文档库 最新最全的文档下载
当前位置:文档库 › 计算机操作系统实验三 存储管理

计算机操作系统实验三 存储管理

计算机操作系统实验三 存储管理
计算机操作系统实验三 存储管理

南京信息工程大学实验(实习)报告

实验(实习)名称存储管理实验(实习)日期 20131130 得分指导教师

系计算机系专业计科年级 2011 班次 1 姓名汤建洋学号 20112308018

1. 实验目的

本实验的目的是通过请求页式存储管理中页面置换算法模拟设计,了解虚拟存储技术的

特点,掌握请求页式存储管理的页面置换算法,此外通过实验了解HASH表数据结构的使用。

2. 实验准备

⑴数据结构HASH表查找方式。

⑵操作系统相关内存交换知识。

⑶阅读Linux系统的msg.c、sem.c和shm.c等源码文件,掌握几个LINUX函数getpid ( )、srand (int a)和int rand ( )的使用方法。

3. 实验内容

设计一个虚拟存储区和内存工作区,并分别编程实现使用先进先出置换算法(FIFO)

和最近最少使用页面置换算法(LRU)计算访问命中率。

4. 实验指导

拥有页面交换机制的操作系统总是把当前进程中急需处理的部分页面换入到内存当中,而把更多暂时不需处理的页面放置在外存当中,由于进程需要处理页面的顺序不同,而需要

在内存与外存之间进行页面交换,交换算法也就应运而生。

本实验并没有进入系统空间对实际进程页面进行控制,而是在用户空间用线性表的连续

存储方式对进程页面交换进行的模拟。

⑴ FIFO算法实现

<原理描述>

在分配内存页面数(AP)小于进程页面数(PP)时,当然是最先的AP个页面放入

内存;

这时有需要处理新的页面,则将原理在内存中的AP个页面中最先进入的调出,然

后放入新页面;

以后如果有新页面需要调入,按(2)之规则进行。

算法特点:所使用的内存页面构成一个队列。

<算法实现提示>

要得到“命中率”,必然应该有一个常量total_instruction记录页面总共使用次数;此外需

要一个变量记录总共换入页面的次数(需要换出页面,总是因为没有命中而产生的)diseffect。利用公式(1-diseffect/total_instructiong)×100%可以得到命中率。

[步骤1] 初始化。设置两个数组page[ap]和pagecontrol[pp]分别表示进程页面数和内存分

配的页面数,并产生一个的随机数序列main[total_instruction](当然这个序列由page[]的下标

随机构成),表示待处理的进程页面顺序,diseffect置零。

[步骤2] 看main[]中是否有下一个元素,有就由main[]中获取该页面下标,并转到⑶;

没有,就转到⑺。

[步骤3] 如果该page业已在内存中,就转到⑵;否则就到⑷,同时未命中的diseffect加1。

[步骤4] 观察pagecontrol是否占满,如果占满需将使用队列(⑹中建立的)中最先进入的(就是队列第一个单元)pagecontrol单元“清干净”,同时将对应的page[]单元置为“不在内存中”。

[步骤5] 将该page[]与pagecontrol[]建立关系(可以改变pagecontrol[]的标示位,也可以采用指针连接,总之至少要使对应的pagecontrol单元包含两个信息:一是它被使用了,另外是哪个page[]单元使用的;page[]单元包含两个信息:对应的pagecontrol单元号、本page[]单元已在内存中)

[步骤6] 将用到的pagecontrol置入使用队列(这里的队列当然是一种先进先出的数据结构了,而不是泛指),返回⑵;

[步骤7] 显示(1-diseffect/total_instructiong)×100%,完成。

<程序设计>

为了便于操作和观察结果,用一个程序作为“引子”,先后fork ( )两个子进程SERVER和CLIENT进行通信,

SERVER端建立一个KEY为75的消息队列,等待其他进程发来的消息。当遇到类型为1的消息时,则作为结束信号,取消该队列并退出SERVER。SERVER每接收到一个消息后显示一句“( server) received”。

CLIENT端使用KEY为75的消息队列,先后发送类型从10到1的消息后退出。最后的一个消息即是SERVER端需要的结束信号。CLIENT每发送一条消息后显示一句“(client)sent”。

父进程在SERVER和CLIENT均退出后结束。

<程序代码>

# include

# include

# include

# include

# define MSGKEY 75 /* 定义关键词*/

struct msgform /* 定义消息结构*/

{

long mtype;

char mtrex [1030]; /*文本长度*/

}msg;

int msgqid, i;

viod CLIENT ( )

{ int i;

msgqid=msgget ( MSGKEY, 0777);

for (i=10, i>=1, i--)

{ msg, mtype=i;

printf (“(client) sent \n”)

msgsnd ( msgqid, &msg, 1024,0); /*发送消息msg入msgqid消息队列*/ }

exit ( );

}

Void SERVER ( )

{

msgqid=msgget ( MSGKEY, 0777| IPC_CREAT); /* 由关键字获得消息队列*/

do

{ msgrcv ( msgqid, &msg, 1030,0,0); /* 从msgqid队列接收消息msg */ printf (“(server) received \n”);

} while ( msg.type ! =1); /* 消息类型为1时,释放队列*/ magctl ( msgqid, IPC_RMID, 0);

exit (0);

}

void main ( )

{

while ((i= fork ( )) = = -1 );

if ( ! i) SERVER ( );

while ((i= fork ( )) = = -1 );

if ( ! i) CLIENT ( );

wait (0);

wait (0);

}

<运行结果>

从理想的结果来说,应当是每当CLIENT发送一个消息后,SERVER接收该消息,CLIENT再发送下一条。也就是说“( client ) sent ”和“( server ) receive ”的字样应该在屏幕上交替出现。实际的结果大多是,先由CLIENT发送了两条消息,然后SERVER接收一条消息。此后CLIENT_SERVER交替发送和接收消息。最后SERVER一次接收两条消息。CLIENT和SERVER分别发送和接收了10条消息,与预期设想一致。

<分析>

message的传送和控制并不保证完全同步,当一个程序不在激活状态的时候,它完全可能继续睡眠,造成了上面的现象,在多次send message后才received message。这一点有助于理解消息传送的实现原理。

实验三:存储管理

实验三:存储管理 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

一、实验名称 实验三:存储管理 [1]Windows Server 2003内存结构 [2] Windows Server 2003虚拟内存 二、 [1]实验目的 1)通过实验了解windows Server 2003内存的使用,学习如何在应用程序中管理内存、体会Windows应用程序内存的简单性和自我防护能力。 2)了解windows Server 2003的内存结构和虚拟内存的管理,进而了解进程堆和windows为使用内存而提供的一些扩展功能。 三、 [1]实验内容 四、 [1]实验步骤 Windows提供了一个API即GetSystemInfo() ,以便用户能检查系统中虚拟内存的一些特性。程序5-1显示了如何调用该函数以及显示系统中当前内存的参数。 步骤1:登录进入Windows Server 2003 。 步骤2:在“开始”菜单中单击“程序”-“Microsoft Visual Studio 6.0”–“Microsoft Visual C++ 6.0”命令,进入Visual C++窗口。 步骤3:在工具栏单击“打开”按钮,在“打开”对话框中找到并打开实验源程序。 程序5-1:获取有关系统的内存设置的信息 步骤4:单击“Build”菜单中的“Compile ”命令,并单击“是”按钮确认。系统对进行编译。 步骤5:编译完成后,单击“Build”菜单中的“Build ”命令,建立可执行文件。 操作能否正常进行如果不行,则可能的原因是什么 答:操作能正常进行。 _____________________________________________________ 步骤6:在工具栏单击“Execute Program” (执行程序) 按钮,执行程序。 运行结果 (分行书写。如果运行不成功,则可能的原因是什么?) : 1) 虚拟内存每页容量为: 2) 最小应用地址: 0x00010000 3) 最大应用地址为: 0x7ffeffff 4) 当前可供应用程序使用的内存空间为: 5) 当前计算机的实际内存大小为: 阅读和分析程序5-1,请回答问题:

操作系统实验1

#include "stdio.h" #include #include #define getpch(type) (type*)malloc(sizeof(type)) #define NULL 0 struct pcb { /* 定义进程控制块PCB */ char name[10]; char state; int ntime; int rtime; struct pcb* link; }*ready=NULL,*p; typedef struct pcb PCB; void sort() /* 建立对进程进行优先级排列函数*/ { PCB *first, *second; int insert=0; if((ready==NULL)||((p->ntime)<(ready->ntime))) /*运行时间最短者,插入队首*/ { p->link=ready; ready=p; } else /* 进程比较运行时间优先级,插入适当的位置中*/ { first=ready; second=first->link; while(second!=NULL) { if((p->ntime)<(second->ntime)) /*若插入进程比当前进程所需运行时间短,*/ { /*插入到当前进程前面*/ p->link=second; first->link=p; second=NULL; insert=1; } else /* 插入进程运行时间最长,则插入到队尾*/ { first=first->link; second=second->link; } } if(insert==0) first->link=p; } }

实验三存储管理实验

实验三存储管理实验 Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】

实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二.实验内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 算法描述: 本算法将内存的用户区分成大小相等的四个的分区,设一张分区说明表用来记录分区,其中分区的表项有分区的大小、起始地址和分区的状态,当系统为某个作业分配主存空间时,根据所需要的内存容量,在分区表中找到一个足够大的空闲分区分配给它,然后将此作业装入内存。如果找不到足够大的空闲分区,则这个作业暂时无法分配内存空间,系统将调度另一个作业。当一个作业运行结束时,系统将回收改作业所占据的分区并将该分区改为空闲。 算法原程序 #include "" #include "" #include <>

#include <> #define PCB_NUM 5 行程序."); printf("\n\t\t\t0.退出程序."); scanf("%d",&m); switch(m) { case1: break; case0: system("cls"); menu(); break; default: system("cls"); break; } } void paixu(struct MemInf* ComMem,int n) { int i,j,t; for(j=0; jComMem[i+1].size) { t=ComMem[i].size; ComMem[i].size=ComMem[i+1].size; ComMem[i+1].size=t; } } void paixu2() { int i,j,t; for(j=0; j<4; j++) for(i=0; i<4-j; i++) if(pcbList[i].size>pcbList[i+1].size) { t=pcbList[i].size; pcbList[i].size=pcbList[i+1].size; pcbList[i+1].size=t; } } void main() { DD: menu();

计算机操作系统内存分配实验报告记录

计算机操作系统内存分配实验报告记录

————————————————————————————————作者:————————————————————————————————日期:

一、实验目的 熟悉主存的分配与回收。理解在不同的存储管理方式下,如何实现主存空间的分配与回收。掌握动态分区分配方式中的数据结构和分配算法及动态分区存储管理方式及其实现过程。 二、实验内容和要求 主存的分配和回收的实现是与主存储器的管理方式有关的。所谓分配,就是解决多道作业或多进程如何共享主存空间的问题。所谓回收,就是当作业运行完成时将作业或进程所占的主存空间归还给系统。 可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 实验要求使用可变分区存储管理方式,分区分配中所用的数据结构采用空闲分区表和空闲分区链来进行,分区分配中所用的算法采用首次适应算法、最佳适应算法、最差适应算法三种算法来实现主存的分配与回收。同时,要求设计一个实用友好的用户界面,并显示分配与回收的过程。同时要求设计一个实用友好的用户界面,并显示分配与回收的过程。 三、实验主要仪器设备和材料 实验环境 硬件环境:PC或兼容机 软件环境:VC++ 6.0 四、实验原理及设计分析 某系统采用可变分区存储管理,在系统运行当然开始,假设初始状态下,可用的内存空间为640KB,存储器区被分为操作系统分区(40KB)和可给用户的空间区(600KB)。 (作业1 申请130KB、作业2 申请60KB、作业3 申请100KB 、作业2 释放 60KB 、作业4 申请 200KB、作业3释放100KB、作业1 释放130KB 、作业5申请140KB 、作业6申请60KB 、作业7申请50KB) 当作业1进入内存后,分给作业1(130KB),随着作业1、2、3的进入,分别分配60KB、100KB,经过一段时间的运行后,作业2运行完毕,释放所占内存。此时,作业4进入系统,要求分配200KB内存。作业3、1运行完毕,释放所占内存。此时又有作业5申请140KB,作业6申请60KB,作业7申请50KB。为它们进行主存分配和回收。 1、采用可变分区存储管理,使用空闲分区链实现主存分配和回收。 空闲分区链:使用链指针把所有的空闲分区链成一条链,为了实现对空闲分区的分配和链接,在每个分区的起始部分设置状态位、分区的大小和链接各个分区的前向指针,由状态位指示该分区是否分配出去了;同时,在分区尾部还设置有一后向指针,用来链接后面的分区;分区中间部分是用来存放作业的空闲内存空间,当该分区分配出去后,状态位就由“0”置为“1”。 设置一个内存空闲分区链,内存空间分区通过空闲分区链来管理,在进行内存分配时,系统优先使用空闲低端的空间。 设计一个空闲分区说明链,设计一个某时刻主存空间占用情况表,作为主存当前使用基础。初始化空间区和已分配区说明链的值,设计作业申请队列以及作业完成后释放顺序,实现主存的分配和回收。要求每次分配和回收后显示出空闲内存分区链的情况。把空闲区说明

《计算机操作系统》实验指导书

《计算机操作系统》 实验指导书 (适合于计算机科学与技术专业) 湖南工业大学计算机与通信学院 二O一四年十月

前言 计算机操作系统是计算机科学与技术专业的主要专业基础课程,其实践性、应用性很强。实践教学环节是必不可少的一个重要环节。计算机操作系统的实验目的是加深对理论教学内容的理解和掌握,使学生较系统地掌握操作系统的基本原理,加深对操作系统基本方法的理解,加深对课堂知识的理解,为学生综合运用所学知识,在Linux环境下调用一些常用的函数编写功能较简单的程序来实现操作系统的基本方法、并在实践应用方面打下一定基础。要求学生在实验指导教师的帮助下自行完成各个操作环节,并能实现且达到举一反三的目的,完成一个实验解决一类问题。要求学生能够全面、深入理解和熟练掌握所学内容,并能够用其分析、设计和解答类似问题;对此能够较好地理解和掌握,并且能够进行简单分析和判断;能够熟练使用Linux用户界面;掌握操作系统中进程的概念和控制方法;了解进程的并发,进程之间的通信方式,了解虚拟存储管理的基本思想。同时培养学生进行分析问题、解决问题的能力;培养学生完成实验分析、实验方法、实验操作与测试、实验过程的观察、理解和归纳能力。 为了收到良好的实验效果,编写了这本实验指导书。在指导书中,每一个实验均按照该课程实验大纲的要求编写,力求紧扣理论知识点、突出设计方法、明确设计思路,通过多种形式完成实验任务,最终引导学生有目的、有方向地完成实验任务,得出实验结果。任课教师在实验前对实验任务进行一定的分析和讲解,要求学生按照每一个实验的具体要求提前完成准备工作,如:查找资料、设计程序、完成程序、写出预习报告等,做到有准备地上机。进行实验时,指导教师应检查学生的预习情况,并对调试过程给予积极指导。实验完毕后,学生应根据实验数据及结果,完成实验报告,由学习委员统一收齐后交指导教师审阅评定。 实验成绩考核: 实验成绩占计算机操作系统课程总评成绩的20%。指导教师每次实验对学生进行出勤考核,对实验效果作记录,并及时批改实验报告,综合评定每一次的实验成绩,在学期终了以平均成绩作为该生的实验成绩。有以下情形之一者,实验成绩为不及格: 1.迟到、早退、无故缺勤总共3次及以上者; 2.未按时完成实验达3次及以上者; 3.缺交实验报告2次及以上者。

实验三动态分区存储管理方式的主

实验三动态分区存储管理方式的主存分配回收 一、实验目的 深入了解动态分区存储管理方式主存分配回收的实现。 二、实验预备知识 存储管理中动态分区的管理方式。 三、实验内容 编写程序完成动态分区存储管理方式的主存分配回收的实现。实验具体包括: 首先确定主存空间分配表;然后采用最优适应算法完成主存空间的分配和回收;最后编写主函数对所做工作进行测试。 四、提示与讲解 动态分区管理方式预先不将主存划分成几个区域,而把主存除操作系统占用区域外的空间看作一个大的空闲区。当作业要求装入主存时,根据作业需要主存空间的大小查询主存内各个空闲区,当从主存空间中找到一个大于或等于该作业大小的主存空闲区时,选择其中一个空闲区,按作业需求量划出一个分区装入该作业。作业执行完后,它所占的主存分区被收回,成为一个空闲区。如果该空闲区的相邻分区也是空闲区,则需要将相邻空闲区合并成一个空闲区。 实现动态分区的分配和回收,主要考虑的问题有三个: 第一,设计记录主存使用情况的数据表格,用来记录空闲区和作业占用的区域;第二,在设计的数据表格基础上设计主存分配算法;第三,在设计的数据表格基础上设计主存回收算法。 首先,考虑第一个问题: 设计记录主存使用情况的数据表格,用来记录空闲区和作业占用的区域。 由于动态分区的大小是由作业需求量决定的,故分区的长度是预先不固定的,且分区的个数也随主存分配和回收变动。总之,所有分区情况随时可能发生变化,数据表格的设计必须和这个特点相适应。由于分区长度不同,因此设计的表格应该包括分区在主

存中的起始地址和长度。由于分配时空闲区有时会变成两个分区: 空闲区和已分分区,回收主存分区时,可能会合并空闲分区,这样如果整个主存采用一张表格记录已分分区和空闲区,就会使表格操作繁琐。主存分配时查找空闲区进行分配,然后填写已分配区表,主要操作在空闲区;某个作业执行完后,将该分区变成空闲区,并将其与相邻的空闲区合并,主要操作也在空闲区。 由此可见,主存的分配和回收主要是对空闲区的操作。这样为了便于对主存空间的分配和回收,就建立两张分区表记录主存使用情况,一张表格记录作业占用分区的 “已分配区表”;一张是记录空闲区的“空闲区表”。这两张表的实现方法一般有两种,一种是链表形式,一种是顺序表形式。在实验中,采用顺序表形式,用数组模拟。由于顺序表的长度必须提前固定,所以无论是“已分配区表”还是“空闲区 表”都必须事先确定长度。它们的长度必须是系统可能的最大项数,系统运行过程中才不会出错,因而在多数情况下,无论是“已分配区表”还是“空闲区表”都有空闲栏目。已分配区表中除了分区起始地址、长度外,也至少还要有一项“标志”,如果是空闲栏目,内容为“空”,如果为某个作业占用分区的登记项,内容为该作业的作业名;空闲区表中除了分区起始地址、长度外,也要有一项“标志”,如果是空闲栏目,内容为“空”,如果为某个空闲区的登记项,内容为“未分配”。在实际系统中,这两表格的内容可能还要多,实验中仅仅使用上述必须的数据。为此, “已分配区表”和“空闲区表”在实验中有如下的结构定义。 已分配区表的定义: #define n 10// 假定系统允许的最大作业数量为n struct {float address;// 已分分区起始地址 float length; // 已分分区长度,单位为字节 int flag;// 已分配区表登记栏标志, “0表”示空栏目,实验中只支持一个字符的作业名}used_table[n];// 已分配区表 空闲区表的定义:

计算机操作系统实验四

实验三进程与线程 问题: 进程是具有独立功能的程序关于某个数据集合上的一次运行活动,是系统进行资源分配和调度的独立单位,具有动态性、并发性、独立性、异步性和交互性。然而程序是静态的,并且进程与程序的组成不同,进程=程序+数据+PCB,进程的存在是暂时的,程序的存在是永久的;一个程序可以对应多个进程,一个进程可以包含多个程序。当操作系统引入线程的概念后,进程是操作系统独立分配资源的单位,线程成为系统调度的单位,与同一个进程中的其他线程共享程序空间。 本次实验主要的目的是: (1)理解进程的独立空间; (2)加深对进程概念的理解,明确进程和程序的区别; (3)进一步认识并发执行的实质; (4)了解红帽子(Linux)系统中进程通信的基本原理。 (5)理解线程的相关概念。 要求: 1、请查阅资料,掌握进程的概念,同时掌握进程创建和构造的相关知识和线程创建和 构造的相关知识,了解C语言程序编写的相关知识; (1)进程: 进程(Process)是计算机中的程序关于某数据集合上的一次运行活动,是系统进行资源分配和调度的基本单位,是操作系统结构的基础。程序是指令、数据及其组织形式的描述,进程是程序的实体。进程的概念主要有两点:第一,进程是一个实体。每一个进程都有它自己的地址空间,一般情况下,包括文本区域(text region)、数据区域(data region)和堆栈(stack region)。文本区域存储处理器执行的代码;数据区域存储变量和进程执行期间使用的动态分配的内

存;堆栈区域存储着活动过程调用的指令和本地变量。第二,进程是一个“执行中的程序”。程序是一个没有生命的实体,只有处理器赋予程序生命时(操作系统执行之),它才能成为一个活动的实体,我们称其为进程。 (2)进程的创建和构造: 进程简单来说就是在操作系统中运行的程序,它是操作系统资源管理的最小单位。但是进程是一个动态的实体,它是程序的一次执行过程。进程和程序的区别在于:进程是动态的,程序是静态的,进程是运行中的程序,而程序是一些保存在硬盘上的可执行代码。新的进程通过克隆旧的程序(当前进程)而建立。fork() 和clone()(对于线程)系统调用可用来建立新的进程。 (3)线程的创建和构造: 线程也称做轻量级进程。就像进程一样,线程在程序中是独立的、并发的执行路径,每个线程有它自己的堆栈、自己的程序计数器和自己的局部变量。但是,与独立的进程相比,进程中的线程之间的独立程度要小。它们共享内存、文件句柄和其他每个进程应有的状态。 线程的出现也并不是为了取代进程,而是对进程的功能作了扩展。进程可以支持多个线程,它们看似同时执行,但相互之间并不同步。一个进程中的多个线程共享相同的内存地址空间,这就意味着它们可以访问相同的变量和对象,而且它们从同一堆中分配对象。尽管这让线程之间共享信息变得更容易,但你必须小心,确保它们不会妨碍同一进程里的其他线程。 线程与进程相似,是一段完成某个特定功能的代码,是程序中单个顺序的流控制,但与进程不同的是,同类的多个线程是共享同一块内存空间和一组系统资源的,而线程本身的数据通常只有微处理器的寄存器数据,以及一个供程序执行时使用的堆栈。所以系统在产生一个线程,或者在各个线程之间切换时,负担要比进程小得多,正因如此,线程也被称为轻型进程(light-weight process)。一个进程中可以包含多个线程。 2、理解进程的独立空间的实验内容及步骤

实验三 存储管理指导

实验三存储管理 实验目的 1) 加深对存储管理的理解; 2) 掌握几种页面置换算法; 3) 通过实验比较各种置换算法的优劣。 实验要求 1) 编写程序完成实验内容; 2) 对测试数据进行分析; 3) 撰写实验报告。 实验内容 1) 定义为进程分配的物理块数; 2)定义进程运行所需访问的页面号; 3)定义页的结构; 4)模拟两种页面置换算法; 5)计算页面置换算法的命中率; 6)比较两种算法的优劣。 实验原理 1.虚拟存储 基于局部性原理,应用程序在运行之前,没有必要全部装入内存,仅须将那些当前要运行的少数页面或段先装入内存便可运行,其余部分暂留在盘上。程序在运行时,如果它所要访问的页(段)已调入内存,便可继续执行下去;但如果程序所要访问的页(段)尚未调入内存(称为缺页或缺段),此时程序应利用OS所提供的请求调页(段)功能,将它们调入内存,以使进程能继续执行下去。如果此时内存已满,无法再装入新的页(段),则还须再利用页(段)

的置换功能,将内存中暂时不用的页(段)调至盘上,腾出足够的内存空间后,再将要访问的页(段)调入内存,使程序继续执行下去。 2.页面置换算法 1)最佳(Optimal)置换算法 最佳置换算法是由Belady于1966年提出的一种理论上的算法。其所选择的被淘汰页面,将是以后永不使用的,或许是在最长(未来)时间内不再被访问的页面。采用最佳置换算法,通常可保证获得最低的缺页率。但由于人们目前还无法预知一个进程在内存的若干个页面中,哪一个页面是未来最长时间内不再被访问的,因而该算法是无法实现的,但可以利用该算法去评价其它算法。 2)最近最久未使用(LRU)置换算法 FIFO置换算法性能之所以较差,是因为它所依据的条件是各个页面调入内存的时间,而页面调入的先后并不能反映页面的使用情况。最近最久未使用(LRU)的页面置换算法,是根据页面调入内存后的使用情况进行决策的。由于无法预测各页面将来的使用情况,只能利用“最近的过去”作为“最近的将来”的近似,因此,LRU置换算法是选择最近最久未使用的页面予以淘汰。该算法赋予每个页面一个访问字段,用来记录一个页面自上次被访问以来所经历的时间t,当须淘汰一个页面时,选择现有页面中其t值最大的,即最近最久未使用的页面予以淘汰。 LRU置换算法虽然是一种比较好的算法,但要求系统有较多的支持硬件。为了了解一个进程在内存中的各个页面各有多少时间未被进程访问,以及如何快速地知道哪一页是最近最久未使用的页面,须有两类硬件之一的支持:寄存器或栈。 a)寄存器 为了记录某进程在内存中各页的使用情况,须为每个在内存中的页面配置一个移位寄存器,可表示为R=R n-1R n-2R n-3… R2R1R0当进程访问某物理块时,要将相应寄存器的R n-1位置成1。此时,定时信号将每隔一定时间(例如100 ms)将寄存器右移一位。如果我们把n位寄存器的数看做是一个整数,那么,具有最小数值的寄存器所对应的页面,就是最近最久未使用的页面。 b)栈 可利用一个特殊的栈来保存当前使用的各个页面的页面号。每当进程访问某页面时,便将该页面的页面号从栈中移出,将它压入栈顶。因此,栈顶始终是最新被访问页面的编号,而栈底则是最近最久未使用页面的页面号。

存储管理实验报告

实验三、存储管理 一、实验目的: ? 一个好的计算机系统不仅要有一个足够容量的、存取速度高的、稳定可靠的主存储器,而且要能合理地分配和使用这些存储空间。当用户提出申请存储器空间时,存储管理必须根据申请者的要求,按一定的策略分析主存空间的使用情况,找出足够的空闲区域分配给申请者。当作业撤离或主动归还主存资源时,则存储管理要收回作业占用的主存空间或归还部分主存空间。主存的分配和回收的实现虽与主存储器的管理方式有关的,通过本实验理解在不同的存储管理方式下应怎样实现主存空间的分配和回收。 在计算机系统中,为了提高主存利用率,往往把辅助存储器(如磁盘)作为主存储器的扩充,使多道运行的作业的全部逻辑地址空间总和可以超出主存的绝对地址空间。用这种办法扩充的主存储器称为虚拟存储器。通过本实验理解在分页式存储管理中怎样实现虚拟存储器。 在本实验中,通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。 二、实验题目: 设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一:(任选一种算法实现) 首次适应算法 循环首次适应算法 最佳适应算法 三.实验源程序文件名:cunchuguanli.c

执行文件名:cunchuguanli.exe 四、实验分析: 1)本实验采用可变分区管理,使用首次适应算法实现主存的分配和回收 1、可变分区管理是指在处理作业过程中建立分区,使分区大小正好适合作业的需求,并 且分区个数是可以调整的。当要装入一个作业时,根据作业需要的主存量查看是否有足够的空闲空间,若有,则按需要量分割一个分区分配给该作业;若无,则作业不能装入,作业等待。随着作业的装入、完成,主存空间被分成许多大大小小的分区,有的分区被作业占用,而有的分区是空闲的。 为了说明那些分区是空闲的,可以用来装入新作业,必须有一张空闲说明表 ? 空闲区说明表格式如下:? 第一栏 第二栏 其中,起址——指出一个空闲区的主存起始地址,长度指出空闲区的大小。 长度——指出从起始地址开始的一个连续空闲的长度。 状态——有两种状态,一种是“未分配”状态,指出对应的由起址指出的某个长度的区域是空闲区;另一种是“空表目”状态,表示表中对应的登记项目是空白(无效),可用来登记新的空闲区(例如,作业完成后,它所占的区域就成了空闲区,应找一个“空表目”栏登记归还区的起址和长度且修改状态)。由于分区的个数不定,所以空闲区说明表中应有适量的状态为“空表目”的登记栏目,否则造成表格“溢出”无法登记。 2、当有一个新作业要求装入主存时,必须查空闲区说明表,从中找出一个足够大的空闲区。 有时找到的空闲区可能大于作业需要量,这时应把原来的空闲区变成两部分:一部分分

计算机操作系统 实验报告

操作系统实验报告 学院:计算机与通信工程学院 专业:计算机科学与技术 班级: 学号: 姓名: 指导教师: 成绩: 2014年 1 月 1 日

实验一线程的状态和转换(5分) 1 实验目的和要求 目的:熟悉线程的状态及其转换,理解线程状态转换与线程调度的关系。 要求: (1)跟踪调试EOS线程在各种状态间的转换过程,分析EOS中线程状态及其转换的相关源代码; (2)修改EOS的源代码,为线程增加挂起状态。 2 完成的实验内容 2.1 EOS线程状态转换过程的跟踪与源代码分析 (分析EOS中线程状态及其转换的核心源代码,说明EOS定义的线程状态以及状态转换的实现方法;给出在本部分实验过程中完成的主要工作,包括调试、跟踪与思考等) 1.EOS 准备了一个控制台命令“loop ”,这个命令的命令函数是 ke/sysproc.c 文件中的ConsoleCmdLoop 函数(第797行,在此函数中使用 LoopThreadFunction 函数(第755 行)创建了一个优先级为 8 的线程(后面简称为“loop 线程”),该线程会在控制台中不停的(死循环)输出该线程的ID和执行计数,执行计数会不停的增长以表示该线程在不停的运行。loop命令执行的效果可以参见下图: 2. 线程由阻塞状态进入就绪状态 (1)在虚拟机窗口中按下一次空格键。 (2)此时EOS会在PspUnwaitThread函数中的断点处中断。在“调试”菜单中选择“快速监视”,在快速监视对话框的表达式编辑框中输入表达式“*Thread”,然后点击“重新计算”按钮,即可查看线程控制块(TCB)中的信息。其中State域的值为3(Waiting),双向链表项StateListEntry的Next和Prev指针的值都不为0,说明这个线程还处于阻塞状态,并在某个同步对象的等待队列中;StartAddr域的值为IopConsoleDispatchThread,说明这个线程就是控制台派遣线程。 (3)关闭快速监视对话框,激活“调用堆栈”窗口。根据当前的调用堆栈,可以看到是由键盘中断服务程序(KdbIsr)进入的。当按下空格键后,就会发生键盘中断,从而触发键盘中断服务程序。在该服务程序的最后中会唤醒控制台派遣线程,将键盘事件派遣到活动的控制台。 (4)在“调用堆栈”窗口中双击PspWakeThread函数对应的堆栈项。可以看到在此函数中连续调用了PspUnwaitThread函数和PspReadyThread函数,从而使处于阻塞状态的控制台派遣线程进入就绪状态。 (5)在“调用堆栈”窗口中双击PspUnwaitThread函数对应的堆栈项,先来看看此函数是如何改变线程状态的。按F10单步调试直到此函数的最后,然后再从快速监视对

操作系统原理实验四

实验4 进程控制 1、实验目的 (1)通过对WindowsXP进行编程,来熟悉和了解系统。 (2)通过分析程序,来了解进程的创建、终止。 2、实验工具 (1)一台WindowsXP操作系统的计算机。 (2)计算机装有Microsoft Visual Studio C++6.0专业版或企业版。 3、预备知识 (3)·CreateProcess()调用:创建一个进程。 (4)·ExitProcess()调用:终止一个进程。 4、实验编程 (1)编程一利用CreateProcess()函数创建一个子进程并且装入画图程序(mspaint.exe)。阅读该程序,完成实验任务。源程序如下: # include < stdio.h > # include < windows.h > int main(VOID) ﹛STARTUPINFO si; PROCESS INFORMA TION pi; ZeroMemory(&si,sizeof(si)); Si.cb=sizeof(si); ZeroMemory(&pi,sizeof(pi)); if(!CreateProcess(NULL, “c: \ WINDOWS\system32\ mspaint.exe”, NULL, NULL, FALSE, 0, NULL, NULL, &si,&pi)) ﹛fprintf(stderr,”Creat Process Failed”); return—1; ﹜ WaitForSingleObject(pi.hProcess,INFINITE); Printf(“child Complete”); CloseHandle(pi.hProcess); CloseHandle(pi hThread); ﹜

存储管理实验报告.doc

存储管理实验报告

北方工业大学 《计算机操作系统》实验报告 实验名称存储管理实验序号 2 实验日期2013.11.27实验人 一、实验目的和要求 1.请求页式存储管理是一种常用的虚拟存储管理技术。本实验目的 是通过请求页式存储管理中页面置换算法的模拟设计,了解虚拟存储 技术的特点,掌握请求页式存储管理的页面置换算法。 二、相关背景知识 1.随机数产生办法 关于随机数产生办法, Linux 或 UNIX 系统提供函数 srand() 和 rand() ,分 别进行初始化和产生随机数。 三、实验内容 (1).通过随机数产生一个指令序列,共320条指令。指令的地址按下述原则生成: 1.50% 的指令是顺序执行的; 2.25% 的指令是均匀分布在前地址部分; 3.25% 的指令是均匀分布在后地址部 分;具体的实施方法是: 1.在[0, 319]的指令地址之间随机选取一起点 m; 2.顺序执行一条指令,即执行地址为 m+1 的指令; 3.在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m’; 4.顺序执行一条指令,其地址为 m’+1; 5.在后地址 [m ’+2, 319]中随机选取一条指令并执行; 6.重复上述步骤 1~5,直到执行 320 次指令。 (2)将指令序列变换成页地址流,设 1.页面大小为 1K ; 2.用户内存容量为 4 页到 32 页; 3.用户虚存容量为 32K 。 在用户虚存中,按每 K 存放 10 条指令排列虚存地址,即 320 条指令在虚存 中存放的方式为: 第 0 条至第 9 条指令为第 0 页(对应虚存地址为 [0, 9]); 第 10 条至第 19 条指令为第 1 页(对应虚存地址为 [10, 19]); 第 310 条至第 319 条指令为第 31 页(对应虚存地址为 [310,319]); 按以上方式,用户指令可以组成 32 页。 (3)计算并输出下述各种算法在不同内存容量下的命中率。

四川大学计算机操作系统第四实验报告

实验报告 (学生打印后提交) 实验名称:作业调度系统 实验时间: 2015 年 6 月 4 日 实验人员:________(姓名)_____(学号)______(年级) 实验目的: ?理解操作系统中调度的概念和调度算法。 ?学习Linux下进程控制以及进程之间通信的知识。 ?理解在操作系统中作业是如何被调度的,如何协调和控制各个作业对CPU的使用 实验环境: linux 实验步骤: 1. 1、调用vi编辑器修改job.h文件,为命名管道FIFO设置正确的路径,修改语句:#define FIFO "/home/student/SVRFIFO" 2. 修改scheduler.c文件,添加作业的打印信息,即修改函数do_stat,要求再输出作业名称、当 前优先级、默认优先级。 3. 在printf( “JID\tPID\tOWNER\tRUNTIME\tWAITTIME\tCREATTIME\t\tSTATE\n”);语句 中添加JOBNAME、CURPRI、DEFPRI。 4. 接下来的两个输出语句根据表头修改,注意printf语句的输出格式,输出的信息内容参照 jobinfo结构体。 5、用gcc分别编译连接作业调度程序、三个命令程序。 6、在一个控制台窗口中运行作业调度程序作为服务端。 7、提交一个运行时间超过100毫秒的作业(要求提供源程序),并编译连接。 8.再打开一个窗口登录服务器作为客户端,在其中运行作业控制命令(提交作业、删除作业、查看信息), 在服务端观察调度情况,分析所提交作业的执行情况。 实验陈述: 1、基础知识: ?说明进程与程序的区别:程序是静态的指令集合,不占用系统的运行资源,可以长久保存在 磁盘。进程是进程实体(程序、数据和进程控制块构成)的运行过程,是系统进行资源分配和 调度的一个独立单位。进程执行程序,但进程与程序之间不是一一对应的。通过多次运行,同一 程序可以对应多个进程;通过调用关系,一个进程可以包含多个程序。 ?说明进程与作业的区别:作业是用户一个事务处理过程中要求计算机系统所做工作 的集合,作业可以包含几个进程。 ?说明作业调度与进程调度的区别:作业调度是按照一定的原则从外存的作业后备队 列中选择作业调入内存,并为其分配资源,创建相应的进程,然后进入就绪队列。进 程调度是按照某种策略或方法从就绪队列中选择进程,将处理机分配给它。 2、实验知识 ?本实验作业有几种状态READY:作业准备就绪可以运行。RUNNING:作业正在运行DONE: 作业已经运行结束,可以退出。有这三种状态,但只用到前两种。 ?

计算机操作系统实验资料

操作系统实验报告 1.实验目的及要求 ①了解什么是信号。 ②熟悉LINUX系统中进程之间软中断通信的基本原理。 2.实验环境 VMware Workstation 12 Player 3.实验内容 ①编写一段程序,使用系统调用fork( )创建两个子进程,再用系统调用signal( )让父进程捕捉键盘上来的中断信号(即按ctrl+c 键),当捕捉到中断信号后,父进程用系统调用kill( )向两个子进程发出信号,子进程捕捉到信号后,分别输出下列信息后终止:Child process 1 is killed by parent! Child process 2 is killed by parent! 父进程等待两个子进程终止后,输出以下信息后终止: Parent process is killed! ②程序实例 #include #include #include

int wait_mark; void waiting(); void stop(); void main() { int p1,p2; signal(SIGINT,stop); //signal()初始位置while((p1=fork())==-1); if(p1>0) { signal(SIGINT,stop); while((p2=fork())==-1); if(p2>0) { signal(SIGINT,stop); wait_mark=1; waiting(); kill(p1,10); kill(p2,12); wait(); wait(); printf("parent process is killed!\n"); exit(0);

计算机操作系统实验-文件管理

哈尔滨工业大学计算机科学与技术学院 实验报告 课程名称:操作系统 课程类型:必修 实验项目名称:文件管理 实验题目:设计一个多用户的文件系统 班级:实验学院一班 学号:6040310110 姓名:张元竞 设计成绩报告成绩指导老师

一、实验目的 随着社会信息量的极大增长,要求计算机处理的信息与日俱增,涉及到社会生活的各个方面。因此,文件管理是操作系统的一个非常重要的组成部分。学生应独立用高级语言编写和调试一个简单的文件系统,模拟文件管理的工作过程。从而对各种文件操作命令的实质内容和执行过程有比较深入的了解,掌握它们的实施方法,加深理解课堂上讲授过的知识。 二、实验要求及实验环境 用高级语言编写和调试一个简单的文件系统,模拟文件管理的工作过程。要求设计一个10个用户的文件系统,每次用户可保存10个文件,一次运行用户可以打开5个文件。系统能够检查打入命令的正确性,出错时能显示出错原因。对文件必须设置保护措施,例如只能执行,允许读等。在每次打开文件时,根据本次打开的要求,在此设置保护级别,即有二级保护。文件的操作至少有Create、delete、open、close、read、write等命令。 所编写的程序应采用二级文件目录,即设置主文件目录和用户文件目录。前者应包含文件主及它们的目录区指针;后者应给出每个文件占有的文件目录,即文件名,保护码,文件长度以及它们存放的位置等。另外为打开文件设置运行文件目录(AFD),在文件打开时应填入打开文件号,本次打开保护码和读写指针等。 三、设计思想(本程序中的用到的所有数据类型的定义,主程序的流程图及各程序模块之间的调用关系)

实验四 操作系统存储管理实验报告

实验四 操作系统存储管理实验报告 一、实验目的 存储管理的主要功能之一是合理地分配空间。请求页式管理是一种常用的虚拟存储管理技术。 本实验的目的是通过请求页式管理中页面置换算法模拟设计,了解虚拟存储技术的特点,掌握请求页式存储管理的页面置换算法。 二、实验内容 (1) 通过计算不同算法的命中率比较算法的优劣。同时也考虑了用户内存容量对命 中率的影响。 页面失效次数为每次访问相应指令时,该指令所对应的页不在内存中的次数。 在本实验中,假定页面大小为1k ,用户虚存容量为32k ,用户内存容量为4页到32页。 (2) produce_addstream 通过随机数产生一个指令序列,共320条指令。 A 、 指令的地址按下述原则生成: 1) 50%的指令是顺序执行的 2)25%的指令是均匀分布在前地址部分 3) 25%的指令是均匀分布在后地址部分 B 、 具体的实施方法是: 1) 在[0,319]的指令地址之间随机选取一起点m ; 2) 顺序执行一条指令,即执行地址为m+1的指令; 3) 在前地址[0,m+1]中随机选取一条指令并执行,该指令的地址为m ’; 4) 顺序执行一条指令,地址为m ’+1的指令 5) 在后地址[m ’+2,319]中随机选取一条指令并执行; 6) 重复上述步骤1)~5),直到执行320次指令 页地址流长度页面失效次数命中率- =1

C、将指令序列变换称为页地址流 在用户虚存中,按每k存放10条指令排列虚存地址,即320条指令在虚存中 的存放方式为: 第0条~第9条指令为第0页(对应虚存地址为[0,9]); 第10条~第19条指令为第1页(对应虚存地址为[10,19]); 。。。。。。 第310条~第319条指令为第31页(对应虚存地址为[310,319]); 按以上方式,用户指令可组成32页。 (3)计算并输出下属算法在不同内存容量下的命中率。 1)先进先出的算法(FIFO); 2)最近最少使用算法(LRU); 3)最佳淘汰算法(OPT); 4)最少访问页面算法(LFR); 其中3)和4)为选择内容

实验三 存储管理实验2014012622沈桂江

实验三存储管理实验2014012622沈桂江西北农林科技大学信息工程学院实习报告课程计算机操作系统学院信息工程专业年级软件141 学号 2014012622 姓名沈桂江 周次 10 交报告时间成绩 实验三存储管理实验 一. 目的要求: 1、通过编写和调试存储管理的模拟程序以加深对存储管理方案的理解。熟悉虚存管理的各种页面淘汰算法。 2、通过编写和调试地址转换过程的模拟程序以加强对地址转换过程的了解。二( 实习内容: 1、设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 可以假定每个作业都是批处理作业,并且不允许动态申请内存。为实现分区的分配和回收,可以设定一个分区说明表,按照表中的有关信息进行分配,并根据分区的分配和回收情况修改该表。 2、设计一个可变式分区分配的存储管理方案。并模拟实现分区的分配和回收过程。 对分区的管理法可以是下面三种算法之一: 首次适应算法 循环首次适应算法 最佳适应算法 3、编写并调试一个段页式存储管理的地址转换的模拟程序。

首先设计好段表、页表,然后给出若干个有一定代表性的地址,通过查找段表页表后得到转换的地址。 要求打印转换前的地址,相应的段表,页表条款及转换后的地址,以便检查。三(实习任务及完成情况: 1.设计存储算法流程图: 图1-1

图1-2 段表、页表和内存的关系 2.第一道题:设计一个固定式分区分配的存储管理方案,并模拟实现分区的分配和回收过程。 (1)编写程序源代码: #include #define N 5 struct freearea /*定义一个空闲区说明表结构,并初始化变量*/ { int startaddress;/*空闲区地址*/ int size;/*空闲区大小*/ int state;/*空闲区状态:0为空表目,1为可用空闲块*/ } freeblock[N]= {{20,20,1},{80,50,1},{150,100,1},{300,30,0},{600,100,1}}; /*定义为作业分配主存空间的函数alloc()*/ int alloc(int applyarea) /*applyarea为作业申请量*/ { int i,tag=0;/*tag为检查是否有满足作业若需要的空闲区的标志*/ for(i=0; iapplyarea) { startaddress=freeblock[i].startaddress+applyarea; freeblock[i]. freeblock[i].size=freeblock[i].size-applyarea;

相关文档
相关文档 最新文档