文档库 最新最全的文档下载
当前位置:文档库 › 第九章基因工程和基因组学

第九章基因工程和基因组学

第九章基因工程和基因组学
第九章基因工程和基因组学

第九章基因工程和基因组学

本章习题

1.什么是遗传工程?它在理论上和实践上有什么意义?

答:遗传工程是将分子遗传学的理论与技术相结合,用来改造、创建动物和植物新品种、工业化生产生物产品、诊断和治疗人类遗传疾病的一个新领域。

广义的遗传工程包括细胞工程、染色体工程、基因工程、细胞器工程等。狭义的遗传工程即是通常讲的基因工程。本章只涉及狭义的遗传工程,即基因工程。

理论意义:遗传工程(基因工程)中的DNA重组主要是创造自然界中没有的DNA分子的新组合,这种重组不同于精典遗传学中经过遗传交换产生的重组。

实践意义:遗传工程(基因工程)技术的建立,使所有实验生物学领域产生巨大的变革。在工厂化生产药品、疫苗和食品;诊断和治疗遗传疾病;培养转基因动植物等方面都有非常重大的意义,即基因工程技术已广泛用于工业、农业、畜牧业、医学、法学等领域,为人类创造了巨大的财富。(详见第10题)。

2.简述基因工程的施工步骤。

答:基因工程的施工由以下这些步骤:

⑴.从细胞和组织中分离DNA;

⑵.利用能识别特异DNA序列的限制性核酸内切酶酶切DNA分子,制备DNA 片段;

⑶.将酶切的DNA片段与载体DNA(载体能在宿主细胞内自我复制连接),构建重组DNA分子;

⑷.将重组DNA分子导入宿主细胞,在细胞内复制,产生多个完全相同的拷贝,即克隆;

⑸.重组DNA随宿主细胞分裂而分配到子细胞,使子代群体细胞均具有重组DNA分子的拷贝;

⑹.从宿主细胞中回收、纯化和分析克隆的重组DNA分子;

⑺.使克隆的DNA进一步转录成mRNA、翻译成蛋白质,分离、鉴定基因产物。

3.说明在DNA克隆中,以下材料起什么作用。

(1)载体;(2)限制性核酸内切酶;(3)连接酶;(4)宿主细胞;(5)氯化钠

答:⑴. 载体:经限制性酶酶切后形成的DNA片段或基因,不能直接进入宿主细胞进行克隆。一个DNA片段只有与适合的载体DNA连接构成重组DNA后,在载体DNA的运载下,才可以高效地进入宿主细胞,并在其中复制、扩增、克隆出多个拷贝。可作为DNA载体的有质粒、噬菌体、病毒、细菌和酵母人工染色体等。

⑵. 限制性核酸内切酶:限制性核酸内切酶是基因工程的基石。在细菌中这些酶的功能是降解外来DNA分子,以限制或阻止病毒侵染。这种酶能识别双链DNA分子中一段特异的核苷酸序列,在这一序列内将双链DNA分子切断。

⑶. 连接酶:将外源DNA与载体相连接的一类酶。

⑷. 宿主细胞:能使重组DNA进行复制的寄主细胞。

⑸. 氯化钠:主要用于DNA提取。在pH为8左右的DNA溶液中,DNA分子是带负电荷的,加入一定浓度的氯化钠,使钠离子中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀。另外,氯化钠也是细菌培养基的成分之一。

4.有一个带有氨苄青霉素和四环素抗性的质粒,在其四环素抗性基因内有一个该质粒惟一的EcoRI酶切点,今欲用EcoRI位点克隆果蝇DNA,构建一个基因库,连接的产物转化大肠杆菌菌株DH5 ,试问:⑴. 在培养基中加入哪一种抗生素用于选择阳性克隆?⑵. 对哪一种抗生素有抗性的质粒携带外源果蝇DNA片段?⑶. 如果有的克隆可抗两种抗生素,如何解释?

答:⑴.在培养基中加入四环素结合影印法可用于选择阳性克隆。

⑵.对氨苄青霉素有抗性的质粒携带外源果蝇DNA片段。

⑶.这种克隆是没有受到EcoRI酶解的原始质粒或这些克隆都是自连形成的非重组体。

5.在构建一个真核生物核DNA库时,需要考虑哪些因素?

答:核基因库是将某一生物的全部基因组DNA酶切后与载体连接构建而成的。通常方法是,尽量提取大分子量的核DNA,用限制性酶酶切后,分离选择具有一定长度(大于15kb)的DNA片断,与适宜的载体连接构成重组DNA分子,

根据所用的载体,选择相应的宿主细胞用于克隆。若载体是质粒,则将连接的重组DNA分子转化感受态细胞,收集所有的菌落即成为质粒基因库。如果载体是噬菌体或粘粒(cosmid),则将重组DNA分子体外包装成噬菌体后,感染细菌细胞,将所得到的所有重组噬菌体集中即是基因库。如果载体为BAC或YAC,将重组人工染色体导入相应的宿主细胞,收集得到的所有细胞即成为基因库。

真核生物的核DNA大,因此在构建核基因库时,通常要选择能够接受较大片段的载体,以减少克隆数量。若构建的基因库是以分离结构基因为主要目的的,通常选用λEMBL,λGEM,或粘粒。而那些将用于基因组作图和分析的基因库,则多选择BAC或YAC为载体。

6.根据下列凝胶电泳分析的结果,构建一个限制性酶图谱,并表明酶切位点及片段的碱基数,片段总长度为1300bp。电泳分析结果如下:

答:限制性酶切图谱从左到右是,200个碱基对位置是酶II的切点;350

个碱基对位置是酶I的切点;图谱总长是1300个碱基对。

7.在下列6种限制性酶图谱中,有一种排列方式与凝胶电泳的带型是一致的。3种酶分别是:E: EcoRI、N:NcoI、A:AatII。

试回答:

⑴.根据电泳中DNA带型,选择正确的图谱并说明原因。

⑵.在将这块凝胶转移后进行Southern杂交分析,带星点的是与pep基因杂交的信号带,说明pep在图谱中的位置。

答:⑴.从上到下的第五条应该为正确的图谱,因为经过上述三种酶切后,与左面的电泳图完全一致。

⑵.根据Southern结果和酶切图的位置,pep应该在第五条图谱的3与4之间。

8.简述将除草剂基因转移到植物基因组的过程。

答:以农杆菌介导为例,说明这一过程。

⑴.在无菌的组织培养下,从植物体的种子或无性器官建立高效的再生体系;

⑵.依据植物的种类,选择合适的质粒载体,将抗除草剂的基因连接到载体上,再将质粒引进根癌农杆菌;

⑶.植物的再生组织与上述农杆菌共同培养;

⑷.经过农杆菌感染的组织在含除草剂的培养基中进行选择;

⑸.抗除草剂的组织再生植株;

⑹.再生植株在温室进行抗除草剂试验;

⑺.有性繁殖的种类还要进行自交、回交测定和纯化。

9.简述基因组遗传图谱与物理图谱的异同。

答:遗传图谱的构建是根据任一遗传性状(如已知的可鉴别的表型性状、多型性基因位点、功能未知的DNA标记)的分离比例,将基因定位在基因组中。因此,遗传图谱是根据等位基因在减数分裂中的重组频率,来确定其在基因组中的顺序和相对距离的。物理图谱的构建不需要检测等位基因的差异,它既可以利用具有多型性的标记,也可以利用没有多型性的标记进行图谱构建,它将标记直接定位在基因库中的某一位点。

实际上这两种途径都需要利用分子遗传学的技术和方法。尽管这两种图谱是分别构建的,但是它们可以相互借鉴、互为补充,作为基因组图谱利用。

构建物理图谱的原因是:遗传图谱的分辨率有限、遗传图谱的精确性不高。

10.简述基因工程在工、农、医三方面的成就及发展前景。

答:基因工程在工业上的应用主要是生产医药产品,最典型的例子是通过细菌生产胰岛素,治疗糖尿病。到目前通过细菌已经生产了表皮生长因子、人生长激素因子、干扰素、乙型肝炎工程疫苗等10多种医药产品。

基因工程在农业上的应用:以转基因植物为标志的植物基因工程已经培养出许多抗除草剂、抗虫、抗病、抗逆的优良品种和品系,如在全世界范围内大量推

广应用的抗除草剂的大豆、抗棉铃虫的棉花等。通过转基因羊大量表达人类的抗胰蛋白酶;克隆动物的成功,可以挽救濒危的稀有动物。

基因工程在医学上主要是用于遗传疾病的诊断、基因的治疗方面。

基因工程具有巨大和广泛的发展前景,将渗透到人类生活的各个方面。可以创造出营养价值更高、保健作用更好、抗逆性更强的植物种类;转基因动物的进展,可以生产出多种类的用于人类遗传性疾病治疗的药物;人类基因组计划的完成和基因定位的发展、尤其是核酸分子杂交原理和方法与半导体技术结合而发展起来的DNA芯片技术的出现和完善,将在人类遗传疾病的诊断和治疗等方面发挥重要作用。

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

基因工程、分子生物学和分子遗传学重要名词解释

基因工程、分子生物学和分子遗传学重要名词解释 5’Cap 5’-末端帽:有时简称帽,是在许多真核生物mRNA5`-末端发现的一种由7-甲基-鸟嘌呤核苷-5`-ppp –末端核苷构成的特殊构成的特殊结构。它是在转录后不久经酶催反应加入到TATA (Hogness)序列的附近,具有保护mRNA稳定性的功能。在原核生物的mRNA分子中不存在 5`-末端帽结构。 A protein A蛋白:他参与λDNA插入噬菌体头部和在粘性末端(cos)位点上裂解多联体DNA 的过程。 abortive lysgeny 流产溶原性:温和噬菌体感染敏感的宿主菌后,既不整合进宿主染色体中,也不进行复制,从而使每一个带有噬菌体的宿主菌分裂产生的两个细胞中,只有一个是溶原性的。abortive transduction 流产转导:这是得到不稳定转导子的一类转导,区别于得到稳定转导子的完全转导。在流产转导中,转导子分裂产生两个细胞时,只有其中的一个获得供体基因,另一 个细胞则仍属受体基因型。 Abundance of an mRNA mRNA丰度:是指每个细胞平均拥有的某一种特定mRNA的分子数,跟据丰度的差异可将分为两种不同的等级:其一是富裕型的,每个细胞拥有的平均考贝数为1000——10000,属于此型的mRNA约有100种;其二是稀少型的,每个细胞拥有平均考贝数仅有1——10个上下,属于这一类行的mRNA达10000多种。 Abzymes 抗体酶: 应用单克隆抗体技术生产的兼具抗体及酶催活性的工程蛋白质。也就是说,其行为如同蛋白酶一样,能够催化化学反应的一类新型的抗体。 Acceptor splicing site 受体拼接位点: 间隔子的右端和与其相连的表达子的左端之间的接合点。Acquired immunodeficiency syndrome, AIDS 获得性免疫缺损综合征: 由人类免疫缺损病毒(HIV)引起的一种疾病,他最早于1980年在美国洛杉叽发现。HIV病毒通过血液和精液在人群中传播,感染了这种病毒之后,会使人体出现严重的免疫抑制和淋巴结病(lymphadenopathy),并增加对机会病原体(opportunistic pathogen)的敏感性。这种综合征是由于HIV病毒的感染以及cd4类T细胞功能破坏所致。T细胞表面CD抗原CDS4是HIV病毒的受体。HIV病毒的感染使T细胞发生融合形成大的合胞体(syncytia)并最终裂解。AIDS是致命的,目前尚无法有效治 疗也无有效疫苗可用。 activator 活化物:1,在分子生物学中,活化物是一种蛋质,结合在某个基因上游DNA的一个位置上,激活从该基因开始的转录。2,在酶学中,活化物是一种小分子,与酶相结合从 而提高酶的催化活性。 Activator 激活物: 能够通过与结合在启动子上的RNA聚合酶发生相互作用,从而促使RNA聚合酶起动操纵子进行转录反应的一种正调节蛋白质。 Adaptor 接头:即DNA接头,是一类人工合成的非自我互补单链寡核苷酸短片段,当其同街接物(linker)自行退火时,就会形成具有一个平末端和一个粘性末端的双链的接头/衔接物结构。因此,同平端DNA分子连接之后,无需用核酸内切限制酶切割,就会提供符合预先设计要求的 粘性末端。 Adenovirus 腺病毒:一种具双链DNA的动物病毒,大小约为36kb。次种病毒在分子生物学研究中占有突出的位置,许多重要的分子生物学事件,诸如RNA剪辑,DNA复制及转录等,,都是腺病毒研究中发现的。现在腺病毒以被改造用作分离哺乳动物基因的克隆载体。Affinity chromatography 亲和层析:一种根据配体与特异蛋白质结合作用原理建立的层析技 术,该法主要应用于分离与纯化特异的蛋白质。 Agarose 琼脂糖:是从红色海藻的琼脂中提取的一种线性多糖聚合物,可用于配置核酸电泳凝胶。当琼脂糖溶液加热至沸点后冷确凝固,便会形成一种基质,其密度石油琼脂糖浓度决定的。可以被琼脂糖凝胶电泳分离的DNA片段的大小范围为0.2——50kb。经过化学上修饰的低熔点

基因工程的应用和蛋白质工程

百度文库 - 好好学习,天天向上
【课 题】专题一——基因工程——第 1.3 基因工程的应用第 1。4 蛋白质工程的崛起
【教学目标】1.举例说出基因工程应用及取得的丰硕成果。 2.关注基因工程的进展。 3.认
同基因工程的应用促进生产力的提高。 4.举例说出蛋白质工程崛起的缘由。 5.简述蛋白质
工程的原理。 6.尝试运用逆向思维分析和解决问题。
【教学流程】
一、知识预习:
1、植物基因工程技术主要用于提高农作物的
(如




等),以及

利用植物生产
等方面。
2、目前防治作物虫害的发展趋势是从某些生物中分离出
,将其导

中,使其具有
。用于杀虫的基因主要是



等。
3、引起植物生病的微生物称为
,主要有


等。抗病转基因植物所采用的基因,使用最多的是

;抗真菌转基因植物中可使用的基因有


4、目前科学家利用一些可以调节
的基因,来提高农作物的抗盐碱和
能力;将鱼的
导入烟草和番茄,提高其耐寒能力;将
导入
作物,使作物抗除草剂。
5、利用转基因技术可以提高生物中的
的含量、延长贮存时间、改变花色等,
从而提高作物品质。
6、动物基因工程可用于




7、基因工程药物包括




等。
8、治疗遗传病的最有效手段是
,这种方法是把
导入病人体
内,使该基因的表达产物发挥功能,从而达到
的目的,可分为

两条途径。
9、基因工程的实质是将一种生物的
转移到另一种生物体内,使后者产生本不能
产生的
,进而表现出
。其缺点是在原则上只能生产
,而天然蛋白质的
符合
的需要,
却不一定完全符合
的需要。
10、蛋白质工程是指以蛋白质分子的
及其与
的关系作为基
础,通过

,对
进行改造,或制造
,以满足
的需求。
11、蛋白质工程的途径是:预测蛋白质功能→设计预期的
→推测应有的
→找到相对应的

12、蛋白质工程具有
的前景,但

-1

(整理)分子生物学与基因工程复习题

一、名词解释 1、分子生物学 2、基因工程 3、DNA的变性与复性 4、细胞学说 5、遗传密码的简并性 6、DNA半保留复制、半不连续复制 7、SD序列 8、开放阅读框(ORF) 9、多顺反子 10、蓝白斑筛选 11、中心法则 12、限制修饰系统 13、断裂基因 14、单链结合蛋白 15、核酶 16、密码子家族 17、TA克隆 18、PCR 19、SNP 20、操纵子学说 21、DNA重组技术 22、减色效应-增色效应 23、可变剪接 24、反转录 25、同尾酶 26、加帽反应 27、蓝白斑筛选 28、表观基因组学 29、DNA的溶解温度 30、DNA的大C值 31、重叠基因 32、引物酶 33、逆转录 34、限制性内切酶 35、载体的选择标记 36、DNA甲基化

37、端粒 38、端粒酶 39、前导链 40、启动子 41、反式作用因子 42、同义密码子 43、多克隆位点(MCS) 44、基因组计划 45、C值悖论 46、顺式作用元件 47、胸腺嘧啶二聚体 48、寄主的限制修饰现象 49、拓扑异构酶 50、DNA的溶解 51、拓扑异构体 52、间隔基因 53、假基因 54、同源异型蛋白 55、翻译 56、多重PCR 57、抗终止作用 58、SD序列 59、空载tRNA 60、cDNA RACE 61、分子杂交 62、cDNA文库 63、载体 64、RT-PCR 65、反义RNA 66、延伸tRNA 67、起始tRNA 68、探针 69、反式剪接 70、增强子 71、动物基因工程 72、基因组 73、限制性内切酶 74、单顺反子

75、密码子 76、转录 77、RNA干扰 78、中心法则 79、回环模型 80、TATA box 81、前导链 82、目的基因 83、RFLP 84、RACE 二、判断 1、大肠杆菌DNA生物合成中,DNA聚合酶I主要起聚合作用。( ) 2、DNA半保留复制时,后随链的总体延伸方向与先导链的延伸方向相反。( ) 3、原核生物DNA的合成是单点起始,真核生物为多点起始。() 4、以一条亲代DNA(3’→ 5’)为模板时,子代链合成方向5’→ 3’,以另一条亲代DNA链 5’→ 3’为模板时,子代链合成方向3’→ 5’。() 5、RNA的生物合成不需要引物。() 6、大肠杆菌RNA聚合酶全酶由4个亚基(α2ββ’)组成。( ) 7、大肠杆菌在多种碳源同时存在的条件下,优先利用乳糖。 ( ) 8、在DNA生物合成中,半保留复制与半不连续复制指相同概念。() 9、逆转录同转录类似,二者均不需要引物。() 10、真核生物染色体核心组蛋白的乙酰化、组蛋白H1的磷酸化,都会使基因得以失活。() 11、在原核细胞中,起始密码子AUG可以在mRNA上的任何位置,但一个mRNA上只有一个起 始位点。( ) 12、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别mRNA上的密码子。( ) 13、表观遗传效应是不可遗传的。( ) 14、cAMP与CAP结合、CAP介导正性调节发生在有葡萄糖及cAMP较高时。( ) 15、DNA甲基化永久关闭了某些基因的活性,这些基因在去甲基化后,仍不能表达。 () 16、RNA聚合酶催化的反应无需引物,也无校对功能。( ) 17、基因是存在于所有生命体中的最小遗传单位 18、人类基因组中大部分DNA不编码蛋白质 19、蛋白质生物合成过程中,tRNA在阅读密码时起重要作用,他们的反密码子用来识别 mRNA上的密码子。 ( )

分子生物学与基因工程原理

分子生物学与基因工程原理复习资料 一、名词解释 1. 分子生物学:是研究核酸、蛋白质等生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学;是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。 2. 染色体:是细胞在有丝分裂时遗传物质存在的特定形式,是间期细胞染色质结构紧密包装的结果。 3. DNA 多态性:是指DNA 序列中发生变异而导致的个体间核苷酸序列的差异,主要包 括单核苷酸多态性(single nucleotide polymorphism , SNP)和串联重复序列多态性 ( tandem repeats polymorphism )两类。 4. DNA 的半保留复制:DNA 复制过程中,由亲代DNA 生成子代DNA 时,每个新形成的子代DNA 中,一条链来自亲代DNA ,另一条链则是新合成的,这种复制方式称半保留复制。 5. 冈崎片段:在DNA 复制过程中,前导链能连续合成,而滞后链只能是断续的合成5 3 的多个短片段,这些不连续的小片段称为冈崎片段。 6.SNP:single nucleotide polymorphism ,单核苷酸多样性,是基因组DNA 序列中单个核苷酸的突变引起的多态性。 7. “基因”的分子生物学定义:产生一条多肽链或功能RNA 所必需的全部核甘酸序列。 8. 获得性遗传:是有机体在生长发育过程中由于环境的影响而不是基因突变所形成的新的遗传性状。 9. DNA 甲基化:是基因的表观修饰方式之一,指生物体在(DNA methyltransferase ,DNMT)的催化下,以S-腺苷甲硫氨酸(SAM)为甲基供体,将甲基转移到特定的碱基上的过程。 10. CDNA文库:以mRNA为模板,经反转录酶催化,体外合成cDNA,与适当的载体 (常用噬菌体或质粒载体)连接后转化受体菌,则每个细菌含有一段cDNA,并能繁殖 扩增。这样包含着细胞全部mRNA 信息的cDNA 克隆集合称为该组织细胞cDNA 文库。11. 基因组:是指一个细胞或者生物体所携带的全部遗传信息。生物个体的所有细胞的基因组是固定的。 12. 蛋白质组学:指在大规模水平上研究蛋白质的特征,包括蛋白质的表达水平,翻译后的修饰,蛋白与蛋白相互作用等,获得蛋白质水平上的关于疾病发生,细胞代谢等过程的整体而全面的认识。 13. 转录组:广义上指某一生理条件或环境下,一个细胞、组织或生物体内所有转录产 物的总和,包括信使RNA、核糖体RNA、转运RNA及非编码RNA ;狭义上指细胞中转录出来的所有mRNA 的总和。 14. 基因定点突变技术:通过改变基因特定位点核苷酸序列来改变所编码的氨基酸序列的一

第九章基因工程和基因组学

第九章基因工程和基因组学 本章习题 1.什么是遗传工程?它在理论上和实践上有什么意义? 答:遗传工程是将分子遗传学的理论与技术相结合,用来改造、创建动物和植物新品种、工业化生产生物产品、诊断和治疗人类遗传疾病的一个新领域。 广义的遗传工程包括细胞工程、染色体工程、基因工程、细胞器工程等。狭义的遗传工程即是通常讲的基因工程。本章只涉及狭义的遗传工程,即基因工程。 理论意义:遗传工程(基因工程)中的DNA重组主要是创造自然界中没有的DNA分子的新组合,这种重组不同于精典遗传学中经过遗传交换产生的重组。 实践意义:遗传工程(基因工程)技术的建立,使所有实验生物学领域产生巨大的变革。在工厂化生产药品、疫苗和食品;诊断和治疗遗传疾病;培养转基因动植物等方面都有非常重大的意义,即基因工程技术已广泛用于工业、农业、畜牧业、医学、法学等领域,为人类创造了巨大的财富。(详见第10题)。 2.简述基因工程的施工步骤。 答:基因工程的施工由以下这些步骤: ⑴.从细胞和组织中分离DNA; ⑵.利用能识别特异DNA序列的限制性核酸内切酶酶切DNA分子,制备DNA 片段; ⑶.将酶切的DNA片段与载体DNA(载体能在宿主细胞内自我复制连接),构建重组DNA分子; ⑷.将重组DNA分子导入宿主细胞,在细胞内复制,产生多个完全相同的拷贝,即克隆; ⑸.重组DNA随宿主细胞分裂而分配到子细胞,使子代群体细胞均具有重组DNA分子的拷贝; ⑹.从宿主细胞中回收、纯化和分析克隆的重组DNA分子; ⑺.使克隆的DNA进一步转录成mRNA、翻译成蛋白质,分离、鉴定基因产物。

3.说明在DNA克隆中,以下材料起什么作用。 (1)载体;(2)限制性核酸内切酶;(3)连接酶;(4)宿主细胞;(5)氯化钠 答:⑴. 载体:经限制性酶酶切后形成的DNA片段或基因,不能直接进入宿主细胞进行克隆。一个DNA片段只有与适合的载体DNA连接构成重组DNA后,在载体DNA的运载下,才可以高效地进入宿主细胞,并在其中复制、扩增、克隆出多个拷贝。可作为DNA载体的有质粒、噬菌体、病毒、细菌和酵母人工染色体等。 ⑵. 限制性核酸内切酶:限制性核酸内切酶是基因工程的基石。在细菌中这些酶的功能是降解外来DNA分子,以限制或阻止病毒侵染。这种酶能识别双链DNA分子中一段特异的核苷酸序列,在这一序列内将双链DNA分子切断。 ⑶. 连接酶:将外源DNA与载体相连接的一类酶。 ⑷. 宿主细胞:能使重组DNA进行复制的寄主细胞。 ⑸. 氯化钠:主要用于DNA提取。在pH为8左右的DNA溶液中,DNA分子是带负电荷的,加入一定浓度的氯化钠,使钠离子中和DNA分子上的负电荷,减少DNA分子之间的同性电荷相斥力,易于互相聚合而形成DNA钠盐沉淀。另外,氯化钠也是细菌培养基的成分之一。 4.有一个带有氨苄青霉素和四环素抗性的质粒,在其四环素抗性基因内有一个该质粒惟一的EcoRI酶切点,今欲用EcoRI位点克隆果蝇DNA,构建一个基因库,连接的产物转化大肠杆菌菌株DH5 ,试问:⑴. 在培养基中加入哪一种抗生素用于选择阳性克隆?⑵. 对哪一种抗生素有抗性的质粒携带外源果蝇DNA片段?⑶. 如果有的克隆可抗两种抗生素,如何解释? 答:⑴.在培养基中加入四环素结合影印法可用于选择阳性克隆。 ⑵.对氨苄青霉素有抗性的质粒携带外源果蝇DNA片段。 ⑶.这种克隆是没有受到EcoRI酶解的原始质粒或这些克隆都是自连形成的非重组体。 5.在构建一个真核生物核DNA库时,需要考虑哪些因素? 答:核基因库是将某一生物的全部基因组DNA酶切后与载体连接构建而成的。通常方法是,尽量提取大分子量的核DNA,用限制性酶酶切后,分离选择具有一定长度(大于15kb)的DNA片断,与适宜的载体连接构成重组DNA分子,

基因工程与分子生物学

基因工程与分子生物学重点 1.限制性核酸内切酶:凡是识别切割双链的DNA分子内特定核苷酸序列的酶称为限制性核酸内切酶,简称为限制性酶。 2.限制性核酸内切酶的一般性质:37℃,pH为7.2~7.6,用Tris—HCl,Gly—NaOH两种缓冲液,Mg2+Buffer,5mM,盐浓度,巯基试剂:β-ME,DTT,BSA(牛血清白蛋白,稳定酶的作用);决定生产的特定的DNA片段的大小,识别顺序具有180°的旋转对称,识别顺序一般是4~6个碱基,也有6个以上的,但是没有4个以下的,产生三种不同的切口:形成平头末端(SmalⅠ):连接困难,效率较低;形成5’粘性末端(EcoRⅠ):相对而言,5’突出尾,3’凹末端;形成3’粘性末端(PstⅠ)相对而言,3’突出尾,5’凹末端。 3.星活性:在非标准条件下(低盐和高pH,高甘油浓度>5%),限制酶识别顺序与切割顺序发生改变的现象。 4.大肠杆菌DNA聚合酶I大片段(Klenow片段):将Pol1切下一个小片段失去5’到3’外切酶活性。补平限制酶切割DNA产生3’凹槽(5’到3’合成),用[32p]dNTP补平3’凹端,对DNA片段进行末端标记,对带3’突出端的DNA进行末端标记(利用置换活性),在cDNA 克隆中,用对和陈那个cDNA的第二条链,在体外诱变中用于从单链模版合成双链DNA,应用Sanger双脱氧末端终止法进行DNA测序,消化限制酶产生的3’突出端,应用于PCR 技术。 5.基因工程的工具酶:T7噬菌体DNA聚合酶,修饰的T7噬菌体DNA聚合酶,TaqDNA 聚合酶(没有校正功能),大肠杆菌DNA聚合酶Ⅰ,大肠杆菌DNA聚合酶Ⅰ大片段,T4噬菌体DNA聚合酶。 6.末端转移酶:将相同的核苷酸依次连接到3’末端,然后两条DNA通过同源多聚尾巴连接在一起,在表达前将ploy(G)切除,否则影响蛋白质的生物活性。 7.T4噬菌体多核苷酸激酶:使DNA的5’端磷酸化,也可以使DNA的5’端去磷酸化。可以发生正向反应,也可发生交换反应。正向反应:5’CTGCAG在酶和ATP(ATP具有α,β,γ磷酸基团,其中γ可给出)的作用下,生成5’pCTGCAG;交换反应:5’pCTGACG在酶和ADP的共同作用下,去磷酸化,将DNA链上的磷酸基团给出,生成5’CTGCAG和ATP,在酶和被标记的A TP作用下使得DNA再次被磷酸化同时被标记,生成ADP和5’*pCTGCAG。 8.基因工程载体种类:质粒,噬菌体的衍生物,科斯质粒或粘粒,噬菌体质粒,单链DNA 噬菌体M13,真核病毒载体,酵母质粒载体,杆状病毒。 9.质粒:在细菌细胞内作为与宿主染色体有别的复制子而进行复制,并且在细胞分裂时能恒定传递给子代细胞的独立遗传因子。 10.质粒作为基因工程载体所必备的条件:1)具有较小的分子量和松弛的复制子,2)基因组上有1~2个筛选标记,便于在平板中区分重组体和非重组体,3)DNA链上有1到几个限制酶的单一识别与切割位点,便于外源DNA的插入,4)具有插入失活(或是插入表达)的筛选标记,便于从平板中直接筛选阳性重组体。 11.Ti质粒:引起植物形成肿瘤—冠瘿瘤的质粒称为诱导肿瘤的质粒。 12.Ti质粒的优点:宿主范围广泛,Ti质粒能过转化所有的双子叶植物,并将外源基因导入植物细胞;整合到宿主细胞ch—DNA上的T—DNA成了染色体的正常遗传成分,永远居留,代代相传;T—DNA上的Opine合成酶基因有一个强大的启动子,能启动外源基因在植物细胞中高效表达。 13.分子杂交(杂交,hybrdization):核酸研究中一项最基本的实验技术,它是指在一定条件下互补核酸链复性形成双链的过程。 14.分子杂交的原理:(一)DNA的变性:指分子有稳定的双螺旋结构松解为无规则线性结

“基因工程与蛋白质工程”知识归纳及试题例析

“基因工程与蛋白质工程”知识归纳及试题例析 一、知识归纳 1.与DNA分子相关的酶 名称作用参与的生理过程应用限制性核酸内切 酶 切割某种特定的脱氧核苷酸序列基因工程DNA连接酶连接两个DNA片段基因工程 DNA聚合酶在脱氧核苷酸链上添加单个脱氧 酸 DNA复制 RNA聚合酶在核苷酸链上添加单个核糖核苷 酸 转录 解旋酶使碱基间氢键断裂DNA复制及转录 逆转录酶以RNA为模板合成DNA逆转录及基因工程 特别注意: (1)限制性核酸内切酶的来源:多数来自原核生物;作用特点:主要切割外源DNA,对自身的DNA不起作用从而达到保护自身的目的;作用结果:形成DNA片断末端。 (2)各种酶都具有专一性,特别是限制酶只能识别特定的脱氧核苷酸序列,并在特定的碱基之间切开。 2.基因工程的基本操作程序 (1)获取目的基因 ①基因文库:是将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中通过 克隆而储存,各个受体菌分别含有这种生物的不同基因。 ②基因组文库:基因文库中含有一种生物所有的基因就叫做基因组文库。 ③部分基因文库:含有一种生物的部分基因,就叫做部分基因文库,如cDNA文库。 PCR技术与DNA复制的比较 比较项目PCR技术DNA复制 相 同 点 原理DNA双链复制((碱基互补配对) 原料四种游离的脱氧核苷酸 条件模板、ATP、酶等 不 同 解旋方式DNA在高温下变性解旋解旋酶催化 场所体外复制主要在细胞核内

点 酶 热稳定的DNA聚合酶(Taq 酶) 细胞内含有的DNA聚合酶结果 在短时间内形成大量的DNA 片段 形成整个DNA分子 (2)基因表达载体的构建(基因工程的核心) ①构建目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目 的基因能够表达和发挥作用。 ②一个基因表达载体的组成:目的基因、启动子、终止子、标记基因等。 ③构建方法 生物 种类 植物细胞动物细胞微生物细胞常用 方法 农杆菌转化法显微注射技术Ca2+处理法受体 细胞 体细胞受精卵原核细胞 转化 过程 将目的基因插入Ti质粒 的TDNA上→农杆菌→导 入植物细胞→整合到受体细 胞的DNA→表达 将含有目的基因的表达 载体提纯→取卵(受精卵) →显微注射→受精卵发育→ 获得具有新性状的动物 Ca2+处理细胞→感受态 细胞→重组表达载体与感受 态细胞混合→感受态细胞吸 收DNA分子特别注意:受体细胞中常用植物受精卵或体细胞(经组织培养)、动物受精卵(一般不用体细胞)、微生物──大肠杆菌、酵母菌等,但要合成糖蛋白、有生物活性的胰岛素则必 需用真核生物酵母菌──需内质网、高尔基体的加工、分泌。一般不用支原体,原因是它营 寄生生活;一定不能用哺乳动物成熟红细胞,原因是它无细胞核和众多的细胞器,不能合成 蛋白质。

分子生物学与基因工程复习资料

分子生物学与基因工程 绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA 的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由上个世纪50 年 代,Watson 和Crick 提出了的DNA 双螺旋模型; 60 年代,法国科学家Jacob 和Monod 提出了的乳糖操纵子模型; 70 年代,Berg 首先发现了DNA 连接酶,并构建了世界上第一个重组DNA 分子; 80 年代,Mullis 发明了聚合酶链式反应( Polymerase Chain Reaction , PCR)技术; 90 年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代” 3、分子生物学与基因工程的专业地位与作用。 核酸概述 1、核酸的化学组成 2、核酸的种类与特点:DNA 和RNA 的区别 1) DNA 含的糖分子是脱氧核糖,RNA 含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T), RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代

替; (3)DNA 通常是双链,而RNA 主要为单链; (4)DNA 的分子链一般较长,而RNA 分子链较短。 3、DNA 作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA 含量是恒定的,而生殖细胞精子的DNA 含量则刚好是体细胞的一半。多倍体生物细胞的DNA 含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA 在代谢上较稳定。 (3)DNA 是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。 (4)DNA 通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA 。 (5)在各类生物中能引起DNA 结构改变的化学物质都可引起基因突变。直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA 的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100OC)时,它就失去生理活性。这时DNA 双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。 简而言之,就是DNA 从双链变成单链的过程。增色效应:它是指在DNA 的变性过程中,它在260 nm 的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA 如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复

分子生物学与基因工程试题库(19)

分子生物学与基因工程试题库(19) 一、选择题(单选或多选)(每题2分,共计20分) 1.核糖体肽链的合成因( )终止 (a)可读框内编码C末端氨基酸的密码子 (b)可读框内存在不对应氨酰tRNA的密码子 (c)浓度太低或缺少特定的氨酰tRNA (d)释放因子(RF)的GTP依赖性作用,防止A位点中终止密码子与氨酰tRNA的错配结合 (e)末端氨酰转移酶的活性,这个酶蛋白通过将一个赖氨酸或精氨酸残基加到新生多肽 C 末端将肽酰tRNA脱乙酰化 2. 因研究λ噬菌体的限制与修饰现象的本质而获得诺贝尔奖的科学家是:( ) (a)J.Lederberg (b)W.Arber (c)H.Smith (d)F.Sanger 3. EDTA是一种螯合剂,可以抑制大多数酶的活性,但在下列酶中,( )不受它的 影响 (a)外切酶Ⅲ (b)EcoRI (c)Bal31核酸酶 (d)Pstl 4. 关于质粒的相容性,下面哪一种说法不正确? ( ) (a)不同相容群的质粒能够共存于同一个细胞 (b)质粒可以分成若干个不相容群,但不能分成若干个相容群 (c)如果a、b两种质粒不相容,说明它们的复制机制相同 (d)属于同一个不相容群中的质粒,不仅复制机制相同,而且拷贝数和分子量也相同 5. 用SDS-酚来抽提DNA时,SDS的浓度是十分重要的,当SDS的浓度为0.1%时,( ) (a)只能将DNA抽提到水相 (b)只能将RNA抽提到水相 (c)可将DNA、RNA一起抽提到水相 (d)DNA和RNA都不能进入水相 6. 在下列表型中,( )是基因工程上理想的受体菌表型 (a)r+m+rec’ (b)r-m-rec- (C)r-m-rec+ (d)r+m+rec- 7. 微细胞是一种大肠杆菌突变体,( ) (a)它不带任何DNA (b)它的体积为正常细胞的1/10 (c)它带有染色体DNA,但不能表达 (d)它带有质粒DNA,可以表达 8. DNA在中期染色体中压缩多少倍?( ) (a)6倍 (b)10倍 (c)40倍 (d)240倍 (e)1000倍 10000倍 9. 在原核生物复制子中以下哪种酶除去RNA引发体并加入脱氧核糖核苷酸?( ) (a)DNA聚合酶Ⅲ (b)DNA聚合酶Ⅱ (c)DNA聚合酶I (d)外切核酸酶MFl (e)DNA连接酶

高中生物选修3基因工程的应用和蛋白质工程知识点

高中生物选修3基因工程的应用和蛋白质工程知识点 1.基因工程培育转基因生物的优点: (1)打破了常规育种难以突破的物种之间的界限(生殖隔离) (2)定向改变了生物的遗传性状。 2.基因工程的应用: (1)用于提高动植物生长速度。 (2)用于改善畜产品的品质。 (3)用转基因动物生产药物。 (4)用转基因动物作器官移植的供体。 3.膀胱生物反应器:将外源基因导入到受精卵膀胱上皮细胞进行表达。优点: 雌雄个体都能生产。 4.乳腺生物反应器或乳房生物反应器缺点:只有雌性个体才能生产药物。 5.干扰素:干扰素是动物或人体细胞受到病毒侵染后产生的一种糖蛋白,干扰 素几乎能够抵抗所有病毒引起的感染。 6.基因治疗:是把正常基因导入病人体内,使该基因的表达产物发挥功能,从 而达到治疗疾病的目的,这是治疗遗传病的最有效的手段。 7.基因治疗不能替代原有基因,它替代的是缺陷基因的功能。 8.大肠杆菌是原核生物,生产出来的干扰素没有活性,原核细胞内没有内质网 和高尔基体,只有核糖体,只能合成相应的蛋白质,无法添加糖基,要使干扰素具有活性,还必须经过人工处理,加上糖基。 9.基因诊断:也称DNA诊断或基因探针技术,即在DNA水平分析检测某一基 因,从而对特定的疾病进行诊断。 10.基因工程在原则上只能生产自然界已存在的蛋白质。 11.蛋白质工程的目标:根据人们对蛋白质的特定需求,对蛋白质进行分子设计。 12.天然蛋白质的合成过程:按照中心法则进行的,基因→表达(转录和翻译) →形成氨基酸序列的多肽链→形成具有高级结构的蛋白质→行使生物功能。 13.蛋白质工程合成蛋白质的过程:从预期的蛋白质功能出发→设计预期的蛋白 质结构→推测应有的氨基酸序列→找到相对应的脱氧核苷酸序列。 14.蛋白质工程中进行基因操作的原因: (1)改造过的蛋白质可以遗传。 (2)对基因的改造比对蛋白质直接改造容易操作,难度少的多。 15.蛋白质工程:蛋白质工程是指以蛋白质分子的结构规律及其与生物功能的关 系作为基础,通过基因修饰或基因合成,对现有的蛋白质进行改造,或制造一种新的蛋白质,以满足人类的生产和生活的需求。原理是改造基因,实质是对编码蛋白质的基因进行改造。

分子生物学与基因工程结课论文-Real-TimePCR在分子生物学中的应用讲义

《分子生物学与基因工程》 结课论文 Real-Time PCR在分子生物学中的应用 姓名: 学号: 院系: 班级: 任课教师: 二零一二年十二月

Real-Time PCR在分子生物学中的应用 东北农业大学生命科学学院黑龙江哈尔滨150030 摘要:聚合酶链式反应(polymerase chain reaction,PCR)可对特定基因进行扩增,因此被广泛应用于分子生物学领域中获取特定基因或基因片段。定量PCR已经从基于凝胶的低通量分析发展到高通量的荧光分析技术,即实时定量PCR(real-time quantitative PCR)。该技术实现了PCR从定性到定量的飞跃,且与常规PCR相比,它具有特异性强、灵敏度高、重复性好、定量准确、速度快、全封闭反应等特点,目前实时定量PCR作为一个极有效的实验方法,已被广泛地应用于分子生物学研究的各个领域,成为了分子生物学研究中的重要工具。 关键词:实时定量PCR;基因扩增;分子生物学 1971年Khorana等最早提出PCR理论:―DNA变性解链后与相应引物杂交,用DNA聚合酶延伸引物,重复该过程便可克隆tRNA 基因‖。因当时基因序列分析方法尚未成熟、热稳定DNA聚合酶还未发现及寡聚核苷酸引物合成仍处于手工和半自动阶段,核酸体外扩增设想似乎不切实际,且Smith等已发现了DNA限制性内切酶,使体外克隆基因成为可能,Khorana 等的早期设想被忽视。1985年Mullis等用大肠杆菌DNA聚合酶ⅠKlenow片段体外扩增哺乳动物单拷贝基因成功以及1988年Saiki等将耐热DNA聚合酶(Taq酶)引入PCR ,使扩增反应的特异性和效率大大提高,并简化了操作程序,最终实现了DNA扩增的自动化,迅速推动了PCR的应用和普及。 自从PCR技术问世便很快成为科研、临床诊断的热点技术。但是传统PCR技术在应用中一是不能准确定量,二是容易交叉污染,产生假阳性。直到1996年由美国Applied Biosystems公司推出的实时荧光定量PCR技术,上述问题才得到较好的解决[1]。实时荧光定量PCR(real-time fluoro-genetic quantitative PCR,FQ-PCR)是通过对PCR扩增反应中每一个循环产物荧光信号的实时检测从而实现对起始模板定量及定性的分析。在实时荧光定量PCR反应中,引入了一种荧光化学物质,随着PCR反应的进行,PCR反应产物不断累计,荧光信号强度也等比例增加。每经过一个循环,收集一个荧光强度信号,这样就可以通过荧光强度变化监测产物量的变化,从而得到一条荧光扩增曲线图。该技术不仅实现了对DNA模板的定量,而且具有灵敏度高、特异性和可靠性强、能实现多重反应、自动化程度高、无污染性、具实时性和准确性等特点,目前已广泛应用于分子生物学研究和医学研究等领域[2]。

分子生物学与基因工程复习提纲

分子生物学与基因工程复习提纲 第一章绪论 1、分子生物学简史 理论上的三大发现 生物的遗传物质是DNA DNA双螺旋模型 遗传信息的传递方式 技术上的三大发现 基因操作的工具酶的发现 载体的应用 逆转录酶的发现 2、证明遗传物质是DNA的三大经典实验 肺炎双球菌转化实验 噬菌体感染实验 病毒重建实验 3、1953年,Watson/Crick 提出了DNA双螺旋结构模型。 4、遗传信息的传递方式的发现 1961 年Monod 和Jacob 提出了操纵子学说; 1964 年Nirenberg 等提出了“三联体密码说”; Crick 提出了遗传信息流向和表达的中心法则。 5、限制性核酸内切酶的定义、特点以及在基因工程中的意义;DNA连接酶 6、克隆载体和表达载体 第二章染色体与DNA 1、核酸、核苷酸、核苷、碱基、嘌呤、嘧啶、DNA、RNA、磷酸二酯键 2、染色体、核小体、组蛋白、非组蛋白 3、基因组大小与C值矛盾、重复序列 4、真核基因组结构的特点;与原核基因组的差异 5、DNA双螺旋结构的要点、氢键、碱基堆集力、A、B、Z型结构 6、超螺旋结构、正/负超螺旋 7、DNA复制、半保留复制、半不连续复制、冈崎片段、拓扑异构酶、Klenow片段 8、真核生物DNA复制的特点 9、转座、转座子、转座子的分类和共同特点、转座的遗传效应 第三章RNA合成 1、转录、转录泡、有义链、反义链、RNA聚合酶 2、启动子、终止子、增强子、依赖ρ因子的终止、不依赖ρ因子的终止 3、原核生物转录的过程 4、真核生物mRNA转录后的加工 5、真核生物成熟mRNA的结构特点 第四章蛋白质的合成 1、遗传密码、密码子、反密码子、密码子偏好性、简并性

“基因工程与蛋白质工程”知识归纳及试题例析讲解学习

“基因工程与蛋白质工程”知识归纳及试题例析一、知识归纳 名称作用参与的生理过程应用 限制性核酸内切酶切割某种特定的脱氧核苷酸序列基因工程 DNA连接酶连接两个DNA片段基因工程 DNA聚合酶在脱氧核苷酸链上添加单个脱氧酸DNA复制 RNA聚合酶在核苷酸链上添加单个核糖核苷酸转录 解旋酶使碱基间氢键断裂DNA复制及转录 逆转录酶以RNA为模板合成DNA 逆转录及基因工程特别注意: (1)限制性核酸内切酶的来源:多数来自原核生物;作用特点:主要切割外源DNA,对自身的DNA不起作用从而达到保护自身的目的;作用结果:形成DNA片断末端。 (2)各种酶都具有专一性,特别是限制酶只能识别特定的脱氧核苷酸序列,并在特定的碱基之间切开。 2.基因工程的基本操作程序 (1)获取目的基因 ①基因文库:是将含有某种生物不同基因的许多DNA片段,导入受体菌的群体中通过克 隆而储存,各个受体菌分别含有这种生物的不同基因。 ②基因组文库:基因文库中含有一种生物所有的基因就叫做基因组文库。 ③部分基因文库:含有一种生物的部分基因,就叫做部分基因文库,如cDNA文库。 比较项目PCR技术DNA复制 相 同 点 原理DNA双链复制((碱基互补配对) 原料四种游离的脱氧核苷酸 条件模板、ATP、酶等 不 同 点 解旋方式DNA在高温下变性解旋解旋酶催化 场所体外复制主要在细胞核内 酶热稳定的DNA聚合酶(Taq酶)细胞内含有的DNA聚合酶 结果在短时间内形成大量的DNA片段形成整个DNA分子 (2)基因表达载体的构建(基因工程的核心) ①构建目的:使目的基因在受体细胞中稳定存在,并且可以遗传给下一代,同时,使目 的基因能够表达和发挥作用。 ②一个基因表达载体的组成:目的基因、启动子、终止子、标记基因等。 ③构建方法

基因组学重点整理

生物五界:动物、植物、真菌、原生生物和原核生物;生物三界:真细菌、古细菌、真核生物 具有催化活性的RNA分子称为核酶(ribozyme)核酶催化的生化反应有:自我剪接、催化切断其它RNA、合成多肽键、催化核苷酸的合成 新基因的产生:基因与基因组加倍1)整个基因组加倍;2)单条或部分染色体加倍;3)单个或成群基因加倍。DNA水平转移:原核生物中的DNA水平转移可通过接合转移,噬菌体转染,外源DNA的摄取等不同途径发生,水平转移的基因大多为非必须基因。动物中由于种间隔离不易进行种间杂交,但其主要来源于真核细胞与原核细胞的内共生。动物种间基因转移主要集中在逆转录病毒及其转座成分。 外显子洗牌与蛋白质创新:产生全新功能蛋白质的方式有二种:功能域加倍,功能域或外显子洗牌 基因冗余:一条染色体上出现一个基因的很多复份(复本)当人们分离到某一新基因时,为了鉴定其生物学功能,常常使其失活,然后观察它们对表型的影响。许多场合,由于第二个重复的功能基因可取代失活的基因而使突变型表型保持正常。这意味着,基因组中有冗余基因存在。看家基因很少重复,它们之间必需保持剂量平衡,因此重复的拷贝很快被淘汰。与个体发育调控相关的基因表达为转录因子,具有多功能域的结构。这类基因重复拷贝变异可使其获得不同的表达控制模式,促使细胞的分化与多样性的产生,并导致复杂形态的建成,具有许多冗余基因。 非编码序列扩张方式:滑序复制、转座因子 模式生物海胆、果蝇、斑马鱼、线虫、蟾蜍、小鼠、酵母、水稻、拟南芥等。模式生物基因组中G+C%含量高, 同时CpG 岛的比例也高。进化程度越高, G+C 含量和CpG 岛的比例就比较低 如果基因之间不存在重叠顺序,也无基因内基因(gene-within-gene),那么ORF阅读出现差错的可能只会发生在非编码区。细菌基因组中缺少内含子,非编码序列仅占11%, 对阅读框的排查干扰较少。细菌基因组的ORF阅读相对比较简单,错误的机率较少。高等真核生物DNA的ORF阅读比较复杂:基因间存在大量非编码序列(人类占70%);绝大多数基因内含有非编码的内含子。高等真核生物多数外显子的长度少于100个密码子 内含子和外显子序列上的差异:内含子的碱基代换很少受自然选择的压力,保留了较多突变。由于碱基突变趋势大多为C-T,故A/T的含量内含子高于外显子。由于终止密码子为TAA\TAG\TGA,如果以内含子作为编码序列,3种读码框有很高比例的终止密码子。 基因注释程序编写的依据:1)信号指令,包括起始密码子,终止密码子,终止信号,剪接受体位和供体位,多聚嘧啶序列,分支点保守序列2)内容指令,密码子偏好,内含子和外显子长短 基因功能的检测:基因失活、基因过表达、RNAi干涉 双链DNA的测序可从一端开始,亦可从两端进行,前者称单向测序,后者称双向测序。 要获得大于50 kb的DNA限制性片段必需采用稀有切点限制酶。 酵母人工染色体(YAC)1)着丝粒在细胞分裂时负责染色体均等分配。2)端粒位于染色体端部的特异DNA序列,保持人工染色体的稳定性3)自主复制起始点(ARS)在细胞中启动染色体的复制 合格的STS要满足2个条件:它应是一段序列已知的片段,可据此设计PCR反应来检测不同的DNA片段中是否存在这一顺序;STS必需在染色体上有独一无二的位置。如果某一STS在基因组中多个位点出现,那么由此得出的作图数据将是含混不清的。 遗传图绘制主要依据由孟德尔描述的遗传学原理,第一条定律为等位基因随机分离,第二条定律为非等位基因自由组合,显隐性规律/不完全显性、共显性、连锁 衡量遗传图谱的水平覆盖程度饱和程度 基因类型:transcribed, translatable gene (蛋白基因) ;transcribed but non-translatable gene ( RNA基因)Non- transcribed, non-translatablegene ( promoter, operator ) rRNA基因,tRNA基因, scRNA基因, snRNA基因, snoRNA基因, microRNA基因 基因组(genome):生物所具有的携带遗传信息的遗传物质总和。 基因组学(genomic):用于概括涉及基因作图、测序和整个基因功能分析的遗传学分支。 染色体组(chromosome set):不同真核生物核基因组均由一定数目的染色体组成,单倍体细胞所含有的全套染色体。 比较基因组学(comparative genomics):比较基因组学是基因组学与生物信息学的一个重要分支。通过模式生物基因组与人类基因组之间的比较与鉴别,为分离重要的候选基因,预测新的基因功能,研究生物进化提供依据。(目标) RNA世界:RNA不仅可以是信息的携带者,而且还可以是功能的执行者,这使科学家们想到了原始的生物世界可能是一个只由RNA组成的“RNA世界”

相关文档
相关文档 最新文档