文档库 最新最全的文档下载
当前位置:文档库 › 铜催化点击化学反应综述

铜催化点击化学反应综述

铜催化点击化学反应综述
铜催化点击化学反应综述

1,3-Dipolar cycloaddition of azides with electron-de?cient

alkynes under mild condition in water

Zengmin Li,a,b Tae Seok Seo a,b and Jingyue Ju a,b,*

a

Columbia Genome Center,Columbia University College of Physicians and Surgeons,New York,NY 10032,USA

b

Department of Chemical Engineering,Columbia University,New York,NY 10027,USA

Received 29September 2003;revised 16February 2004;accepted 17February 2004

Abstract—We report a simple synthetic protocol for the 1,3-dipolar cycloaddition of azides with electron-de?cient alkynes.Alkyne with at least one neighboring electron-withdrawing group proceeds with the cycloaddition successfully without any catalysts at room temperature in water.Under this simple condition,we evaluated a series of small molecule model reactions and then coupled an azido-DNA molecule with electron-de?cient alkynes for the formation of [1,2,3]-triazole heterocycle,providing a potential method for introducing functional groups to DNA under biological conditions.ó2004Elsevier Ltd.All rights reserved.

Since the 1,3-dipolar cycloaddition of azides with alky-nes was investigated by Huisgen et al.1it has attracted much attention because of theoretical interest of the reaction 2and the synthetic importance of the aromatic and nonaromatic ?ve-membered [1,2,3]-triazole hetero-cycles.[1,2,3]-Triazole derivatives have been reported to exhibit antimicrobial activity,3as inhibitors of human leukocyte elastase,4as synthons for the preparation of antitumor dehydropyrrolizidine alkaloids,5and for the modi?cation of nucleosides as antiviral agents.6

The traditional method for producing the triazole by cycloaddition requires elevated temperature,typically in re?uxing conditions.It is known that alkynes with an electron-withdrawing functional group favor this irre-versible Huisgen cycloaddition of azides and alkynes (Scheme 1).7We previously explored this reaction for site-speci?c ?uorescent labeling of oligonucleotide for

DNA sequencing.8Recently,new synthetic methods based on catalysts have been reported for the formation of [1,2,3]-triazoles.Cucurbituril and acetylcholinesterase were employed to lower the activation barrier for the azide–alkyne cycloaddition by sequestering the two components inside a host structure.9;10The copper(I)-catalyzed reaction unites azides and terminal alkynes regiospeci?cally to give only one-speci?c regioisomer,the 1,4-disubstituted [1,2,3]-triazole.11This copper(I)-catalyzed system was subsequently applied for the attachment of synthetic oligosaccharides to microtiter plate for biological assayes.12The same reaction was also recently explored for protein and cell surface labeling.13So far,the 1,3-dipolar cycloaddition between the alkynes and azides was conducted either at high temperature thermodynamically or at room temperature catalytically.In the process of optimizing the 1,3-dipolar cycloaddition for DNA analysis and immobilization,we have found that if an electron-de?cient internal or terminal alkyne is used,the 1,3-dipolar cycloaddition reaction can be car-ried out successfully using a simple protocol without any catalysts at room temperature in water,which is fully compatible with DNA modi?cation inside a cell under biological conditions.However,under the same condi-tion,alkynes without a neighboring electron-withdraw-ing group do not produce any cycloaddition products.In the ?rst series of experiments,we evaluated the reaction between ethyl 5-azidovalerate and electron-de?cient alkynes (Table 1).

Keywords :1,3-Dipolar cycloaddition;Electron-de?cient alkynes;50-Azido DNA.

*Corresponding author.Tel.:+1-212-851-5172;fax:+1-212-851-5176;e-mail:

dj222@https://www.wendangku.net/doc/3f1607109.html,

Scheme 1.

0040-4039/$-see front matter ó2004Elsevier Ltd.All rights reserved.

doi:10.1016/j.tetlet.2004.02.089

Tetrahedron Letters 45(2004)3143–3146

Tetrahedron

Letters

Ethyl 5-azidovalerate was readily prepared from ethyl 5-bromovalerate by a nucleophilic substitution with NaN 3in DMSO.14The pure products of cycloaddition were obtained simply by stirring the two reagents in water at room temperature for 6–12h and then isolated by extraction followed by chromatography,or by directly ?ltering the precipitate followed by recrystallization from ethanol.15We determined the regiochemistry of the entry 3product by X-ray crystallography (Fig.1),indicating that only 1,4-regioisomer was produced selectively,which implies that the cycloaddition inter-mediate was mainly controlled by the steric hindrance e?ect.To compare the result of the entry 3product with that of the catalyst-mediated reaction,the same product was produced in the presence of CuCl (entry 4).When Cu(I)catalyst was used for cycloaddition with terminal alkynes,the reaction was completed in 1h with a yield of

90%,producing a single 1,4-regioisomer identical to the product in entry 3.Similarly,the entry 6product (85%)was produced with a higher yield in the presence of Cu(I)catalyst than that of the entry 5product (67%).However,the Cu(I)catalyzed reaction only works for the terminal alkynes.11

Encouraged by these results,we applied this synthetic protocol to the cycloaddition of an azido-DNA with electron-de?cient alkynes (Table 2).The azido-labeled DNA was prepared by reacting succinimidyl 5-azido-valerate with an amino-linker modi?ed oligonucleotide (50-amino-GTT TTC CCA GTC ACG ACG-30;M13à40universal forward sequencing primer,m =z 5631)with a 96%yield.The azido-labeled DNA was charac-terized by matrix-assisted laser desorption/ionization time-of-?ight mass spectrometry (MALDI–TOF MS),which showed a single major peak at m =z 5757Da (calcd value:m =z 5756Da).8In a typical reaction,the azido-DNA (4nmol)was reacted with 300-fold excess of alkynyl compounds in 60l L water at room temperature for 48h.After the reaction,excess alkynes were removed by size-exclusion chromatography and the resulting product was desalted with an oligonucleotide puri?ca-tion cartridge.The product was puri?ed by HPLC and analyzed with MALDI–TOF MS.16The major peaks in the mass spectra generated by entries 7and 8products matched exactly with the calculated values as shown in Figure 2.The product of entry 9was synthesized using the Cu(I)catalyst in 24h with a 60%

yield.

Figure 1.X-ray structure of the entry 3product (1-ethoxycarbonyl butyl-4-methoxycarbonyl-1,2,3-triazole):orthorhombic;a ?b ?c ,

5:6001 A ?6:9381 A ?33:880 A;a ;b ;c ?90°;90°;90°;R ?0:0762and R w ?0:1539.

Table 1.Reaction of ethyl 5-azidovalerate with electron-de?cient alkynes Entry a

Alkyne

Product

Yield (%)

181

294

382

4

b 90

567

6

b 85

a For all entries,the azido compound is ethyl

5-azidovalerate,rt,water solvent,t R :6–12h.

b

CuCl (0.1equiv),t R :1h.

3144Z.Li et al./Tetrahedron Letters 45(2004)3143–3146

In summary,we reported here a simple and mild pro-tocol for the1,3-dipolar cycloaddition between azides and alkynes.When the alkyne(either terminal or internal)has at least one neighboring electron-with-drawing functional group,the triazole formation can be achieved at room temperature in water without any catalysts.In the case of the terminal alkynes,the cycloaddition was proceeded much faster in the presence of Cu(I)catalyst.

Acknowledgements

This work is supported by the National Science Foun-dation(Sensing and Imaging Initiative Grant0097793),and a Center of Excellence in Genomic Science Grant (P50HG002806)from the National Institutes of Health.

References and notes

1.(a)Huisgen,R.;Szeimies,G.;Moebius,L.Chem.Ber.

1967,100,2494–2507;(b)Huisgen,R.1,3-Dipolar Cyclo-addition Chemistry;New York:Wiley,1984;(c)Huisgen, R.Pure Appl.Chem.1989,61,613–628.

2.Lwowski,W.In1,3-Dipolar Cycloaddition Chemistry;

Wiley:New York,1984;Vol.1.

3.Hartzel,L.W.;Benson,F.R.J.Am.Chem.Soc.1954,76,

667–670.

4.Hlasta,D.J.;Ackerman,https://www.wendangku.net/doc/3f1607109.html,.Chem.1994,59,

6184–6189.

5.Pearson,W.H.;Bergmeier,S.C.;Chytra,J.A.Synthesis

1990,156–159.

6.Noriis,P.;Horton,D.;Levine,B.R.Heterocycles1996,

43,2643–2656.

7.(a)Kolb,H.C.;Finn,M.G.;Sharpless,K.B.Angew

Chem.,Int.Ed.2001,40,2005–2021;(b)Palacios, F.;

Retana,A.M.;Pagalday,J.Heterocycles1994,38,95–102.

8.Seo,T.S.;Li,Z.;Ruparel,H.;Ju,https://www.wendangku.net/doc/3f1607109.html,.Chem.2003,

68,609–612.

9.(a)Mock,W.L.;Irra,T.A.;Wepsiec,J.P.;Manimaran,

https://www.wendangku.net/doc/3f1607109.html,.Chem.1983,48,3619–3620;(b)Mock,W.L.;

Irra,T.A.;Wepsiec,J.P.;Adhya,https://www.wendangku.net/doc/3f1607109.html,.Chem.1989, 54,5302–5308;(c)Krasia,T.C.;Steinke,J.H.G.Chem.

Commun.2002,22–23;(d)Tuncel,D.;Steinke,J.H.G.

https://www.wendangku.net/doc/3f1607109.html,mun.2002,496–497;(e)Tuncel,D.;Steinke,J.

https://www.wendangku.net/doc/3f1607109.html,mun.2001,253–254.

10.Lewis,W.G.;Green,L.G.;Grynszpan,F.;Radic,Z.;

Carlier,P.R.;Taylor,P.;Finn,M.G.;Sharpless,K.B.

Angew.Chem.,Int.Ed.2002,41,1053–1057.

11.(a)Rostovtsev,V.V.;Green,J.G.;Fokin,V.V.;

Sharpless,K.B.Angew.Chem.,Int.Ed.2002,41,2596–2599;(b)Torn?e, C.W.;Christensen, C.;Meldal,M.

https://www.wendangku.net/doc/3f1607109.html,.Chem.2002,67,3057–3064.

12.Fazio,F.;Bryan,M.C.;Blixt,O.;Paulson,J.C.;Wong,

C.J.Am.Chem.Soc.2002,124,14397–14402.

13.(a)Speers,A.E.;Adam,G.C.;Cravatt,B.F.J.Am.

Chem.Soc.2003,125,4686–4687;(b)Link,A.J.;Tirrell,

D.A.J.Am.Chem.Soc.2003,125,11164–11165.

Table2.Reaction of an azido-DNA with electron-de?cient alkynes

Entry a Alkyne Product Yield(%)

745

867

9

b60

a For all entries,the azido compound is50-azido-DNA,rt,48h,water

solvent.

b Methyl propiolate(300equiv),CuI(300equiv),N,N-diisopropylethylamine(300equiv),rt,24h,H

2

O/CH3CN(4/1volume

ratio).

Figure2.(A)MALDI–TOF MS spectra of the entry7product(m=z:

found,5926;calcd,5926)and(B)the entry8product(m=z:found,

5840;calcd,5840).

Z.Li et al./Tetrahedron Letters45(2004)3143–31463145

14.Khoukhi,N.;Vaultier,M.;Carrie,R.Tetrahedron1987,

43,1811–1822.

15.General procedure:In a pear shaped?ask(25mL)

equipped with a magnetic stirring bar,1.2mmol of the alkynyl compound was suspended in H2O(5mL),and then mixed with ethyl5-azidovalerate(0.19g,1.2mmol) vigorously at room temperature for6–12h.After the reaction,the organic layer(entries1,2,and5)was separated by extraction with CH2Cl2.The organic phase was washed with H2O,dried over Na2SO4,and concen-trated.The residue was puri?ed by silica gel?ash column chromatography using chloroform as an elute to obtain the pure oily products.In case of entries3and4,the product was precipitated as a white solid in water.The product was?ltered and recrystallized from EtOH.In case of entries4and6,the same procedure was followed as above except that0.1equiv of CuCl was added in the reaction mixture and the reaction time was1h.The product of entry6was puri?ed by silica gel?ash column chromatography to obtain an oily product.The isolated products were characterized by1H and13C NMR and HRMS.Spectral data of the entry1product:1H NMR (400MHz,CDCl3)d4.64(t,2H,J?9:5Hz),4.52–4.41 (m,4H), 4.19–4.11(q,2H,J?9:5Hz), 2.38(t,2H, J?9:7Hz),2.08–1.95(m,2H),1.76–1.65(m,2H),1.44(t, 6H,J?9:5Hz),1.28(t,3H,J?9:5Hz);13C NMR(75 MHz,CDCl3)d172.7,160.1,158.4,140.2,129.7,62.8,

61.7,60.3,49.9,33.2,29.4,21.5,14.1,13.8.HRMS

(FABt)calcd for C15H24O6N3,342.1665(MtHt);found, 342.1654.Spectral data of the entry2product:1H NMR (400MHz,CDCl3)d4.20(q,2H,J?7:1Hz),4.12(q,2H, J?7:1Hz), 3.28(t,2H,J?6:5Hz), 2.32(t,2H, J?7:0Hz),1.97(s,3H),1.72–1.60(m,4H),1.28(t,3H, J?7:1Hz),1.24(t,3H,J?7:1Hz);13C NMR(75MHz, CDCl3)d172.8,160.2,158.5,140.3,129.8,61.8,50.0,33.3,

33.2,29.5,21.8,14.0.HRMS(FABt)calcd for

C13H22O4N3,284.1610[MtHt];found,284.1610.Spectral data of the entries3and4product:1H NMR(400MHz,

CDCl3)d8.18(s,1H),4.53(t,2H,J?9:4Hz),4.21(q, 2H,J?9:5Hz),4.04(s,3H),2.45(t,2H,J?9:5Hz),

2.14–2.04(m,2H), 1.80–1.70(m,2H), 1.35(t,3H,

J?9:5Hz);13C NMR(75MHz,CDCl3)d172.7,161.1, 139.9,127.3,60.5,52.2,50.2,33.2,29.4,21.6,14.1;HRMS (FABt)calcd for C11H18O4N3,256.1297[MtHt];found, 256.1310.Spectral data of the entries5and6product:1H NMR(400MHz,CDCl3)d7.96–7.93(m,2H),7.68–7.65 (m,1H),7.58–7.54(m,1H),4.74(d,2H,J?2:4Hz),4.17–

4.10(q,2H,J?7:2Hz),3.30(t,2H,J?6:5Hz),2.48(t,

1H,J?2:4Hz),2.34(t,2H,J?6:5Hz),1.73–1.64(m, 4H,J?6:4Hz), 1.26(t,3H,J?6:4Hz);13C NMR (75MHz,CDCl3)d173.5,136.4,134.5,129.7,128.5,75.6,

60.7,58.0,51.4,34.0,28.6,22.5,14.5;HRMS(FABt)

calcd for C16H22O5N3S,368.1300[MtHt];found, 368.1280.The crystallographic data of the entry3product has been deposited at the Cambridge Crystallographic Data Center with the deposition number CCDC220803.

16.HPLC analysis:HPLC analysis was carried out on a

Waters system consisting of a Rheodyne7725I injector,a 600Controller,Xterra MS C18(4:6?50-mm)column, and996photodiode array detector.Elution was per-formed by using a linear gradient(8–28%)of methanol in

a bu?er that consists of8.6mM aqueous triethylamine

and100mM hexa?uoroisopropyl alcohol(pH8.1)at a?ow rate of0.5mL/min with the temperature set at 50°C.Under this condition,the elution time of the entry7product was49.6min and that of the entry8 product was28.2min.MALDI–TOF MS analysis: Mass measurement of oligonucleotides was performed using a Voyager e DE MALDI–TOF mass spectrometer.

DNA product(20pmol)was suspended in2l L of 3-hydroxypicolinic acid matrix solution.This mixture

(0.5l L)was spotted on a stainless steel sample plate,

air-dried,and analyzed.The measurement was taken using

a positive ion mode with25kV accelerating voltage,94%

grid voltage and a350ns delay time with internal calibration.

3146Z.Li et al./Tetrahedron Letters45(2004)3143–3146

常见的化学反应及现象

常见的化学反应及现象综合 1.澄清石灰水中通入二氧化碳气体(复分解反应) Ca(OH)2 + CO2 = CaCO3↓ + H2O 现象:石灰水由澄清变浑浊。 相关知识点:这个反应可用来检验二氧化碳气体的存在。 2.镁带在空气中燃烧(化合反应) 2Mg + O2 = 2MgO 现象:镁在空气中剧烈燃烧,放热,发出耀眼的白光,生成白色粉末。 相关知识点:(1)这个反应中,镁元素从游离态转变成化合态;(2)物质的颜色由银白色转变成白色。 (3)镁可做照明弹;(4)镁条的着火点高,火柴放热少,不能达到镁的着火点,不能用火柴点燃;(5)镁很活泼,为了保护镁,在镁表面涂上一层黑色保护膜,点燃前要用砂纸打磨干净。 3.水通电分解(分解反应) 2H2O = 2H2↑ + O2↑ 现象:通电后,电极上出现气泡,气体体积比约为1:2 相关知识点:(1)正极产生氧气,负极产生氢气;(2)氢气和氧气的体积比为2:1,质量比为1:8; (3)电解水时,在水中预先加入少量氢氧化钠溶液或稀硫酸,增强水的导电性;(4)电源为直流电 4.生石灰和水反应(化合反应) CaO + H2O = Ca(OH)2 现象:白色粉末溶解

相关知识点:(1)最终所获得的溶液名称为氢氧化钙溶液,俗称澄清石灰水;(2)在其中滴入无色酚酞,酚酞会变成红色;(3)生石灰是氧化钙,熟石灰是氢氧化钙。(4)发出大量的热 5.实验室制取氧气 ①加热氯酸钾和二氧化锰的混合物制氧气(分解反应) 2KClO3MnO2催化2KCl + 3O2↑ 相关知识点:(1)二氧化锰在其中作为催化剂,加快氯酸钾的分解速度或氧气的生成速度;(2)二氧化锰的质量和化学性质在化学反应前后没有改变;(3)反应完全后,试管中的残余固体是氯化钾和二氧化锰的混合物,进行分离的方法是:洗净、干燥、称量。 ②加热高锰酸钾制氧气(分解反应) 2KMnO4 = K2MnO4 + MnO2 + O2↑ 相关知识点:在试管口要堵上棉花,避免高锰酸钾粉末滑落堵塞导管。 ③过氧化氢和二氧化锰制氧气(分解反应) 2H2O2 MnO2催化2H2O + O2↑ 共同知识点:(1)向上排空气法收集时导管要伸到集气瓶下方,收集好后要正放在桌面上;(2)实验结束要先撤导管,后撤酒精灯,避免水槽中水倒流炸裂试管;(3)加热时试管要略向下倾斜,避免冷凝水回流炸裂试管;(4)用排水集气法收集氧气要等到气泡连续均匀地冒出再收集;(5)用带火星的小木条放在瓶口验满,伸入瓶中检验是否是氧气。 6.木炭在空气中燃烧(化合反应) 充分燃烧:C + O2 = CO2 不充分燃烧:2C + O2 = 2CO 现象:在空气中发出红光;在氧气中发出白光,放热,生成一种使澄清石灰水变浑浊的无色气体。 相关知识点:反应后的产物可用澄清的石灰水来进行检验。

化学反应工程第二版课后答案

第一章习题 1 化学反应式与化学计量方程有何异同?化学反应式中计量系数与化学计量方程中的计量系数有何关系? 答:化学反应式中计量系数恒为正值,化学计量方程中反应物的计量系数与化学反应式中数值相同,符号相反,对于产物二者相同。 2 何谓基元反应?基元反应的动力学方程中活化能与反应级数的含义是什么? 何谓非基元反应?非基元反应的动力学方程中活化能与反应级数含义是什么? 答:如果反应物严格按照化学反应式一步直接转化生成产物,该反应是基元反应。基元反应符合质量作用定律。基元反应的活化能指1摩尔活化分子的平均能量比普通分子的平均能量的高出值。基元反应的反应级数是该反应的反应分子数。一切不符合质量作用定律的反应都是非基元反应。非基元反应的活化能没有明确的物理意义,仅决定了反应速率对温度的敏感程度。非基元反应的反应级数是经验数值,决定了反应速率对反应物浓度的敏感程度。 3 若将反应速率写成t c r d d A A - =-,有什么条件? 答:化学反应的进行不引起物系体积的变化,即恒容。 4 为什么均相液相反应过程的动力学方程实验测定采用间歇反应器? 答:在间歇反应器中可以直接得到反应时间和反应程度的关系,而这种关系仅是动力学方程的直接积分,与反应器大小和投料量无关。 5 现有如下基元反应过程,请写出各组分生成速率与浓度之间关系。 (1)A+2B →C (2)A+2B →C (3)2A+2B →C A+C →D B+C →D A+C →D C+D →E 解

(1) D 4C A 3D D 4C A 3C 22 B A 1C C 22B A 1B D 4C A 3C 22 B A 1A 22c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= (2) E 6D C 5D 4C B 3D E 6D C 5D 4C B 3C 22 B A 1C D 4C B 3C 22B A 1B C 22 B A 1A 22c k c c k c k c c k r c k c c k c k c c k c k c c k r c k c c k c k c c k r c k c c k r +--=+-+--=+-+-=+-= (3) D 4C A 3D D 4C A 3C 22 B 2A 1C C 22B 2A 1B D 4C A 3C 22 B 2A 1A 2222c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= 6 气相基元反应A+2B →2P 在30℃和常压下的反应速率常数k c =2.65× 104m 6kmol -2s -1。现以气相分压来表示速率方程,即(?r A )=k P p A p B 2 ,求k P =?(假定气体为理想气体) 解 ()3 -1-363111 2643c P 2 B A p A 2 B A c 2 B A c A 1264c kPa s m kmol 10655.1K 303K kmol kJ 314.8s kmol m 1065.2)(s kmol m 1065.2K 30330273--------??=???= ==-? ? ? ??==-= ?==+=RT k k p p k r RT p RT p k c c k r RT p c k T

初中化学方程式大全

初中化学反应方程式汇总 一、氧气的性质: (1)单质与氧气的反应:(化合反应) 1. 镁在空气中燃烧:2Mg + O2点燃 2MgO 2. 铁在氧气中燃烧:3Fe + 2O点燃 Fe3O4 3. 铜在空气中受热:2Cu + O2加热 2CuO 4. 铝在空气中燃烧:4Al + 3O2点燃 2Al2O3 5. 氢气中空气中燃烧:2H2 + O2点燃 2H2O 6. 红磷在空气中燃烧(研究空气组成的实验):4P + 5O2点燃 2P2O5 7. 硫粉在空气中燃烧: S + O2点燃 SO2 8. 碳在氧气中充分燃烧:C + O2点燃 CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃 2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2点燃 2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2点燃 CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2点燃 2CO2 + 3H2O (3)氧气的来源: 13.玻义耳研究空气的成分实验 2HgO 加热 Hg+ O2↑ 14.加热高锰酸钾:2KMnO4加热 K2MnO4 + MnO2 + O2↑(实验室制氧气原理1) 15.过氧化氢在二氧化锰作催化剂条件下分解反应: H2O2MnO22H2O+ O2↑(实验室制氧气原理2) 二、自然界中的水: 16.水在直流电的作用下分解(研究水的组成实验):2H2O 通电 2H2↑+ O2 ↑

17.生石灰溶于水:CaO + H2O == Ca(OH)2 18.二氧化碳可溶于水: H2O + CO2==H2CO3 三、质量守恒定律: 19.镁在空气中燃烧:2Mg + O2点燃 2MgO 20.铁和硫酸铜溶液反应:Fe + CuSO4 == FeSO4 + Cu 21.氢气还原氧化铜:H2 + CuO 加热 Cu + H2O 22. 镁还原氧化铜:Mg + CuO 加热 Cu + MgO 四、碳和碳的氧化物: (1)碳的化学性质 23. 碳在氧气中充分燃烧:C + O2点燃 CO2 24.木炭还原氧化铜:C+ 2CuO 高温 2Cu + CO2↑ 25.焦炭还原氧化铁:3C+ 2Fe2O3高温 4Fe + 3CO2↑ (2)煤炉中发生的三个反应:(几个化合反应) 26.煤炉的底层:C + O2点燃 CO2 27.煤炉的中层:CO2 + C 高温 2CO 28.煤炉的上部蓝色火焰的产生:2CO + O2点燃 2CO2 (3)二氧化碳的制法与性质: 29.大理石与稀盐酸反应(实验室制二氧化碳): CaCO3 + 2HCl == CaCl2 + H2O + CO2↑ 30.碳酸不稳定而分解:H2CO3 == H2O + CO2↑ 31.二氧化碳可溶于水: H2O + CO2== H2CO3 32.高温煅烧石灰石(工业制二氧化碳):CaCO3高温 CaO + CO2↑ 33.石灰水与二氧化碳反应(鉴别二氧化碳): Ca(OH)2 + CO2 == CaCO3 ↓+ H2O (4)一氧化碳的性质:

中考化学试题分类汇编考点38催化剂练习题

考点38 催化剂 一、选择题 1.(2017·十堰)下列说法正确的是() A.催化剂可改变化学反应速率B.焊锡、黄铜、铁是常见的合金 C.不同元素的中子数不同 D.所有原子都有质子、中子和电子构成 【答案】A 【解析】催化剂在化学反应中质量和化学性质不变,但可改变化学反应速率;焊锡、黄铜、是常见的合金是混合物,而铁是纯净物;不同元素的中子数也可能相同,如钠和镁的中子数均为12;氢原子只有有质子和电子构成,没有中子。 2.(2017·来宾)乙醇在一定条件下可氧化为乙醛:2CH3CH2OH+022CH3CHO(乙醛)+2H2O。实际是发生了如下两个反应: 反应一:2Cu+O2△ 反应二:CH3CH2OH+CuO △ CH3CHO+H2O+Cu。下列说法错误 的是 A. Cu在反应一中是反应物 B. Cu在反应前后化学性质改变 C. Cu在反应二中是生成物 D. Cu在反应中起到催化作用 【答案】D 【解析】催化剂在化学在化学反应前后质量和化学性质均不变;从乙醇和氧气在一定条件反应的总方程式上看,铜既不是反应物、也不是生成物,A、C错误;从两个分步反应看,铜开始参加了反应,最后又还原成单质铜,所以,铜单质的化学性质不变,B错误;综合总反应方程式和分步反应的方程式可得出,铜在该反应中起催化作用,D正确; 3.(2017天津市,题号6,分值2)下列有关催化剂的说法正确的是() A.在化学反应后其质量减少 B.催化剂能改变化学反应速率 C.在化学反应后其质量增加 D.在化学反应后其化学性质发生了变化 【答案】B 【解析】此题考查的是催化剂的知识点,催化剂改变化学反应的速率,在反应前后化学性质和质量都不发生变化。 A.催化剂在化学反应前后其质量保持不变,错误; B.催化剂能改变化学反应速率,不但加快还能减慢反应速率,正确; C.催化剂在化学反应后其质量保持不变,错误; D.催化剂在化学反应后其化学性质不变,错误,B正确。 二、实验题 1.(2017浙江省台州市,题号25,分值6)为探究催化剂对双氧水(H2O2)分解的催化效果,某研究小组作了如下实验。 实验一:图中的实验能否证明MnO2是双氧水分解反应的催化剂?并说明理由_________。实验二:从表格的设计可以看出,该实验的目的是__________________________________。【答案】(1)能证明,在过氧化氢溶液中加入二氧化锰后加快了反应的速率(3分)(2)探究催化剂的质量与化学反应速率的关系(3分) 【解析】(1)在试管中加入一定量的MnO2加快了反应的速率,所以能证明是双氧水的催化

光催化材料研究进展概要

光催化材料研究进展 20 世纪以来, 人们在享受迅速发展的科技所带来的舒适和方便的同时, 也品尝着盲目和短视造成的生存环境不断恶化的苦果, 环境污染日趋严重。为了适应可持续发展的需要, 污染的控制和治理已成为一个亟待解决的问题。在各种环境污染中, 最普遍、最重要和影响最大的是化学污染。因而, 有效的控制和治理各种化学污染物是环境综合治理的重点, 开发化学污染物无害化的实用技术是环境保护的关键。目前使用的具有代表性的化学污染物处理方法主要有: 物理吸附法、化学氧化法、微生物处理法和高温焚烧法。这些方法对环境的保护和治理起重大作用, 但是这些技术不同程度的存在着或效率低, 不能彻底将污染物无害化, 产生二次污染, 或使用范围窄, 仅适合特定的污染物而不适合大规模推广应用等方面的缺陷[1]。光催化氧化技术是一门新兴的有广阔应用前景的技术, 特别适用于生化、物化等传统方法无法处理的难降解物质的处理。其中TiO2、ZnO、CdS、WO 3、Fe 2 O 3等半导体光催化技术因其可以直接利用光能而被许多研究者看好[2]。 1.1 TiO 2光催化概述 1.1.1 TiO 2的结构性质 二氧化钛是一种多晶型化合物,常见的n型半导体。由于构成原子排列方式不同,TIO2在自然界主要有三种结晶形态分布:锐钛矿型、

金红石型和板钛矿型。三种晶体结构的TIO2中,锐钛矿和金红石的工业用途较广。和锐钛矿相比,金红石的原子排列要致密得多,其相对密度、折射率以及介电常数也较大,具有很高的分散光射线的能力,同时具有很强的遮盖力和着色力,可用作重要的白色涂料。锐钛矿在可见光短波部分的反射率比金红石型高,普遍拥有良好的光催化活性,在光催化处理环境污染物方面有着极为广阔的应用前景[3]。 1.1.2TiO2光催化反应机理 半导休表面多相光催化的基本原理:用能量高于禁带宽度(Eg)的光照射半导体表面时,价带上的电子被激发,跃迁到异带上,同时在价带产生相应的空穴,这样就半导体内部生成电子(e-)—空穴(h+)随后,.电子-空穴对迁移到粒子表面不同位置、与吸附半导体表面的反应物发生相应的氧化或还原反应,同时激发态的二氧化钛重新回归到基态。与电荷分离相逆的是电子-空穴对的复合过程,这是半导体光催化剂失活的主要原因。电子-空穴对的复合将在半导体体内或表面发生,并释放热量。 1.1.3 TiO2催化剂的局限及改性途径 作为光催化剂,虽然二氧化钛具有其他催化剂难以比拟的无毒、价廉以及稳定等优点。但是目前二氧化钛光催化还存在着一些不足和局限,致使其不能再现实中得到大规模应用。究其原因,主要在于二氧化钛催化剂对太阳光的利用率不高并且其量子产率太低。锐钛矿相和金红石相二氧化铁的带隙分别为3.2eV和3.0 eV,对应的吸收阈值分别为420nm和380nm。它们所吸收的光的波长主要集中在紫外区,

高中化学方程式和反应现象归纳

高中化学方程式和反应现象归纳大全 1.2Mg+O 2 2MgO 剧烈燃烧.耀眼白光.生成白色固体.放热.产生大量白烟白色信号弹 2.2Hg+O 2 2HgO 银白液体、生成红色固体拉瓦锡实验 3.4Al+3O 2l 2 O 3 银白金属变为白色固体 4.3Fe+2O 2Fe 3 O 4 剧烈燃烧、火星四射、生成黑色固体、放出大量热 5.C+O 2CO 2 剧烈燃烧、白光、放热、使石灰水变浑浊 6.S+O 2SO 2 剧烈燃烧、放热、刺激味气体、空气中淡蓝色火焰.氧气中蓝紫色火焰 7.2H 2+O 2 2H 2 O 淡蓝火焰、放热、生成使无水CuSO 4 变蓝的液体(水)高能燃料 8.4P+5O 22P 2 O 5 剧烈燃烧、大量白烟、放热、生成白色固体证明空气中氧气含量 9.CH 4+2O 2 2H 2 O+CO 2 蓝色火焰、放热、生成使石灰水变浑浊气体和使无水CuSO 4 变蓝的液体(水)甲烷和天然气的燃烧 10.2KClO 3MnO 2 2KCl+3O 2 ↑生成使带火星的木条复燃的气体实验室制备氧气 11.2KMnO 4K 2 MnO 4 +MnO 2 +O 2 ↑ 紫色变为黑色、生成使带火星木条复燃的气体实验室制备氧气 12.2HgO2Hg+O 2 ↑ 红色变为银白、生成使带火星木条复燃的气体拉瓦锡实验 13.2H 2O2H 2 ↑+O 2 ↑ 水通电分解为氢气和氧气电解水 14.Cu 2(OH)2CO 3 2CuO+H 2 O+CO 2 ↑ 绿色变黑色、试管壁有液体、使石灰水变浑浊气体铜绿加热 15.NH 4HCO 3 NH 3 ↑+H 2 O+CO 2 ↑ 白色固体消失、管壁有液体、使石灰水变浑浊气体碳酸氢铵长期暴露空气中会消失

常见的化学反应及现象

常见的化学反应及现象综合 1、澄清石灰水中通入二氧化碳气体(复分解反应) Ca(OH)2 + CO2 = CaCO3↓ + H2O 现象:石灰水由澄清变浑浊。 相关知识点:这个反应可用来检验二氧化碳气体的存在。 2、镁带在空气中燃烧(化合反应) 2Mg + O2 = 2MgO 现象:镁在空气中剧烈燃烧,放热,发出耀眼的白光,生成白色粉末。 相关知识点:(1)这个反应中,镁元素从游离态转变成化合态;(2)物质的颜色由银白色转变成白色。(3)镁可做照明弹;(4)镁条的着火点高,火柴放热少,不能达到镁的着火点,不能用火柴点燃 ;(5)镁很活泼,为了保护镁,在镁表面涂上一层黑色保护膜,点燃前要用砂纸打磨干净。 3、水通电分解(分解反应) 2H2O = 2H2↑ + O2↑ 现象:通电后,电极上出现气泡,气体体积比约为1:2 相关知识点:(1)正极产生氧气,负极产生氢气;(2)氢气与氧气的体积比为2:1,质量比为1:8;(3)电解水时,在水中预先加入少量氢氧化钠溶液或稀硫酸,增强水的导电性;(4)电源为直流电 4、生石灰与水反应(化合反应) CaO + H2O = Ca(OH)2 现象:白色粉末溶解 相关知识点:(1)最终所获得的溶液名称为氢氧化钙溶液,俗称澄清石灰水;(2)在其中滴入无色酚酞,酚酞会变成红色;(3)生石灰就是氧化钙,熟石灰就是氢氧化钙。(4)发出大量的热 5、实验室制取氧气 ①加热氯酸钾与二氧化锰的混合物制氧气(分解反应) 2KClO3MnO2催化2KCl + 3O2↑ 相关知识点:(1)二氧化锰在其中作为催化剂,加快氯酸钾的分解速度或氧气的生成速度;(2)二氧化锰的质量与化学性质在化学反应前后没有改变;(3)反应完全后,试管中的残余固体就是氯化钾与二氧化锰的混合物,进行分离的方法就是:洗净、干燥、称量。

化学方程式及化学反应现象

一.两个置换反应规律 1.酸+金属==盐+氢气 反应条件:①酸不能用强氧化性酸,如硝酸、浓硫酸,(常用稀硫酸、盐酸) ②金属必须位于氢以前(常用Mg、Al、Zn、Fe) Mg+ 2HCl==MgCl2+H2↑Mg+ H2SO4==MgSO4+H2↑ 2Al+6 HCl== 2AlCl3+3H2↑2Al+3 H2SO4== 2Al2(SO4)3+3H2↑ Zn+ 2HCl==ZnCl2+ H2↑Zn+ 2H2SO4==ZnSO4+ H2↑ Fe+ 2HCl==FeCl2+H2↑Fe+H2SO4===FeSO4+H2↑ 2.盐+金属==新盐+新金属 反应条件:①盐(反应物)必须溶于水 ②金属单质(反应物)比盐中金属活泼,不用钾、钙、钠 Fe+CuSO4==FeSO4+Cu 2Al+3CuSO4==Al2(SO4)3+3Cu Zn+CuSO4==ZnSO4+Cu Cu+2AgNO3==Cu(NO3)2+2Ag Cu+Hg(NO3)2==Cu(NO3)2+Hg 二.三个分解反应规律 1.酸(含氧酸)==非金属氧化物+水 H2CO3 === H2O+CO2↑ 2.碱(难溶性)== 金属氧化物+水 Cu(OH)2CuO+H2O 2Fe(OH)3Fe2O3+3H2O 3.碳酸盐(难溶性)==金属氧化物+二氧化碳 CaCO3CaO+ CO2↑ 三.四个化合反应规律 1.金属+氧气== 金属氧化物 2 Mg+O22MgO 3Fe+2 O2Fe3O4 2Cu+ O22CuO 2.金属氧化物+水== 碱(可溶性) CaO+H2O==Ca(OH)2 Na2O+H2O==2NaOH 3.非金属+氧气==非金属氧化物 S+O2SO24P+5O22P2O5C+O2CO2 (碳充分燃烧) 2 C+O22CO (碳不充分燃烧) 2H2+O22H2O 4.非金属氧化物+水==酸 CO2+H2O==H2CO3 SO3+O2==H2SO4 SO2+O2== H2SO3 四.五个复分解反应规律(亚硫酸)1.酸+碱==盐+水 Cu(OH)2+2HCl==CuCl2+H2O Al(OH)3+3HCl==AlCl3+3H2O Cu(OH)2+H2SO4==CuSO4+2H2O Mg(OH)2+2HNO3==Mg(NO3)2+2H2O 2.酸+盐==新酸+新盐 反应条件:符合复分解反应发生的条件(实际反应条件很复杂) CaCO3+2HCl==CaCl2+H2O+CO2↑Na2CO3+2HCl==2NaCl+H2O+CO2↑ AgNO3+HCl==AgCl↓+HNO3 Na2CO3+H2SO4==Na2SO4+H2O+CO2↑H2SO4+BaCl2==2HCl+BaSO4↓ H2SO4+Ba(NO3)2==2HNO3+BaSO4 ↓ 3.盐+碱==新盐+新碱 反应条件:反应物都溶于水,生成物至少有一种不溶(前溶后沉) CuSO4+2NaOH==Cu(OH)2↓+Na2SO4 FeCl3+3NaOH==Fe(OH)3↓+3NaCl Na2CO3+Ca(OH)2==2NaOH+CaCO3↓CuSO4+Ba(OH)2==Cu(OH)2↓+BaSO4 ↓4.盐+盐==新盐+新盐 反应条件:反应物都溶于水,生成物至少有一种不溶(前溶后沉) NaCl+AgNO3==NaNO3+AgCl↓Na2SO4+BaCl2==2NaCl+BaSO4 ↓ Na2SO4+Ba(NO3)2==2NaNO3+BaSO4 ↓

常见反应的现象

常见反应的现象 CO 2 SO 2 2P 2 2H 2 Fe 2 2Al 2 2 2CuO 2 2 2 2HgO

CO 2 2H 2H 2 3 +CuO C+2CuO

CO+CuO 描述实验现象时要注意不能说出生成物的名称,但可以根据生成物的化学性质来描述生成物。

常见物质的颜色、气味 固体 ●红色:红磷P、铜Cu、氧化铁Fe2O3、氧化汞HgO ●红褐色:氢氧化铁Fe(OH)3 ●黄色:金Au、硫S ●绿色:碱式碳酸铜Cu2(OH)2CO3 ●紫黑色:高锰酸钾晶体KMnO4 ●淡蓝色:固态氧O2 ●蓝色:氢氧化铜Cu(OH)2、硫酸铜晶体CuSO4·5H2O ●银白色:大多数金属(铁Fe、银Ag、铝Al、锌Zn、镁Mg……) ●黑色:木炭C、铁粉Fe、氧化铜CuO、二氧化锰MnO2、四氧化三铁Fe3O4、氧化亚铁FeO等●深灰色:石墨C ●灰白色:大多数磷肥 ●无色:金刚石C、干冰CO2、冰H2O ●白色:除了上述固体之外,我们学过的其他固体、固体粉末或晶体基本上都是白色的。 ●有刺激性气味的固体:碳酸氢铵NH4HCO3 液体 ●淡蓝色:液态氧O2 ●蓝色:含有Cu2+的溶液 ●浅绿色:含有Fe2+的溶液 ●黄色:含有Fe3+的溶液 ●银白色:汞Hg ●我们学过的大多数液体都是无色的。 ●有特殊气味的液体:乙醇C2H5OH ●有刺激性气味的液体:醋酸CH3COOH 气体 ●红棕色气体:二氧化氮NO2 ●有毒的气体:一氧化碳CO、氯化氢HCl、氨气NH3、二氧化硫SO2、二氧化氮NO2等 ●有刺激性气味的气体:氯化氢HCl、氨气NH3、二氧化硫SO2、二氧化氮NO2等 ●我们学过的大多数气体都是无色无味的。 ●计入空气污染指数的项目:二氧化硫SO2、一氧化碳CO、二氧化氮NO2、可吸入颗粒物和臭氧 O3等 ●能产生温室效应的气体:二氧化碳O2、臭氧O3、甲烷CH4、氟氯代烷等

光催化研究发展综述性报告

光催化研究发展综述性报告 本人申请攻读动力工程与工程热物理专业博士学位,由于对后续能源与新能源技术专业太阳能分解水制氢方向有浓厚的兴趣,通过对相关文献的阅读和参加相关报告,对太阳能光催化分解水制氢有了详细的了解,对其发展简述如下: 1.前言 当今人类社会面临能源和环境两大问题[1-2]。能源的短缺和环境的污染严重制约着人类社会的发展。一方面,社会的高速发展使得人类对于能源的需求越来越大,而我们目前所用的能源还是以传统的化石燃料为主,但是因为化石燃料的不可再生性,或者说是形成的时间周期太长,使得其必有枯竭的一天。据估计,按照目前的开采水平和消耗量,石油还能够维持四十年左右,煤炭最多也就是两百年,而天然气还可以维持大概六十多年。另一方面,化石燃料的燃烧,引起严重的环境污染和对环境的危害,如温室效应、酸雨、光化学烟雾等等,对人类的生存产生了严重的威胁。 研究自然的、社会的、生态的、经济的以及利用自然资源过程中的基本关系,以确保全球的可持续发展已经成为各国都十分关注的一个话题。就像美国,在2009年提出的7870亿美元的巨额经济刺激计划中,把发展新能源定位于抢占未来发展制高点的重要战略产业,并提出在未来的三年的时间里,国内可再生能源产量要增加一倍。而我国人口众多,常规能源储备远低于世界平均水平,而且近几十年来,环境污染也是日益严峻。这使得寻找一种清洁可持续的替代能源变得更加迫切。而我国幅员辽阔,拥有极为丰富的太阳能资源,开发潜力巨大,从长远发展来看完全可以满足国家可持续发展的需求。但太阳能能量密度低、分散性强、不稳定、不连续的缺点使得我们至今仍缺乏对其高效低成本大规模利用的有效手段。但是考虑到占地表约3/4的水域和植物的光合作用,我们是不是可以利用太阳能分解水,制取氢气,而氢气又是是一种无色无臭无味无毒的清洁燃料,

化学方程式知识点总结和题型总结经典

化学方程式知识点总结和题型总结经典 一、化学方程式选择题 1.在一密闭容器内有甲、乙、丙、丁四种物质,在一定条件下充分反应,测得反应前后各物质质量如下表,对该反应,下列描述正确的是(): 物质甲乙丙丁 反应前物质质量/g25m188 反应后物质质量/g9待测384 A.“待测”数值一定为2g B.该反应中甲和丁为反应物 C.乙一定是该反应的催化剂D.反应中甲和丙的质量比为9:38 【答案】B 【解析】 【详解】 由表中数据分析可知,反应前后甲的质量减少了25g-9g=16g,故是反应物,参加反应的质量为16g;同理可以确定丙是生成物,生成的质量38g-18g=20g;丁是反应物,参加反应的质量为8g-4g=4g;由质量守恒定律,乙的质量应不变,可能作该反应的催化剂,也可能没有参加反应。 A、乙的质量应不变,可能作该反应的催化剂,也可能没有参加反应,“待测”数值一定为mg,无法确定具体的数值,故选项说法错误。 B、该反应中甲和丁为反应物,故选项说法正确。 C、乙的质量不变,可能作该反应的催化剂,也可能没有参加反应,故选项说法错误。 D、反应中甲和丙的质量比为16g:20g=4:5,故选项说法错误。 故选:B。 2.某化学反应的微观示意图如图下所示,由该图示不能得出的的结论是() A.该反应属于置换反应B.氟气比氧气更活泼 C.反应前后分子数目没有改变D.丙不是氧化物 【答案】C 【解析】 根据反应条件和图中信息知,A、反应物是一种单质和一种化合物,生成物是另一种单质和另一种化合物,该反应属于置换反应;B、活泼的置换不活泼的,氟气能把氧气置换出来,说明氟气比氧气更活泼;C、根据质量守恒定律,反应前4个分子,反应后5个分子,

半导体光催化综述

硫及金属硫化物-类石墨相氮化碳纳米复合材料的制备,表征及其光催化性能的研究

第一章绪论 自18世纪60年代的第一次工业革命到现在以来,科学技术迅猛发展、日新月异。工业革命(第一次科技革命)以瓦特的蒸汽机的发明为标志,宣告了人类社会由原来的火器时代,进入到了蒸汽时代。第二次科技革命发生在19世纪70年代,在这个时期,自然科学取得了飞速的进展,由于资本主义制度的逐渐形成和完善,资本主义国家为了生存和发展,开始了大量的对世界资源进行掠夺。两次工业革命对然建立了世界的初步两极格局,但是两次科技革命的功劳还是不容忽视的,它们推动了传统的农业,手工业向现代化工业以及机器化工业的飞速发展,并且带给了人类社会巨大的物质财富,在资本主义国家逐利的对外扩张过程中,不可否认的是它们的争斗促进了人类文明的进步和繁荣。但是,当资本家们在大力发展社会生产力,提高生活水平的同时,对环境也造成了严重的破坏,至今,已严重威胁着我们所处在的的生存环境。 特别是在进入20世纪50年代之后的第三次科技革命;随着工业现代化进程的加快,人类向所生存的环境排放了大量的生产废水、废气,它们其中含有大量的有毒污染物如医用药品、农药、工业染料、表面活性剂和含有重金属离子的溶液等,含有上述物质的这些废水给人类的健康和生存环境带来巨大的威胁。而且在上述这些污染物中,用传统的处理方法很难将其完全消灭和降解。废水中的很多有机化合物能使水中的厌氧微生物发生异变,从而产生明显的毒害作用;所以必须创造出一些其它的非生物的降解技术来除去这些有机化合物[1-3]。因此,开发一种简便、有效、快捷、无害的方法来治理水体污染和大气污染是当前社会一个亟待解决的问题。并且,社会现代化的发展需要消耗大量的能源,据专家分析,传统的化石能源已经不能继续维持人类社会的长期发展,而且传统的化石能源的使用是当前引发严重环境问题的万恶之源。所以,环境问题和能源问题是21世纪可持续发展战略的两大亟待解决的严重问题。

化学反应工程第二版课后答案

第一章习题 1 化学反应式与化学计量方程有何异同?化学反应式中计量系数与化学计量方程中的计量系数有何关系? 答:化学反应式中计量系数恒为正值,化学计量方程中反应物的计量系数与化学反应式中数值相同,符号相反,对于产物二者相同。 2 何谓基元反应?基元反应的动力学方程中活化能与反应级数的含义是什么? 何谓非基元反应?非基元反应的动力学方程中活化能与反应级数含义是什么? 答:如果反应物严格按照化学反应式一步直接转化生成产物,该反应是基元反应。基元反应符合质量作用定律。基元反应的活化能指1摩尔活化分子的平均能量比普通分子的平均能量的高出值。基元反应的反应级数是该反应的反应分子数。一切不符合质量作用定律的反应都是非基元反应。非基元反应的活化能没有明确的物理意义,仅决定了反应速率对温度的敏感程度。非基元反应的反应级数是经验数值,决定了反应速率对反应物浓度的敏感程度。 3 若将反应速率写成t c r d d A A - =-,有什么条件? 答:化学反应的进行不引起物系体积的变化,即恒容。 4 为什么均相液相反应过程的动力学方程实验测定采用间歇反应器? 答:在间歇反应器中可以直接得到反应时间和反应程度的关系,而这种关系仅是动力学方程的直接积分,与反应器大小和投料量无关。 5 现有如下基元反应过程,请写出各组分生成速率与浓度之间关系。 (1)A+2B →C (2)A+2B →C (3)2A+2B →C A+C →D B+C →D A+C →D C+D →E 解

(1) D 4C A 3D D 4C A 3C 22 B A 1C C 22B A 1B D 4C A 3C 22 B A 1A 22c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= (2) E 6D C 5D 4C B 3D E 6D C 5D 4C B 3C 22 B A 1C D 4C B 3C 22B A 1B C 22 B A 1A 22c k c c k c k c c k r c k c c k c k c c k c k c c k r c k c c k c k c c k r c k c c k r +--=+-+--=+-+-=+-= (3) D 4C A 3D D 4C A 3C 22 B 2A 1C C 22B 2A 1B D 4C A 3C 22 B 2A 1A 2222c k c c k r c k c c k c k c c k r c k c c k r c k c c k c k c c k r -=+--=+-=+-+-= 6 气相基元反应A+2B →2P 在30℃和常压下的反应速率常数k c =2.65× 104m 6kmol -2s -1。现以气相分压来表示速率方程,即(?r A )=k P p A p B 2 ,求k P =?(假定气体为理想气体) 解 () 3 -1-363 111 2643c P 2 B A p A 2 B A c 2 B A c A 1264c kPa s m kmol 10655.1K 303K kmol kJ 314.8s kmol m 1065.2)(s kmol m 1065.2K 30330273--------??=???= ==-? ? ? ??==-= ?==+=RT k k p p k r RT p RT p k c c k r RT p c k T

化学催化剂

化学催化剂 在化学反应里能改变其他物质的化学反应速率(既能提高也能降低),而本身的质量和化学性质在化学反应前后都没有发生改变的物质叫催化剂。而通常把催化剂加速化学反应,使反应尽快达到化学平衡的作用叫做催化作用。催化剂自身的组成、化学性质和质量在反应前后不发生变化;它和反应体系的关系就像锁与钥匙的关系一样,具有高度的选择性(或专一性)。一种催化剂并非对所有的化学反应都有催化作用,某些化学反应并非只有唯一的催化剂,而且一个化学反应并不只有一种催化剂 催化剂有的是单一化合物,有的是络合化合物,有的是混合物。催化剂有选择性,不同的反应所用的催化剂有所不同。同一反应也有不同效果的催化剂,例如同是苯酚与甲醛反应合成酚醛树脂,使用氢氧化钠、氢氧化钡、盐酸、氨水、草酸、醋酸、甲酸、硫酸、磷酸、氧化镁、氧化锌等催化剂,其产品性能都有所不同。 催化剂种类繁多,按状态可分为液体催化剂和固体催化剂;按反应体系的相态分为均相催化剂和多相催化剂,均相催化剂有酸、碱、可溶性过渡金属化合物和过氧化物催化剂。多相催化剂有固体酸催化剂、有机碱催化剂、金属催化剂、金属氧化物催化剂、络合物催化剂、稀土催化剂、分子筛催化剂、生物催化剂、纳米催化剂等;按照反应类型又分为聚合、缩聚、酯化、缩醛化、加氢、脱氢、氧化、还原、烷基化、异构化等催化剂;按照作用大小还分为主催化剂和助催化剂。 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。 多相催化剂又称非均相催化剂呈现在不同相的反应中,即和它们催化的反应物处于不同的状态。一个简易的非均相催化反应包含了反应物吸附在催化剂的表面,反应物内的键因十分的脆弱而导致新的键产生,但又因产物与催化剂间的键并不牢固,而使产物出现。目前已知许多表反应发生吸附反应的不同可能性的结构位臵。 酶是生物催化剂,是植物、动物和微生物产生的具有催化能力的有机物(绝大多数的蛋白质。但少量RNA也具有生物催化功能),旧称酵素。生物体的化学反应几乎都在酶的催化作用下进行。酶的催化作用同样具有选择性。例如,淀粉。酶催化淀粉水解为糊精和麦芽糖,蛋白酶催化蛋白质水解成肽等。活的生物体利用它们来加速体内的化学反应。如果没有酶,生物体内的许多化学反应就会进行得很慢,难以维持生命。大约在37℃的温度中(人体的温度),酶的工作状态是最佳的。如果温度高于50℃或60℃,酶就会被破坏掉而不能再发生作用。因此,利用酶来分解衣物上的污渍的生物洗涤剂,在低温下使用最有效。酶在生理学、医学、农业、工业等方面,都有重大意义。目前,酶制剂的应用日益广泛。(例如:酶制剂在工业上可作催化剂使用,某些酶还是珍贵的药物。) 人们利用催化剂,可以改变化学反应的速率,这被称为催化反应。大多数催化剂都只能加速某一种化学反应,或者某一类化学反应,而不能被用来加速所有的化学反应。催化剂并不会在化学反应中被消耗掉。不管是反应前还是反应后,它们都能够从反应物中被分离出来。不过,它们有可能会在反应的某一个阶段中被消耗,然后在整个反应结束之前又重新产生。 使化学反应加快的催化剂,叫做正催化剂;使化学反应减慢的催化剂,叫做负催化剂。例如,二氧化硫氧化为三氧化硫,常用五氧化二钒作正催化剂,这种催化剂是固体,反应物为气体,形成多相的催化作用,因此,五氧化二钒也叫做触媒或接触剂;食用油脂里加入0.01%~0.02%没食子酸正丙酯,就可以有效地防止酸败,在这里,没食子酸正丙酯是一种负催化剂(也叫做缓化剂或抑制剂)。 在大多数情况下,人们认为催化剂本身和反应物一起参加了化学反应,降低了反应所需要的活化能。有些催化反应是由于形成了很容易分解的 “中间产物”,分解时催化剂恢复了原来的化学组成,原反应物就变成了生成物。有些催化反应是由于吸附作用,吸附作用仅能在催化剂表面最活泼的区域(叫做活性中心)进行。活性中心的区域越大或越多,催化剂的活

化学方程式及反应现象大全

化学的一些知识 一、物质与氧气的反应 (1)单质与氧气的反应: 1. 镁在空气中燃烧:2Mg + O2 点燃2MgO 2. 铁在氧气中燃烧:3Fe + 2O2 点燃Fe3O4 3. 铜在空气中受热:2Cu + O2 加热2CuO 4. 铝在空气中燃烧:4Al + 3O2 点燃2Al2O3 5. 氢气中空气中燃烧:2H2 + O2 点燃2H2O 6. 红磷在空气中燃烧:4P + 5O2 点燃2P2O5 7. 硫粉在空气中燃烧:S + O2 点燃SO2 8. 碳在氧气中充分燃烧:C + O2 点燃CO2 9. 碳在氧气中不充分燃烧:2C + O2 点燃2CO (2)化合物与氧气的反应: 10. 一氧化碳在氧气中燃烧:2CO + O2 点燃2CO2 11. 甲烷在空气中燃烧:CH4 + 2O2 点燃CO2 + 2H2O 12. 酒精在空气中燃烧:C2H5OH + 3O2 点燃2CO2 + 3H2O 二.几个分解反应: 13. 水在直流电的作用下分解:2H2O 通电2H2↑+ O2 ↑ 14. 加热碱式碳酸铜:Cu2(OH)2CO3 加热2CuO + H2O + CO2↑ 15. 加热氯酸钾(有少量的二氧化锰):2KClO3 ==== 2KCl + 3O2 ↑ 16. 加热高锰酸钾:2KMnO4 加热K2MnO4 + MnO2 + O2↑ 17. 碳酸不稳定而分解:H2CO3 === H2O + CO2↑ 18. 高温煅烧石灰石:CaCO3 高温CaO + CO2↑ 三.几个氧化还原反应: 19. 氢气还原氧化铜:H2 + CuO 加热Cu + H2O 20. 木炭还原氧化铜:C+ 2CuO 高温2Cu + CO2↑ 21. 焦炭还原氧化铁:3C+ 2Fe2O3 高温4Fe + 3CO2↑ 22. 焦炭还原四氧化三铁:2C+ Fe3O4 高温3Fe + 2CO2↑ 23. 一氧化碳还原氧化铜:CO+ CuO 加热Cu + CO2 24. 一氧化碳还原氧化铁:3CO+ Fe2O3 高温2Fe + 3CO2 25. 一氧化碳还原四氧化三铁:4CO+ Fe3O4 高温3Fe + 4CO2 四.单质、氧化物、酸、碱、盐的相互关系 (1)金属单质+ 酸-------- 盐+ 氢气(置换反应) 26. 锌和稀硫酸Zn + H2SO4 = ZnSO4 + H2↑ 27. 铁和稀硫酸Fe + H2SO4 = FeSO4 + H2↑ 28. 镁和稀硫酸Mg + H2SO4 = MgSO4 + H2↑ 29. 铝和稀硫酸2Al +3H2SO4 = Al2(SO4)3 +3H2↑ 30. 锌和稀盐酸Zn + 2HCl === ZnCl2 + H2↑ 31. 铁和稀盐酸Fe + 2HCl === FeCl2 + H2↑ 32. 镁和稀盐酸Mg+ 2HCl === MgCl2 + H2↑ 33. 铝和稀盐酸2Al + 6HCl == 2AlCl3 + 3H2↑ (2)金属单质+ 盐(溶液)------- 另一种金属+ 另一种盐34. 铁和硫酸铜溶液反应:Fe + CuSO4 === FeSO4 + Cu

催化剂改变化学反应进程的实质

《大学化学先修课》课程小论文 第八章小论文 题目:催化剂改变化学反应进程的实质 xxxxxxxxxx xxxxxx 摘要: 凡能改变反应速度而它本身的组成(化学性质)和质量在化学反应前后保持不变的物质称为催化剂。催化剂改变化学反应进程是通过改变化学反应的活化能。两个分子发生反应时必须经过一个过渡态,过渡态具有比反应物分子和产物分子都要高的势能,互撞的反应物分子必须具有较高的能量足以克服反应势能垒,才能形成过渡态而发生反应,此即活化能的本质。对于催化剂参与反应的类型,催化剂在本身参与反应时将原本的一步反应变为多步的中间反应,而这些中间反应的自由能能垒明显低于不加催化剂原本的自由能能垒,其结果就是使活化能降低,进而使得反应更容易进行,反应速率加快。 关键词:催化剂过渡态活化能自由能能垒 正文: 凡能改变反应速度而它本身的组成(化学性质)和质量在化学反应前后保持不变的物质称为催化剂。催化剂能改变反应速度的作用称为催化作用。其中改变反应速度包括加快反应和减慢两种方式。[1] 催化剂改变化学反应进程是通过改变化学反应的活化能。在元反应中,并不是反应物分子的每一次碰撞都能发生反应。S.A.阿伦尼乌斯认为,只有“活化分子”之间的碰撞才能发生反应,而活化分子的平均能量与反应物分子平均能量的差值即为活化能。近代反应速率理论进一步指出,两个分子发生反应时必须经过一个过渡态——活化络合物,过渡态具有比反应物分子和产物分子都要高的势能,互撞的反应物分子必须具有较高的能量足以克服反应势能垒,才能形成过渡态而发生反应,此即活化能的本质。[2] 关于催化剂的催化机理,是一个比较复杂的课题。很多催化剂都有截然不同的反应路线。如果仅从一个非常简单模型来看:催化剂本身会参与反应——即反应物会先与催化剂结合,生成催化中间体。随后催化中间体经过一些变化,重新释放出催化剂本身,同时生成产物。也就是说同样是由反应物生成产物,有无催化剂经历了两种反应路线。而相比于没有催化剂参与的情况,有催化剂参与时生成催化中间体的反应以及催化中间体生成反应物的过程有着更低的自由能能垒。[3]

化学反应常见化学方程式及现象

化学反应类型 1、化学反应四种基本反应类型 ①化合反应:由两种或两种以上物质生成另一种物质的反应 ②分解反应:由一种反应物生成两种或两种以上其他物质的反应 ③置换反应:一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应 ④复分解反应:两种化合物相互交换成分,生成另外两种化合物的反应 2、氧化还原反应 氧化反应:物质得到氧的反应 还原反应:物质失去氧的反应 氧化剂:提供氧的物质 、C、CO) 还原剂:夺取氧的物质(常见还原剂:H 2 3、中和反应:酸与碱作用生成盐和水的反应

氧化反应

氧化还原反应 +CuO Cu+H 3 3 CO+CuO Cu+CO 2Fe+3CO 3 3Fe+4CO 4 CO+FeO Fe+CO

四种基本反应类型 ①化合反应:由两种或两种以上物质生成另一种物质的反应。 如:A + B = AB ②分解反应:由一种反应物生成两种或两种以上其他物质的反应。 如:AB = A + B ③置换反应:一种单质和一种化合物反应,生成另一种单质和另一种化合物的反应。 如:A + BC = AC + B 2Mg+O 2 2MgO CO 2+H 2O=H 2CO 3 有 参加时,化合价改变 2CO+O 2 2CO 2 2H 2O 2H 2↑+O 2↑ CaCO 3 CaO+CO 2↑ 有 生成时,化合价改变 2KMnO 4 △ 2K 2MnO 4+MnO 2+O 2↑ H 2 △ Cu+H 2O (或C+CuO ) Zn+H 2SO 4=ZnSO 4+H 2↑(金属与酸) 化合价 变 Fe+CuSO 4=FeSO 4+Cu (金属与盐)

相关文档
相关文档 最新文档