敏度结合FLIR 先进的成像和光电子技术,不仅能提供清晰、无噪声的优质红外图像,而且能反映细极小的温度变化,从而精确的进行温度测量,并能使我们更容易发现一些温差很小、隐蔽性很强的内部故障。

2. FLIR T330热像仪适合远距离检测的高空间分辨率:FLIR T330红外热像仪具有适合远距离检测的高空间分辨率。空间分辨率和热灵敏度这两参数的结合,能清晰准确测量出远距离的物体的温度,如高压线路的导线、压接套管、绝缘子、标准线夹等。在保证准确测温、清晰成像的前提下,测试距离可大于40m。

3. 稳定成熟的内部校正系统:FLIR T330红外热像仪在出厂前都会经过黑体校准系统进行温度标定(见下图),并且每台仪器内部都有一套FLIR独特的校正系统,它是由一套数学模型、内置黑体和5个高精度和高灵敏度的传感器组成,能自动的根据距离、大气温度、湿度、仪器内部温度的变化、辐射率、反射温度等,对测试数据进行校正,始终保持仪器内部恒温。所以FLIR T330红外热像仪在使用若干年之后仍然能保持精度、灵敏度不变,图像清晰,重复率好,温度漂移很小。

4. 高品质可视热像仪:FLIR T330热像仪集成有一个130 万像素数码相机。它可用于更快更便捷地进行观察和检测,并在必要时创建热图像叠加和画中画图像。

5. MPEG-4 视频:您可使用FLIR T-330热像仪创建可视及红外非辐射MPEG -4视频文件

6. 独特的图像融合功能:FLIR T330红外热像仪的热图像叠加功能,可叠加可见光和红外图像,以便更为便捷的识别和分析红外图像。此外,还可定义是否显示预定温度阈值或温度间隔上下的区域。

7. 画中画功能:FLIR T330红外热像仪在可视图像上创建一个红外叠加图像。可缩放、移动及调节图像大小。该功能用于定位并清楚显示危险区域的红外图像。

8. 坚固耐用符合人体工程学的外壳设计:FLIR T330红外热像仪的采用人体工程学和防水防尘设计;镜头内置,装长焦镜头时无需拆除原镜头。封装符合欧洲标准。是它能够在恶劣的现场环境(雨天、沙尘天气)下工作,坚固、轻便、实用, 主机重量仅为0.88公斤。

9. 触摸屏:FLIR T330热像仪: 配置3.5”LCD 可触屏外加触控笔,为用户带来全新的操作互动性及舒适体验,用户直接在屏幕上添加缩略图和图形标记。

10. 简单的操作方式适合各种场合:T-330配有高分辨率的TFT取景器、几个按键快速完成测试。通过四个快速按键,可以方便的完成仪器参数设置、改变调色板、设置发射率和测温范围、开启分析软件,如点测温、颜色报警等。无论现场情况如何复杂,都能够实现简单操作。每一个控制按钮设计合理,易于操作。

11. 智能电池系统:长寿命的锂离子电池,在LCD显示器工作的状态下,可连续工作4小时以上。智能电源管理功能(睡眠或自动关机)延长电池使用寿命。

12. 存贮方式:FLIR T330红外热像仪有可移动的1G MB SD卡,存储8000幅热图。

13. LCD状态显示器:实时显示电池容量、存贮空间、连接状态等。

14. 采用全新的热图格式:采用14bit 的JPEG 格式,用普通图像浏览软件即可查看。区区一幅热图中不但包含了色彩信息,而且包含了大量测温数据信息。

15. 4 个直接操作键:通过直接操作键,使用者无须一步步调用菜单,就可以改变调色板、设置参数、启动分析工具等,直接完成仪器的基本操作功能,使用起来非常方便快捷。

16. 功能十分强大:高清晰度的取景器和操作手柄的LCD 显示器同步使用;可自动聚焦;可对热图进行多个可移动点、区域、等温线的分析,自动捕捉区域的最高温或最低温;自动识别镜头等等。

17. 多种接口:USB、RS-232、复合视频接口和随机充电接口。

18. 分析软件:拖拉式自动成套生成分析报告群。将强大的图像分析和报告自动生成融合于一体,能够快速准确的对红外报告进行评估分析。

19. 更加快速的启动时间:T-330 采用全新一代的中央处理器,启动时间仅为15 秒,较以前仪器启动时间45秒,大大缩短了开机等待时间。

FLIR T330红外热像仪技术参数

图像性能

视场角/最小对焦距离:25°×19°/ 0.4 m

热灵敏度(NETD):<0.08℃+30℃/80mK

探测器类型:焦平面阵列(FPA),非制冷微热量型

红外图像分辨率:320×240像素

波长范围:7.5-13um

数码变焦:1-8X连续、自动/电动对焦

帧频:50Hz(PAL),60Hz(NTSC)

空间分辨率(IFOV): 1.36 mrad(标准镜头)

图像显示

图像模式:红外图像、可见光图像、热叠加、画中画、缩略图库(可翻页,热像

仪内)

热叠加:在可见光图像上显示介于温度区间的红外图像

画中画:可见光图像上的红外图像区域大小可调,可移动

显示屏:3.5英寸内置式触摸显示屏

可见光相机分辨率:2048×1536(310万像素)

照明灯:有

测量

测温范围:-20℃~+350℃

精度:±2℃或读数的±2%

测量模式:3点测温点,3方框区域,等温线,自动热/冷点追踪

声音/颜色报警:适用于点温测量、区域测量、温差计算等

设置:调色板:黑白、黑白反转、铁红、彩虹设置命令:可设置为本国

单位、语言、日期和时间格式

测量修正:反射温度、光学透射和大气透射

图像存储

图像存储:标准JPEG格式,含测量数据,在存储卡上可存储1000+张图像

图像存储模式及格式:红外/可见光图像,红外和可见光图像同时存储全部标准JPEG格式

Laser LocatIR

激光指向:红外图像上自动显示激光点位置、由专门按键激活

ACCEXP

艾克赛普精密测控有限公司

电源

电池类型:可充电锂离子电池,工作时间4小时

充电系统:直接充电(交流适配器或12V车载充电器),或者双座充电器

电源管理系统:自动关机和睡眠模式(用户可自选)

环境参数

操作温度:-15℃~+50℃

储存温度:-40℃~+70℃

湿度:<95%(非冷凝)

封装等级:外壳和镜头:IP54 (IEC60529)

抗撞击:25G,IEC 60068-2-29

抗震动:2G, IEC 60068-2-6

物理特性

重量:0.88Kg

尺寸(长×宽×高):106×201×125 mm

三脚架接口:UNC 1/4″-20

接口

USB(含数据线):图像传输至电脑

软件

随机附赠:FLIR QuickReport

可选配的软件:FLIR Reporter

文章编辑来源地址:https://www.wendangku.net/doc/3f15678826.html,/flir/8432.html

详解红外热像仪

红外热像仪 由来:1800年英国物理学家F. W. 赫胥尔发现了红外线,红外线是一种电磁波,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。 著名的普朗克定律表明温度、波长和能量之间存在一定的关系,红外总能量随温度的增加而迅速增加;峰值波长随温度的增加向短波移动。根据斯蒂芬·玻耳兹曼定律,当温度变化时,红外总能量与绝对温度的四次方成正比,当温度有较小的变化时,会引起总能量的很大变化。 红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分 布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像。热图像的上面的不同颜色代表被测物体的不同温度。 红外热像仪最早是因为军事目的而得以开发,近年来迅速向民用工业领域扩展。自二十世纪70年代,欧美一些发达国家先后开始使用红外热像仪在各个领域进行探索。红外热像仪也经过几十年的发展,已经发展成非常轻便的现场测试设备。由于测试往往产生的温度场差异不大和现场环境复杂等因素,好的热像仪必须具备320*240像素、分辨率小于0.1℃、空间分辨率小、具备红外图像和可见光图像合成功能等。由于红外热成像技术能够进行非接触式的、高分辨率的温度成像,能够生成高质量的图像,可提供测量目标的众多信息,弥补了人类肉眼的不足,因此已经在电力系统、土木工程、汽车、冶金、石化、医疗等诸多行业得到广泛应用,未来的发展前景更不可限量。 下面对红外热像仪的具体应用情况向您作一个简单介绍: 输电设备:接头、绝缘子、夹板、跳线、高压线、压接套管、瓷瓶引线……变电系统:互感器、隔离开关、空气断线器、油断路器、少油量断路器、避雷器、电容器、电抗器、变压器、总线、套管、整流器、绝缘子、线夹、阻波器……配电系统:配电盘、开关箱、变压器、断电器、接触器、保险丝、电缆……发电厂:发电机碳刷绕组装备、发电机、变压器、油枕、发电机馈电线、电压调节器、发电机马达控制中心电盘、UPS……建设系统:检查外墙空鼓、剥落、屋面渗漏、管道、热桥、建筑节能研究、竣工验收等;公路桥梁:可用于快速扫描公路裂纹、桥梁开裂、渗漏检查、沥青摊铺等;冶金系统:用于大型高炉料面测定、热风炉的破损诊断和检修等;高炉、钢材成型加工和热处理:焊接、铸件、模具、炼钢炉、转炉、鱼雷车、炉壁、金属热处里(退火、回火、淬火)、冷/热轧钢板、钢卷线材等温度量测监控……石化系

优利德(UNI-T)UTi160A 红外热像仪使用

优利德(UNI-T)UTi160A 红外热像仪 优利德(UNI-T)UTi160A 红外热像仪 UTi160A红外热成像仪,以先进的UFPA非制冷焦平面红外探测器 和高质量的光学镜头为核心,结合方便快捷的操作系统、领先水平的 人体工学结构设计、功能完善的拓展配件,为适用用户打造了一款“成 像清晰、测量准确、操作简单、携带轻便”的理想测温工具,是现场 温度检测、预防性维护等应用场合的不二选择。 结构及外观 ● 直立式设计,符合手持式仪表的人体工学原理,易于“掌”握。 ● 可旋转式屏幕设计,即使检测不同角度的物体,轻转屏幕就可以 清晰的将测量结果呈现在用户面前。 ● 合理的按键布局,实现了真正意义上的“单手操作”。 ● 整机重量不到500克,携带及操作更轻便。 ● 核心部件:采用最先进的红外探测器和高质量的光学镜头,使得红外图像刷新更实时,显示更清晰;测温结果更准确,信

息更全面。 探测器类型:UFPA非制冷焦平面。 温度灵敏度:0.08℃@30℃。 工作波段:8-14um。 分辨率:160 x 120。 视场角:20°x 15°。 最小成像距离:0.1 m。 成像功能Array屏幕采用2.5寸TFT液晶显示屏。 图像帧频为50Hz,测量画面更流畅。 支持六种调色板,可满足不同行业/用户的需求。 热像仪拍摄的红外图像使得被测对象的温度分布情况一目了然, 根据被测对象温度分布的标准/经验值,再对比屏幕右侧的色标 图,用户可以快速判断出被测对象是否存在异常。 点测温功能:具备可移动点/最高/最低温度捕捉功能 使用可移动点,用户可以准确地获得图像中任意一点的温度读数 (数字形式)。使用最高/最低温度捕捉功能,用户在测量现场就可 以快速的知道被测对象的温度最高/最低点位置及其对应的温度读 数。这将更好的帮助用户在现场检测、分析并解决问题。

010红外热像仪(FLIR T420)作业指导书

1 目的 确保操作员正确、规范的使用红外热像仪(FLIR T420)的各项功能。 2 范围 适用于本公司仪器设备操作员。 3 职责 3.1 操作员能正确使用红外热像仪(FLIR T420)并能正确读出数据。3.2 操作员会红外热像仪(FLIR T420)的一般保养。 3.3 操作员应了解红外热像仪(FLIR T420)的原理及应用。 4 工作程序 4.1为电池充电 注意 首次开始使用热像仪时,必须先将电池充电四个小时。 4.1.1 一般如果屏幕上显示低电池电压警告,则必须为电池充电。 请按下列其中一个步骤为电池充电: ?如果电池位于热像仪内部,请使用电源和电池充电器组合为电池充电。?如果电池位于热像仪外部,请使用电源和电池充电器组合为电池充电。?使用独立电池充电器为电池充电 4.1.2 电池位于热像仪内部时使用电源和电池充电器组合为电池充电 4.1.2.1步骤 请遵循以下步骤: 1. 打开电池盒盖。 2. 将电源线插入电池上的接口。 3. 将电源插头连接到电源插座上。 4. 当电池状况指示器上的绿灯持续亮起时,拔下电源线插头。 4.1.3 电池位于热像仪外部时使用电源和电池充电器组合为电池充电 4.1.3.1步骤 请遵循以下步骤: 1. 将电池置于一个平整的表面上。

2. 将电源线插入电池上的接口。 3. 将电源插头连接到电源插座上。 4. 当电池状况指示器上的绿灯持续亮起时,拔下电源线插头。 4.1.4 使用独立电池充电器为电池充电 4.1.4.1步骤 请遵循以下步骤: 1. 将电池放入独立电池充电器中。 2. 将电源线插入独立电池充电器上的接口。 3. 将电源插头连接到电源插座上。 4. 当电池状况指示器上的绿灯持续亮起时,拔下电源线插头。 4.2插入电池 注意 插入电池之前,请先使用清洁的干布擦除电池上的水或潮气。 4.2.1步骤 请遵循以下步骤: 1. 按电池盒盖上的释放按钮解除锁定电池。 2. 打开电池盒盖。 3. 将电池推入电池盒,直至锁定装置啮合。 4. 关闭电池盒盖。 4.3卸下电池 4.3.1步骤 请遵循以下步骤: 1. 按电池盒盖上的释放按钮解除锁定电池。 2. 打开电池盒盖。 3. 沿箭头方向按红色释放按钮解除锁定电池。 4. 将电池从电池盒中取出。

红外热像仪用户手册终结版

IPRE-160 红外热像仪用户手册

! 警告、小心和注意 定义 !警告代表可能导致人身伤害或死亡的危险情况或行为。 !小心代表可能导致热像仪受损或数据永久丢失的情况或行为。 !注意代表对用户有用的提示信息。 重要信息–使用仪器前请阅读 !警告–本仪器内置激光发射器,切勿凝视激光束。激光规格为635 nm, 0.9mW, 二级。 !小心–因热像仪使用非常灵敏的热感应器,因此在任何情况下(开机或关机)不得将镜头直接对准强烈幅射源(如太阳、激光束直射或反射等),否则将对热像仪造成永久性损害! !小心 - 运输期间必须使用原配包装箱,使用和运输过程中请勿强烈摇晃或碰撞热像仪。!小心–热像仪储存时建议使用原配包装箱,并放置在阴凉干燥,通风无强烈电磁场的环境中。 !小心-避免油渍及各种化学物质沾污镜头表面及损伤表面。使用完毕后,请盖上镜头盖。 !小心 -为了防止数据丢失的潜在危险,请经常将数据复制(后备)于计算机中。 !注意 -在精确读取数据前,热像仪可能需要3-5分钟的预热过程。 !注意 -每一台热像仪出厂时都进行过温度校正,建议每年进行温度校正。 !小心 -请勿擅自打开机壳或进行改装,维修事宜仅可由本公司授权人员进行。

目录 ! 警告、小心和注意 (2) 1简介 (5) 1.1标准配置 (7) 1.2可选配置 (7) 2热像仪简介 (8) 2.1功能键 (8) 2.2接口 (11) 3基本操作 (12) 3.1电池安装及更换 (12) 3.1.1电池装卸 (12) 3.1.2更换电池 (13) 3.2电池安全使用常识 (14) 3.3快速入门 (15) 3.3.1获取热像 (15) 3.3.2温度测量 (15) 3.3.3冻结和存储图像 (17) 3.3.4回放图像 (17) 3.3.5导出存储的图像 (17) 4操作指南 (18) 4.1操作界面描述 (18) 4.1.1工作界面 (18) 4.1.2主菜单 (19) 4.1.3对话框 (20) 4.1.4提示框 (20) 4.2测温模式 (20) 4.3自动/手动 (21) 4.4设置 (22) 4.4.1测温设置 (22) 4.4.2测温修正 (23) 4.4.3分析设置 (24) 4.4.4时间设置 (25) 4.4.5系统设置 (26) 4.4.6系统信息 (27) 4.4.7出厂设置 (27) 4.5文件 (29) 4.5.1打开 (29) 4.5.2存储 (30)

红外热成像仪操作规程

红外热成像仪使用操作规程 一、目的 规范使用红外热成像仪日常检查和测试工作,及时发现、解决电气设备及线路隐患问题,确保电气设备及线路正常运行,制定本规程。 二、检查内容 1、日常检查内容: 电线电缆、母线、接线端子、正在使用的电源插座的温度 1)变配电室(按配电柜编号及变压器号依次测量): 抽屉开关、接线端子、母线、电线电缆、变压器; 2)设备机房(风机房、水泵房、电梯机房、空调机房、 锅炉房、发电机房、洗衣房等所有用电设备按配电 箱号依次测量)控制箱接线端子、电线电缆; 3)楼层电井(按配电箱号依次测量):配电箱接线端 子、电缆电线; 4)主力店配电间(按配电箱号依次测量)接线端子、 电线电缆;主力店及小商户电源控制箱接线端子、 开关,终端用电设备电线、正在使用的电源插座; 5)销售物业:检查电力公司管辖外的公共区域用电设 备。 2、大型活动前检查内容 1)现场使用的所有电气设备控制接线端子、电线电缆; 2)现场接线处配电箱开关、接线端子; 3)变配电室(接线处的配电柜):抽屉开关、接线端

子、母线、电缆、变压器。 三、检查测试频次 1、各地公司日常检查为每半年不少于1次,万达广场持有物 业日常检查为每季度不少于1次,万达广场销售物业和非 万物业影城日常检查为每半年不少于1次; 2、大型活动前1天用红外热成像仪进行检查测试。 四、保管使用要求 1、热成像仪持有公司指定专人(持电工证)负责设备保存管 理,确保设备配件、文字资料齐全; 2、设备应放置在干燥、通风的环境中,绝对避免潮湿; 3、热成像仪是集光、电、计算机一体的精密仪器设备,使用 时需严格按照说明书要求进行,不得在超出规范要求的环 境中进行使用; 4、万达广场内主力店(包括百货、影城、大歌星)电气设备 检查应由商管公司专业人员进行,各主力店配合; 5、所有使用人员需经过持有设备公司保管人员培训,一年培 训两次并有记录; 6、各公司应在每年12月25日前制定下一年度的热成像仪检 查测试计划,并将计划报给设备持有公司,经设备持有公 司核对无检查冲突后实施; 7、各公司热成像仪使用前应进行OA流程审批(附件2),审 批后应在使用前1天到设备持有公司登记取用(附件3), 并于使用后2天内归还。

FLIRA315红外热像仪中文说明书

FLIRA315红外热像仪使用说明书 代理商:武汉筑梦科技有限公司 2014-1-6

第一章设备简介 1 FLIR红外热像仪原理 1.1红外热像仪 从原理上讲,热像仪包括两部分:光学部件和探测器。光学部件使目标的红外辐射集中到探测器上,探测器对之成像。 1.1.1光学材料 红外辐射和可见光的性质一样能折射和反射。因而,红外热像仪的光学部件设计方法和普通相机的相似。用于普通相机的玻璃对红外线的透射程度不够好,因而不能用于红外热像仪。所以必须寻找别的材料。对红外线透明的材料一般对可见光不透明。象硅和锗就通常对可见光不透明。 从图中可以看出,这两种材料可以作为SW和LW光学材料。通常,硅用于SW系统而锗用于LW热像仪。硅和锗有好的机械性能,即不易破裂,它们不吸水,可以用现代车削法加工成镜头。 1.1.2探测器 对红外辐射敏感的元件称为探测器。这些年来,热像仪采用过许多不同类型的探测器。这些探测器不分类型都有一些典型特点。探测器对入射辐射的探测结果以电信号输出。这信号取决于入射红外辐射的强度与波长。大部分探测器都存在截止波长,这也很典型。如果入射辐射的波长长于探测器的截止波长,探测器将没有信号输出。在1997 年以前,所有的探测器都是制冷型的,根据不同型号,低的至少制冷到–70oC,更有甚者需制冷到–196oC。 1997 年,AGEMA 公司在世界上首先生产出了新一代非制冷微量热型探测器热像仪:Thermovision? 570,现在叫做AGEMA 570。500 系列的另一种热像仪叫做AGEMA 550,它使用制冷型探测器。

AGEMA 550 的探测器由斯特林制冷机制冷。这种PtSi探测器需制冷到–196oC。它需要两分钟来制冷。作为“单一”探测器的换代品,在1995年FPA 探测器被运用于所有的热像仪(AGEMA)上。AGEMA 550的探测器有320 x 240 = 76,800 探测器单元。 2 FLIR红外热像仪组成及接口 2.1、红外热像仪组成 红外热像仪组成:抗反射膜、光学滤片、探测器 2.2 使用说明 2.2.1 红外测温方法 红外热像仪是通过非接触探测红外能量(热量),并将其转换为电信号,进而在显示器上生

红外热像仪的技术规范书 detu

红外热像仪技术规范书 芜湖发电有限责任公司 2013年3月

目录 1.总则 2.技术标准 3.技术要求 4.供货范围 5.技术资料和交付进度 6.包装与验收 7. 出厂试验 8. 售后服务

1. 总则 1.1 本技术规范书适用于芜湖发电有限责任公司红外热像仪的技术和有关方面的要求,其中包括技术指标、性能、现场调试、使用要求,还包括资料交付、技术文件及技术服务要求等。 1.2 本技术规范书提出的是最低限度的技术要求,并未对一切技术细节作出规定,也未充分引述有关标准和规范的条文,卖方保证提供符合本技术规范书和工业标准的优质产品。 1.3 如卖方未以书面形式对本技术技术规范书的条文明确提出异议,那么卖方提供的产品应完全满足本技术规范书的要求。 1.4卖方提供的产品应完全符合买方书面方式提供的有关各供货设备的技术条文。 1.5 在合同签订后,买方有权提出因标准、规程和规范发生变化而产生的修订要求,具体事宜由买、卖双方协商确定。本技术规范书所使用的标准如与卖方所执行的标准规范发生矛盾时,必须按较高标准执行,同时所执行任何标准均不得低于“中华人民共和国国家标准”。 1.6 本技术规范书将作为订货合同的附件,与合同具有同等的法律效力。本规范未尽事宜,由合同签约双方在合同谈判时协商确定。 1.7卖方的责任 1.7.1卖方应严格按照买方提供的技术资料进行生产,严格执行买方所提的技术资料中的制造规范和检验标准。 1.7.2卖方负责履行设备制造和交货进度。 1.7.3卖方和买方执行标准不一致时,按较高标准执行。 1.7.4卖方在设备制造过程中发生的侵犯专利权的行为,其侵权责任与买方无关,应由卖方承担相应的责任,并不得影响买方的利益。 2. 技术标准 DL/T664 带电设备红外诊断应用规范 GB 191 包装储运图示标志 EQV ISO 780:1997 GB/T 6587.2 电子测量仪器温度试验

红外热成像仪使用规程学习资料

红外热成像仪使用规程 一、目的 为有效利用红外热成像仪进行日常检查和测试工作,及时发现、解决电气设备及线路隐患,确保电气设备及线路正常运行,制定本规程。 二、检查内容 1、日常及开业前检查内容: 对持有物业及销售物业公共区域的下述内容进行温度测 试。 1)变配电室:变压器、配电柜、接线端子、母线、电 线电缆; 2)设备机房:风机房、水泵房、电梯机房、空调机房、 锅炉房、发电机房、洗衣房等所有用电设备配电箱 /柜、接线端子及电线电缆; 3)楼层电井、配电间:配电箱/柜、接线端子、电缆 电线、母线; 4)正在使用的电源插座; 2、大型活动前检查内容 以《集团安全管理制度》中规定的大型活动范围为标准, 在活动开始前一天,对临时的用电设备及相关配电系统进 行温度测试。 1)现场使用的所有电气设备电线电缆; 2)现场配电箱/柜、接线端子; 3)变配电室:临时用电回路配电柜、接线端子、母线、 电缆。

三、检查测试频次 1、日常检查:持有物业为每季度不少于1次(不包括酒店), 其他为每半年不少于1次,酒店为每半年不少于1次; 2、开业前检查:1次; 3、大型活动前检查:1次。 四、组织实施 1、万达广场商管公司负责所管区域的电气设备检查测试。百 货、影城、大歌星等万达品牌主力店内,商管公司所管的 电气设备由商管公司进行检查,主力店配合,其他电气设 备由各万达品牌主力店自行检查,商管公司进行监管。 2、销售物业电气设备检查由相应的物业公司自行组织完成; 3、文化集团各地管理公司所管物业参照万达广场执行; 4、持有物业开业前检查按照集团《安全管理制度》执行; 5、各公司须确定专人组成检查测试小组,测试小组由仪器操 作员、数据记录员组成。检查测试小组根据测试计划进行 测试,对测试结果进行分析评价,并出具测试报告。 1)仪器操作员 负责红外热成像仪器操作,测试时保持安全距离, 确定测试点位,读取测试数据,并将测试数据进行 保存。 2)数据记录员 负责填写现场测试记录表(附件1),同时负责对测 试人员安全状况进行监护,确保检查测试小组人员 安全。 五、检查测试工作流程

红外热像仪使用说明书

红外热像仪使用说明书 在红外热像仪的使用说明书中,以下的指标值得关注: 除了从典型应用的角度之外,还可以快速地从回答3个简单问题,来进行红外热像仪关键指标的选择: 问题一:红外热像仪到底能测多远? 红外热像仪的检测距离= 被测目标尺寸÷IFOV,所以空间分辨率(IFOV)越小,可以测得越远。例如:输电线路的线夹尺寸一般为50mm,若使用Fluke Ti25 热像仪,其IFOV为2.5mRad ,则最远检测距离为50÷2.5=20m 问题二:红外热像仪能测多小的目标? 最小检测目标尺寸= IFOV×最小聚焦距离。所以IFOV越小,最小聚焦距离越小,则可检测到越小的目标。举例: 某品牌热像仪Fluke Ti25 热像仪 空间分辨率(IFOV):2.6mRad 空间分辨率(IFOV):2.5mRad 像素:320×240 像素:160×120 最小聚焦距离:0.5m 最小聚焦距离:0.15m 最小检测尺寸:1.3 mm 最小检测尺寸:0.38 mm 从对比图看,右侧Fluke Ti25,虽像素稍低,但凭借更小的IFOV 及最小聚焦距离优势,实际可以拍摄到0.38mm微小目标,而另一品牌则只能测到1.3mm 的目标。 问题三:热像仪能看得多清晰? 因素一:热灵敏度决定热像仪区分细微温差的能力。同样状况下,右图所用热像仪的热灵敏度更低,画面清晰显示花蕊细节的温度分布,而左图同区域只能看到一片红色。

因素二:最小检测尺寸决定了热像仪捕捉细小尺寸的能力。尺寸越小,相同面积的检测目标画面由更多像素组成,画面更清晰。 由右图可见,像素(马赛克)越小越清晰 什么是空间分辨率(IFOV)? 在单位测试距离下,红外热像仪每个像素能够检测的最小目标( 面积),以mRad 为单位,是一个主要由像素和所选镜头角度所决定的综合性能参数,是热像仪处理空间细节能力的技术指标。 为什么空间分辨率(IFOV)越小越好? 单位距离相同时,IFOV 越小,单个像素所能检测的面积越小,单位测量面积上由更多的像素所组成,图像呈现的细节越多,成像越清晰。

保护装置、二次回路红外测温作业指导书.doc

保护装置、二次回路红外测温标准化作业指导书 1 范围 本标准化作业指导书规定了保护装置、二次回路现场红外测温(一般检测)工作的准备工作、测温流程图、现场操作方法、测温周期和标准、测温记录管理等要求。 本标准化作业指导书适用于指导保护装置、二次回路红外测温的一般性检测工作。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 DL/T664—1999 带电设备红外诊断技术应用导则 国家电网公司[2009] 664号国家电网公司电力安全工作规程(变电部分) Q/GDW-10-G064-2009 红外检测诊断工作管理办法 3 术语和定义 下列术语和定义适用于本标准化作业指导书。 3.1 温升 temperature rise 被测设备表面温度和环境温度参照体表面温度之差。 3.2 温差 temperature difference 不同被测设备或同一被测设备不同部位之间的温度差。 3.3 相对温差 relative temperature difference 两个对应测点之间的温差与其中较热点的温升之比的百分数。相对温差δt,可用下式求出:δt=(τ1-τ2)/τ1*100%=(T1-T2)/(T1-T0)*100% 式中: τ1和T1——发热点的温升和温度; τ2和T2——正常相对应点的温升和温度; T0——环境温度参照体的温度。 3.4 环境温度参照体 reference body of ambient temperature 用来采集环境温度的物体。它不一定具有当时的真实环境温度,但具有与被检测设备相似的物理属性,并与被检测设备处于相似的环境之中。 3.5 一般检测 normal measurement 适用于用红外热像仪对电气设备进行大面积检测。 3.6电压致热型设备 heating of equipment caused by voltage 由于电压效应引起发热的设备。

红外热像仪操作步骤(精)

红外热像仪操作步骤 第一、连接设备,该仪器主要的部件有MAG30系列在线式热像仪(包括镜头)1台,12V电源适配器一个,网线一条(普通网线即可),IO接线端子,安装盘(光盘内附带用户手册)。使用时,将热像仪固定在三角支架上,连接处有螺丝固定,旋紧即可;将电源线插入12V DC 电源接口,此时电源指示灯亮;将网线插入电脑的网线接口(即RJ45网口)和热像仪的RJ445网口,若连接通路,则网口的黄色指示灯变亮,若不通则检查网线等方面。 第二、我们目前使用的是将热像仪与电脑直接通过网线相连,该情况下需要对电脑的ip地址进行修改,xp系统与win7系统修改ip的方法稍有差异,对于xp系统,可右键点击网上邻居—选择属性—本地连接—右键—属性—双击 tcp/ip协议—使用下面的ip地址,进行修改即可,若为win7系统,则右键点 击网上邻居—选择属性----点击本地连接—属性—双击 internet 协议版本4--—使用下面的ip地址,修改即可,Ip地址为 192.168.1.2—192.168.1.250之间均可,子网掩码255.255.255.0,网关192.168.1.1,即可完成连接。 第三、打开电脑上的软件ThermoX.exe(红外热像仪),,由于是网线直接连接在软件界面右侧的启用DHCP Server打钩

,打钩后,MAG30-110257即为该设备的型号,此时连接完毕。 第四、点击软件主界面右下方的黑色三角即可开始进行红外录制,然后要进行对焦,使出现的画面更加清晰,点击对焦按钮 完成自动对焦。 第五、该设备可以进行图片和视频以及带温度等详细信息的视频文件,根据需要进行保存,也可直接存储为温度流,方便以后进行相关分析。 ,左键点击存温度流按钮,出现保存路径对话框,设置其保存路径。待完成需要的测量后,点击上图黑色方框停止记录,此时完成实验过程。 第六、对实验保存的温度流进行回放,首先断开热像仪,点击下图中的断开按钮,然后点击主界面上方菜单的回放下拉菜 单,,选择打开文件,寻找保存的.mgs为文件后缀名的文件,可通过回放菜单中的回放控制进行一些相应的设置(如选择循环播放等)。

HHIR-85B型红外热像仪说明书

1 概述 1.1 用途 HHIR-85B型红外热像仪(以下简称红外热像仪)用 于单兵夜间观察、发现目标,实现夜间侦察作战能力。它 可以与多种瞄准、射击、观察类装备联合使用,具有较强 的穿透烟雾、识别伪装、全天时(昼/夜)工作的能力;可 在夜间单独使用,用于单兵夜间侦察,监控。 1.2 特点 a)可应用于单兵手持; b)具备完整的人机工程设计; c)可昼夜工作。 1.3 主要性能 1.3.1观察距离(能见度>15km,温度15℃~30℃,湿度< 40%条件下): a) 喷气式飞机探测距离(15m × 5m):≥5000m。(探 测是指可以发现飞行中的喷气式飞机,成像最少两像素。) b) 探测站立人员(高170cm × 宽40cm)目标:≥ 2000m。(探测是指可以发现直立走动的人员,成像最少 两像素。) --------------------------------------------------------------------------------12-1

--------------------------------------------------------------------------------12-2 c) 识别站立人员(高170cm × 宽40cm )目标:≥1000m 。(识别是指可以分辨直立走动的人员外形轮廓,成像最少五像素。) 1.3.2 技术指标 探测器类型: 非制冷焦平面 探测器: 384pixel × 288pixel ,面元25μm 噪声等效温差(NETD):≤100mk@30°C 工作波段: 8μm ~12μm 场频: 50Hz 电子放大倍率: 2× 空间分辨率MRTD : ≤0.4℃(在特征频率下) 视场: 6.5°×4.8° 红外物镜参数: 物镜直径=85mm ,F 数=1.0, 物镜焦距f=85mm 。 物镜类型: 电动调焦镜头 调焦范围: 10m~∞ 启动工作时间: <30s 电池工作时间: 3h (常温) 功耗: ≤6W (常温) 颜色: 主体制做成黑色 三角架接口类型: 1/4inch 主体外形尺寸(mm): (280±15)长×(130±5)宽

红外热成像仪的介绍及工作原理

1.红外热成像技术 红外成像技术作为一门新技术,在电力设备运行状态检测中有着无比的优越性。红外成像是以设备的热状态分布为依据对设备运行状态良好与否进行诊断,它具有不停运、不接触、远距离、快速、直观地对设备的热状态进行成像。由于设备的热像图是设备运行状态下热状态及其温度分布的真实描写,而电力设备在运行状态下的热分布正常与否是判断设备状态良好与否的一个重要特征。因此采用红外成像技术可以通过对设备热像图的分析来诊断设备的状态及其隐患缺陷。 2.什么是红外热像图 一般我们人眼能够感受到的可见光波长为:0.38—0.78微米。通常我们将比0.78微米长的电磁波,称为红外线。自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。 同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。 3.红外热像仪的原理 热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,热图像的上面的不同颜色代表被测物体的不同温度。红外热像仪的非接触式测温方式,能够在不影响轧辊工作的同时测量其实时温度,并随时采取降温措施。

红外热像仪的原理 4.红外热成像的特点 自然界所有温度在绝对零度(-273℃)以上的物体,都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。因此,这两个波段被称为红外线的“大气窗口”。我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。 5.在线式红外热像仪 采用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热像仪。

红外热成像

红外热成像 任何有温度的物体都会发出红外线,热像仪就是接收物体发出的红外线,通过有颜色的图片来显示被测量物表面的温度分布,根据温度的微小差异来找出温度的异常点,从而起到与维护的作用。一般也称作红外热像仪。 一. 红外热成像原理 波长为2.0~1000μm的部分称为热红外线。我们周围的物体只有当它们的温度高达1000℃以上时,才能够发出可见光。相比之下,我们周围所有温度在绝对零度(-273℃)以上的物体,都会不停地发出热红外线。所以,热红外线(或称热辐射)是自然界中存在最为广泛的辐射。热辐射除存在的普遍性之外,还有另外两个重要的特性。 1.大气、烟云等吸收可见光和近红外线,但是对3~5μm和8~14μm的热红外线却是透明的。因此,这两个波段被称为热红外线的“大气窗口”。利用这两个窗口,可以使人们在完全无光的夜晚,或是在烟云密布的战场,清晰地观察到前方的情况。正是由于这个特点,热红外成像技术军事上提供了先进的夜视装备并为飞机、舰艇和坦克装上了全天候前视系统。这些系统在海湾战争中发挥了非常重要的作用。 2.物体的热辐射能量的大小,直接和物体表面的温度相关。热辐射的这个特点使人们可以利用它来对物体进行无接触温度测量和热状态分析,从而为工业生产,节约能源,保护环境等等方面提供了一个重要的检测手段和诊断工具。 现代的热成像装置工作在中红外区域(波长3~5μm)或远红外区域(波长8~12μm)。通过探测物体发出的红外辐射,热成像仪产生一个实时的图像,从而提供一种景物的热图像。并将不可见的辐射图像转变为人眼可见的、清晰的图像。热成像仪非常灵敏,能探测到小于0.1℃的温差。 工作时,热成像仪利用光学器件将场景中的物体发出的红外能量聚焦在红外探测器上,然后来自与每个探测器元件的红外数据转换成标准的视频格式,可以在标准的视频监视器上显示出来,或记录在录像带上。由于热成像系统探测的是热而不是光,所以可全天候使用;又因为它完全是被动式的装置,没有光辐射或射频能量,所以不会暴露使用者的位置。 红外探测器分为两类:光子探测器和热探测器。光子探测器在吸收红外能量后,直接产生电效应;热探测器在吸收红外能量后,产生温度变化,从而产生电效应。温度变化引起的电效应与材料特性有关。 光子探测器非常灵敏,其灵敏度依赖于本身温度。要保持高灵敏度,就必须将光子探测器冷却至较低的温度。通常采用的冷却剂为斯太林(Stirling)或液氮。 热探测器一般没有光子探测器那么高的灵敏度但在室温下也有足够好的性能,因此不需要低温冷却。 二. 红外与热成像什么关系 红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。照相机成像得到照片,电视摄像机成像得到电视图像,都是可见光成像。自然界中,一切物体都可以辐射红外线,因此利用探测仪测定目标的本身和背景之间的红外线差并可以得到不同的红外图像,热红外线形成的图像称为热图。

红外热像仪原理、主要参数和应用

红外热像仪原理、主要参数和应用 红外热像仪原理、主要参数和应用 1. 红外线发现与分布 1672年人们发现太阳光(白光)是由各种颜色的光复合而成的。当时,牛顿做出了单色光在性质上比白光跟简单的著名结论。我们用分光棱镜可把太阳光(白光)分解为红、橙、黄、绿、青、蓝、紫等单色光。1800年英国物理学家赫胥尔从热的观点来研究各色光时,发现了红外线。 红外线的发现标志着人类对自然的又一个飞跃。随着对红外线的的不断探索与研究,已形成红外技术这个专门学科领域。 红外线的波长在0.76--100μM之间,按波长的范围可分为近红外、中红外、远红外、极远红外四类,它在电磁波连续频谱中的位置是处于无线电波与可见光之间的区域。 红外线辐射是自然界存在的一种最为广泛的电磁波辐射,它是基于任何物体在常规环境下都会产生自身的分子和原子无规则的运动,并不停地辐射出热红外能量,分子和原子的运动愈剧烈,辐射的能量愈大,反之,辐射的能量愈小。 温度在绝对零度以上的物体,都会因自身的分子运动而辐射出红外线。通过红外探测器将物体辐射的功率信号转换成电信号,成像装置的输出的就可以完全一一对应地模拟扫描物体表面温度的空间分布,经电子系统处理后传至显示屏上,得到与物体表面热分布相应的热像图。运用这一方法,便能实现对目标进行远距离热状态图像成像和测温并进行分析判断。 2. 红外热像仪的原理 红外热像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间,有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像仪进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换电信号,经放大处理、转换为标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的分布场相对应;实际上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光相比缺少层次和立体感,因此,在实际动作过程中为更有效地判断被测目标的红外热场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实际校正,伪色彩描绘等高线和直方进行运算、打印等。 简而言之,红外热像仪是通过非接触探测红外热量,并将其转换生成热图像和温度值,进而显示在显示器上,并可以对温度值进行计算的一种检测设备。红外热像仪能够将探测到的热量精确量化,能够对发热的故障区域进行准确识别和严格分析。 3. 红外热像仪的主要参数 (1) 工作波段:工作波段是指红外热像仪中所选择的红外探测器的响应波长区域,一般是3~5μm或8~12μm。 (2) 探测器类型:探测器类型是指使用的一种红外器件。如采用单元或多元(元数8、10、16、23、48、55、60、120、180、等),采用硫化铝(PBS)、硒化铅(PnSe)、碲化铟(InSb)、碲镉汞(PbCdTe)、碲锡(PbSnTe)、锗掺杂(Ge:X)和硅掺杂(SI:X)等。 (3) 扫描制式:一般为我国标准电视制式,PAL制式。

红外热像仪使用说明

红外热像仪使用说明——泡罩包装机热封检测 随着红外技术的不断发展,红外热像仪被使用于越来越多的民生行业,。美国Fluke红外热像仪作为行业佼佼者,通过多年的推广和开发,已获得各领域工程师的广泛认可,此文通过真实案例和热图的解说介绍美国福禄克红外热像仪如何使用于泡罩包装机热封检测。 在存储药品片剂和部分食品的泡罩包装生产线中,上下的铝箔和硬片需要进行粘接剂的热压从而达到密封效果,热封的温度控制时保证包装密封性的关键参数,若温度没有达到工艺要求,则可能出现变质等严重质量问题,本文介绍使用热像仪检测平板热封设备的温度分布的应用,为药品和食品的质量提供保证。 什么是泡罩? 泡罩就是片剂药品和小颗粒食品(口香糖、糖果等)的外包装,也被称为“水泡眼”,该包装由3部分组成:PTP药用铝箔,药用PVC/PE/PVDC 塑料硬片或复合硬片,粘合剂。粘合剂的作用是在一定温度下把铝箔和硬片粘接起来,达到热封效果,从而起到保护内部药品或食品的作用。 泡罩包装工艺中是否有关于温度的检测要求? 粘合剂需要在一定的温度下才能达到热封强度,按照GBT12255-1990《药品包装用铝箔》标准,热封强度必须达到5.88牛顿/15mm,要满

足标准,除材料外,封合中温度的准确控制是关键因素。一般封合温度需要控制在140℃至170℃内,少部分特殊产品结合产线速度可能会有变化。 若达不到或超过工艺温度要求会有什么后果? 粘合剂的热封过程如果温度不够或超过,将达不到粘合剂的密封效果,主要有包装泄漏、热封强度不足、容易破损等问题发生,严重危害到内部存储的药品和食品的质量。 在泡罩包装机的热封中原先使用什么仪器进行温度检测和控制? 在封合板中预埋设热电偶或热电阻进行温度测控。 使用热电偶或热电阻进行检测有什么缺点,热像仪的优势在哪里?热电偶或热电阻只能检测到埋设部位的温度,无法检测封合板整体的温度分布,但封合板各部分的温度有可能不同,故使用热电偶或热电阻对某个点测温不能对整块封合板的热封质量进行有效检测;而使用红外热像仪可以瞬间拍摄整块封合板的温度分布热像图,并在软件中对检测的部位进行温度分析、比对,为改进和确保热封效果提供温度的依据。

红外热成像仪的原理介绍

红外热成像仪的原理介绍 红外热成像仪原理红外线是一种电磁波,具有与无线电波和可见光一样的本质。红外线的发现是人类对自然认识的一次飞跃。 利用某种特殊的电子装置将物体表面的温度分布转换成人眼可见的图像,并以不同颜色显示物体表面温度分布的技术称之为红外热成像技术,这种电子装置称为红外热像仪。 红外热成像仪是利用红外探测器、光学成像物镜和光机扫描系统(目前先进的焦平面技术则省去了光机扫描系统)接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元上,在光学系统和红外探测器之间; 有一个光机扫描机构(焦平面热像仪无此机构)对被测物体的红外热像进行扫描,并聚焦在单元或分光探测器上,由探测器将红外辐射能转换成电信号,经放大处理、转换或标准视频信号通过电视屏或监测器显示红外热像图。 这种热像图与物体表面的热分布场相对应;实质上是被测目标物体各部分红外辐射的热像分布图由于信号非常弱,与可见光图像相比,缺少层次和立体感; 因此,在实际动作过程中为更有效地判断被测目标的红外热分布场,常采用一些辅助措施来增加仪器的实用功能,如图像亮度、对比度的控制,实标校正,伪色彩描绘等高线和直方进行数学运算、打印等。 热像仪在军事和民用方面都有广泛的应用。 随着热成像技术的成熟以及各种低成本适于民用的热像仪的问世,它在国民经济

各部门发挥的作用也越来越大。 在工业生产中,许多设备常用于高温、高压和高速运转状态,应用红外热成像仪对这些设备进行检测和监控,既能保证设备的安全运转,又能发现异常情况以便及时排除隐患。 同时,利用热像仪还可以进行工业产品质量控制和管理。 此外,红外热像仪在医疗、治安、消防、考古、交通、农业和地质等许多领域均有重要的应用。如建筑物漏热查寻、森林探火、火源寻找、海上救护、矿石断裂判别、发动机检查、侦察以及各种材料及制品的无损检查等。 标签: 红外热成像仪

红外热像仪帮助玻璃制造工厂精确测量温度

红外热成像技术的应用十分广泛,工业生产、电力、消防、医疗、农业等行业都有红外热像仪的身影。玻璃瓶在生产过程中温度非常高,很多设备都是在高温下工作的,因此对于玻璃生产工厂设备和生产过程中的玻璃温度的检测十分重要,这对于生产出高品质的玻璃有着重要的意义。而红外热成像技术对于非接触式温度检测方面有着非常有效且实用的价值。 一、红外热像仪的工作原理 任何物体只要温度高于绝对零度(-273℃)就会向外发射出红外辐射,物体温度不同,辐射能大小也不相同。红外热像仪是一种能够捕捉到物体表面红外辐射能量,并将其转变为人眼可见的热量分布图像的一种仪器设备。 二、红外热像仪在玻璃制造工厂的应用 凝固的玻璃离开锡浴后,会被送往玻璃退火窑,让其逐渐冷却以除去内应力。冷却速度对于确保玻璃在不会在切割阶段破裂非常重要。因此频繁、精确的温度测量对于此应用至关重要。 因为温度下降的范围较广,在退火窑中进行温度测量会有一定的困难。需要确保在玻璃冷却到环境温度的整个过程中精确测量其温度。严密控制温度可确保完全消除内应力。使用红外热像仪可以获取玻璃离开退火窑时高分辨率的玻璃热图像,有助确保产品质量一致,并及早发现任何工艺问题。同时,进行玻璃的表面测量还有助监测其横向温度分布的均匀性。

1.玻璃瓶罐成型过程中的应用 1)初模 初模温度分布不均匀时,会导致很多瓶身缺陷,如厚薄不均等。若操作工不能及时了解初模的温度,产品的质量会无法提升上去,因此,可以利用红外热像仪检测初模的温度高低,再进行生产调整。 2)芯子 芯子过热或过冷会导致瓶口部裂纹或芯子粘料,在双滴料与三滴料制瓶机上,由于各模腔工况不相同,其芯子冷却风的调整也各不相同。需要利用红外热像仪进行温度测定,再根据工况进行一些微调,以免产生瓶口部裂纹或芯子粘料。 3)闷头 闷头是初型模的模底,它接触玻璃料时间很短,不工作时会上升或摆出,散热情况较好,若闷头的温度与初模的温度温差过大,瓶底将会产生闷头印深、闷头印歪斜、瓶底厚薄不均等缺陷。因此需用红外热像仪检测闷头的温度,若与初模温度差别太大,需要进行一定调整。 2.红外热像仪在玻璃生产厂变压器的温度监测应用 变压器等电气设备是和生产紧密相关的设备,一旦发生异常情况,会直接造成工厂生产设备停止运行,甚至会造成灾难性的故障。但是变压器等电气设备在

TiS系列红外热像仪使用说明书

TiS10, TiS20, TiS40, TiS45, TiS50, TiS55, TiS60, TiS65 Performance Series Thermal Imagers 用户手册July 2015 (Simplified Chinese) ? 2015 Fluke Corporation. All rights reserved. Specifications are subject to change without notice. All product names are trademarks of their respective companies.

有限保证和责任限制 在正常使用和维护条件下,Fluke 公司保证每一个产品都没有材料缺陷和制造工艺问题。保证期为从产品发货之日起二(2)年。部件、产品修理和服务的保证期限为 90 天。本项保证仅向授权零售商的原始买方或最终用户提供,并且不适用于保险丝和一次性电池或者任何被 Fluk e 公司认定由于误用、改变、疏忽、意外非正常操作和使用所造成的产品损坏。Fluke 公司保证软件能够在完全符合性能指标的条件下至少操作 90 天,而且软件是正确地记录在无缺陷的媒体上。Fluke 公司并不保证软件没有错误或无操作中断。 Fluke 公司仅授权零售商为最终客户提供新产品或未使用过产品的保证。但并未授权他们代表 Fluke 公司提供范围更广或内容不同的保证。只有通过 Fluke 授权 的销售商购买的产品,或者买方已经按适当的国际价格付款的产品,才能享受 Fluke 的保证支持。在一个国家购买的产品被送往另一个国家维修时,Fluke 公 司保留向买方收取修理/更换零部件的进口费用的权利。 Fluke 公司的保证责任是有限的,Fluke 公司可以选择是否将依购买价退款、免费维修或更换在保证期内退回到 Fluke 公司委托服务中心的有缺陷产品。 要求保修服务时,请与就近的 Fluke 授权服务中心联系,获得退还授权信息;然后将产品连同问题描述寄至该服务中心,并预付邮资和保险费用(目的地离岸价格)。Fluke 对运送途中发生的损坏不承担责任。在保修之后,产品将被寄回给买方并提前支付运输费(目的地交货)。如果 Fluke 认定产品故障是由于疏忽、误用、污染、修改、意外或不当操作或处理状况而产生,包括未在产品规定的额定值下使用引起的过压故障;或是由于机件日常使用损耗,则 Fluke 会估算修理费用,在获得买方同意后再进行修理。在修理之后,产品将被寄回给买方并预付运输费;买方将收到修理和返程运输费用(寄发地交货)的帐单。 本保证为买方唯一能获得的全部赔偿内容,并且取代所有其它明示或隐含的保证,包括但不限于适销性或适用于特殊目的的任何隐含保证。F LUKE 对任何特殊、间接、偶发或后续的损坏或损失概不负责,包括由于任何原因或推理引起的数据丢失。 由于某些国家或州不允许对隐含保证的期限加以限制、或者排除和限制意外或后续损坏本保证的限制和排除责任条款可能并不对每一个买方都适用。如果本保证的某些条款被法院或其它具有适当管辖权的裁决机构判定为无效或不可执行,则此类判决将不影响任何其它条款的有效性或可执行性。

相关文档
相关文档 最新文档