文档库 最新最全的文档下载
当前位置:文档库 › ASME B16.49-2000_用于输送和分配的管道系统中的工厂制造的钢制感应弯管(中文版)

ASME B16.49-2000_用于输送和分配的管道系统中的工厂制造的钢制感应弯管(中文版)

ASME B16.49-2000_用于输送和分配的管道系统中的工厂制造的钢制感应弯管(中文版)
ASME B16.49-2000_用于输送和分配的管道系统中的工厂制造的钢制感应弯管(中文版)

(工艺流程)长距离输送管道场站典型输油工艺流程

长距离输送管道场站典型输油工艺流程 一、工艺流程的设计原则及要求 (1)工艺流程设计应符合设计任务书及批准的有关文件的要求,并应符合现行国家及行业有关标准、规范及规程的要求。 (2)工艺流程应能实现管道必需的各种输油操作,并且应体现可靠的先进技术,应采用新工艺、新设备、新材料,达到方便操作、节约能源、保障安全的目的。 (3)工艺流程设计力求简洁、适用。尽可能减少阀门及管件的设置,管线连接尽可能短捷。 (4)工艺流程的设计除满足正常输油的功能要求外,还应满足操作、维修、投产、试运的要求。当工程项目有分期建设需要时,还应能够适应工程分期建设的衔接要求。 (5)工艺流程图中,工艺区域编号及设备代号应符合《油气管道监控与数据采集系统通用技术规范》Q/SY 201的规定;所有的机泵、阀门等设备均应有独立的编号,重要阀门应有固定的编号。 二、各类站场的典型工艺流程 (一)输油首站 1.输油首站典型工艺流程说明 (1)对于需要加热输送的输油首站,加热设施应设在给油泵与外输泵之间,加热设施可采用直接加热炉,也可采用间接加热系统,由于加热方式的不同,工艺流程也不相同。为节约能源,加热系统应设冷热油掺合流程。 (2)对于加热输送的管道,根据我国输送油品的性质和管道在投产运行初期低输量的特点,在投产前试运期间,需要通过反输热水建立稳定的管道沿线温度场,为确保管道输油安全,必要时还应设置反输流程。 (3)为方便管道管理,必要时可设置计量流程,流量计应设在给油泵与外输泵之间,加热系统之后。流量计的标定可采用固定方式,也可采用移动方式。 (4)与油罐连接的进出油管线,可采用单管,在油罐区外设罐区阀组,油罐的操作阀门集中设置,这种安装方式,阀门在罐区外操作,阀门的动力电缆和

城镇天然气管道完整性管理系统平台建设

城镇天然气管道完整性管理系统平台建设 摘要近年来,因城市天然气管道管理不善造成天然气泄漏的事故时有发生,这些事故给人民群众的生命财产造成巨大的损失,也给社会的公共安全与稳定带来了极大地负面影响。本文提出了城镇天然气管道完整性管理系统平台的建设,以供参考。 关键词天然气管道;管理平台;安全;平台特性;平台功能 1 天然气管道安全运行存在的问题 1.1 对管道安全运行保护认识不足 天然气作为一种优质清洁能源,为当地经济发展、促进社会和谐稳定起着举足轻重的作用。要使天然气平稳输送到千家万户,管道安全运行是基础。当前,天然气管道设施保护带内个别单位和村民为一时之利、一人之益而忽视管道保护的行为时常发生,大量出现违章建筑物和违章施工。安全运行存在认识不足的表现如下:①管道所在地居民缺乏保护管道的意识;②施工建设单位落实管道保护措施不力;③管道属地政府职能部门监督检查沿线保护工作存在薄弱环节;④市民没有从根本上认识保护天然气管道的重要性,还没有完全意识到做好管道保护需要全社会的共同努力和相互配合。 1.2 违章建筑占压管道的现象有增无减 天然气管道投运后,管道运营企业要投入资金专项整治管道占压等隐患。有的人见赔偿有利可图,便在管道保护带外进行无规划围地圈占,然后在5m以外搭建临时设施并逐步延伸到5m范围内,其规模逐步扩大形成违章建筑带或区域经济带,等待管道运营企业的赔偿或向管道企业索赔,并指责管道运营企业妨碍当地经济发展和开发建设。这是明知管道建设在先,仍然要违章施工,借此达到索赔目的。近年来类似现象尤显突出,容易导致天然气管道安全事故,甚至引发火灾,产生爆炸,造成生命财产损失。 1.3 管道企业制止违章行为的力度和手段有限 近年来,管道运营企业不断完善和持续改进管道保护管理制度,采取了沿线管道保护知识宣传,设置和加密安装管道安全标志,安排专人巡检,对施工工地进行24小时严防死守,成立抢险队伍随时应对管道突发事件,落实管道保护专业人员驻附近场站值守等措施,效果明显。但由于管道运营企业人员不具备执法手段和处罚权力,根本不能及时有效地杜绝危害管道安全运行的行为,个别施工单位和村民公开对抗管道工作人员,更有甚者,在巡检人员巡过时段和巡检间隔期间,擅自勘钻、放炮、移动或破坏管道标志,强行违章施工并抗拒管道运营企业员工的安全告知和制止行为,屡屡出现发生危及管道安全的重大险情[1]。

天然气管道智能巡检系统、燃气管道及设施巡更系统

GPS定位巡检管理系统 ——燃气管道巡检行业应用 燃气公司管线和附属设施的巡检工作其管理目标是有效消除可能的隐患或损失,进而降低成本、提高工作绩效的高效管理。石家庄智创软件开发公司研发的GPS定位巡检管理系统是经过不断探索、创新、实践形成的一套具有燃气行业特色的新型的管网安全运行管理方式。 一、GPS定位巡检管理系统解决燃气行业问题: 1.无法随时掌握巡检员执勤的到位情况,因而无法有效地保证巡检工作人员按计划要求, 按时按周期对所有的管线及附属设施展开巡察,使巡检工作的质量得不到保证,管线状态和设施运行数据的真实性得不到保证。 2.无法及时掌握隐患情况并跟踪管理,很多的重大事故都因为隐患得不到及时解决或解 决不彻底而造成的,主管部门也缺乏有效跟踪复查隐患处理的平台,导致巡检发现管线设施的隐患和第三方施工的监护无法有效跟踪管理。 3.无法及时了解施工现场管网及设施的分布情况,随着城市快速发展,多数燃气公司都 已经建立了GIS管网分布系统或CAD管网图,但仍然会发生由施工造成的重大安全事故,是因为管网图资没有被有效的利用,如巡检人员能通过手持终端及时掌握施工现场的管网及设施的分布将极大减少悲剧的发生。 4.无法真实掌握危及管线和附属设施安全运行的状况及可靠的记录存档,目前大多用户 还在使用手写报告记录的方式记录巡检信息,保存不便,如录入电脑存档,又存在数据丢失,录入错误的问题,耗工费时且无法体现真实情况(如:施工工地现场情况)。5.无法进行数字化分析管理,辅助决策无从实施,对发现的隐患及设备故障无法进行有 效的分类统计分析,管线和附属设施的运行状况、运行参数等历史数据无法有效地被利用,查询不易,对隐患类型、设备缺陷的分析,乃至具季节性、阶段性的工作重点安排与设备的选型,无法进行有效到位的安排。 6.无法掌握抢修车辆分布,就近调度,有事故或抢险任务时,抢修应急反应速度无法考 核,抢修抢险过程以纸张手写记录,记录信息不全面,手写随意性大,无法真实反应状况,无法掌握事故处理细节,产出有效的检讨与跟踪分析,提高各项应急处理效能。

气力输送系统基本参数计算知识

系统基本参数计算 更新时间:2005年07月20日 系统基本参数计算 1.输灰管道当量长度Leg 输灰管道的总当量长度为 Leg=L+H+∑nLr (m)(5-19) 2.灰气比μ 根据所选定的空气压缩机容量和仓泵出力,用下式可计算出平均混合比 μ=φGhX103/[ Qmγa(t2+t3)](kg/kg)(5-20) Gh=ψγhνp (t/仓) (5-21) 式中Gh—仓泵装灰容量,t/仓。 灰气比的选择取决于管道的长度、灰的性质等因素。对于输送干灰的系统,μ值一般取7-20 kg/kg。当输送距离短时,取上限值;当输送距离长时,则取下限值。 3.输送系统所需的空气量 因单、双仓泵均系间断工作,故系统所需的空气量应根据仓泵每一工作周期所需的气耗量.再折合成每分钟的平均耗气量即体积流量Qa=φGhX103/[μγa(t2+t3)](m3/min)(5-22) 质量流量Ga=Qaγa=16.67 Gm/μ (kg/min)(5-23) 4.灰气混合物的温度 输送管始端灰气混合物的温度可按下式计算tm=( Gmchth+ Gacata)/( Gmch+Gaca) (℃) (5-24) 式中Gm—系统出力,kg/min; ch—灰的比热容,kcal/(kg℃) ,按公式(5-7)计算 th—灰的温度,℃; ca—空气的比热容,一般采用o.24kcal/(kg℃); ta—输送空气的温度,℃。 因灰气混合物在管道内流动时不断向外界散热,故混合物的温度逐渐下降,其温降值与周围环境温度、输送管道的直径等因素有关。根据经验,每100m的温降值一般为6—20℃。当混合物与周围环境的温度差大时,取上限值;温度差小时取下限值。 5.输送速度 仓泵正压气力除灰系统输送的距离一般比较长,为保证系统安全经济运行,沿输送管线的管径需逐段放大,一般均配置2—3种不同管径的管道,以使各管段的输送速度均在设计推荐范围内,根据实践经验,各管段的输送速度推荐如下:

石油及天然气工业管道输送系统

《石油天然气工业管道输送系统管道延寿推荐做法》 (征求意见稿)编制说明 一、计划来源 本标准根据《关于下达2012年第一批国家标准制修订计划的通知》(国标委综合[2012]50)要求制定,计划号为20120416-T-469,由中国石油天然气股份有限公司管道分公司负责起草,GE Oil & Gas PII Pipeline Solutions 和中国科学院金属研究所参与起草。 二、制定本国家标准的目的、意义 随着我国管道业核心标准GB/T 24259-2009《石油天然气工业管道输送系统》在2009年的制定和发布,我国管道业标准首次实现了与国际标准的接轨和同步,这必将直接促进管道业其它各相关标准的国际化进程。众所周知,GB/T 24259-2009《石油天然气工业管道输送系统》修改采用ISO 13623:2000《石油天然气工业管道输送系统》,实际是直接采用ISO/DIS 13623:2008。ISO/DIS 13623:2008是国家标准GB/T 24259-2009制定前获得的最新的ISO 13623版本,与正式发布的版本ISO 13623:2009不存在技术层面的差异,反映了国际管道业最新的技术水平和理念,引导着世界管道技术发展的潮流,也是ISO系列管道标准中的核心标准,ISO以其为核心,构建了一个完整的管道标准体系,这从ISO 13623:2009的规范性引用文件中可以清楚看出。 近年来,国内外老龄管道大量增加,很多超过了管道的设计寿命,这些管道可否继续使用,还能使用多少年,是国内外管道运营公司面临的难题。同时,近期国内外石油石化行业由于设备、管道老化造成的事故频发,给管道设置一个合理的寿命势在必行。此外,对管道延寿进行评估还可以作为新建管线的项目依据,为管道运营公司废弃旧管道、新建新管线提供决策技术支持。通过管道延寿推荐做法标准的制定,将解决老龄管道运营面临的瓶颈问题,极大提升国内管道运营公司的完整性管理水平。因此建议对ISO 12747采标,制定我国管道行业的管道延寿推荐性做法的国家标准。

城市燃气管网监测、燃气管网实时监控系统

城市燃气管网监测、燃气管网实时监控系统
系统概述: 燃气系统是城市基础设施的重要组成部分,对社会环境和现代化城市建设起着举足轻 重的作用。为了保证然气输配管网的安全运行和稳定供气,提高现代化的供气管理水平, 城市燃气管网监测(燃气管网实时监控系统)应运而生。 系统组成: 城市燃气管网监测由四个部分组成。 监测中心:主要硬件:防火墙、服务器、计算机、交换机、打印机等。 主要软件:操作系统软件、数据库软件、燃气管网无线监控系统软件。 通信网络:移动 GPRS 网络,INTERNET 公网(需绑定固定 IP)。 抄表终端:燃气管网监控设备(GPRS RTU)DATA-6216/6218。 计量设备:压力变送器,燃气流量计,温度变送器,可燃气体检测仪等。 系统拓扑图:
财务结算系统
BS 服务器
值班员计算机
交换机
防火墙 INTERNET 公网 公司领导或上级管理
GPRS 网络
燃气管网监控设备 DATA-6126
燃气管网监控设备 DATA-6128
燃气管道压力、温度、流量、 可燃气体变送器。
燃气管道压力、温度、流量、 可燃气体变送器。
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/3c18190172.html,

主要功能: ◆ 采集燃气管道压力、温度、流量、气体泄漏及电池电压等数据。 ◆ 将采集数据主动上报到监控中心;支持定时上报和监测数据超限上报。 ◆ 支持电池供电方式,无需外部供电功能。 ◆ 支持对各种类型仪表对接功能(串口信号、4-20mA 信号、脉冲信号)。 ◆ 支持历史数据查询功能,报表生成功能,自动生成各种报表。 ◆ 支持测点数量 65535 个。 ◆ 易维护性,系统操作简便,抄表终端支持远程维护管理。 ◆ 采用 GPRS/CDMA、短消息无线通信方式。 ◆ 现场可存储、显示、查询压力、流量等数据及工作参数。存储数据≥1 万条。 ◆ 数据存储间隔、数据上报间隔可以设置。 ◆ 电池寿命根据上报频率确定,可达到 1-3 年。 ◆ 为现场压力变送器提供直流电源:5V、12V、24V。 ◆ 支持远程升级设备程序、设定参数。
燃气管网无线监控系统软件:
PDF 文件使用 "pdfFactory Pro" 试用版本创建 https://www.wendangku.net/doc/3c18190172.html,

气力输送系统介绍

气力输送系统介绍 气力输送是一项综合性技术,它涉及流体力学、材料科学、自动化技术、制造技术等领域,属输送效率高、占地少、经济而无污染的高新技术项目。随着我国经济的快速发展,各行各业的生产也在不断扩大,有些行业如火力发电厂、化工厂、水泥厂、制药厂、粮食加工厂等的一些原材料、粉粒料在输送生产工程中产生的环境污染越来越得到广泛的重视。气力输送技术于是得到了逐步的推广。气力输送是清洁生产的一个重要环节,它是以密封式输送管道代替传统的机械输送物料的一种工艺过程,是适合散料输送的一种现代物流系统。将以强大的优势取代传统的各种机械输送。 气力输送系统具有以下特点: ◆气力输送是全封闭型管道输送系统 ◆布置灵活 ◆无二次污染 ◆高放节能 ◆便于物料输送和回收、无泄漏输送 ◆气力输送系统以强大的优势。将取代传统的各种机械输送。 ◆计算机控制,自动化程度高 气力输送形式: ◆气力输送系统按类型分:正压、负压、正负压组合系统 ◆正压气力输送系统:一般工作压力为0.1~0.5MPa ◆负压气力输送系统:一般工作压力为-0.04~0.08 MPa ◆按输送形式分:稀相、浓相、半浓相等系统。 气力输送系统功能表: 常见适合气力输送物料 可以气力输送的粉粒料品种繁多,每种物料的料性对气力输送装置的适合性和效率都有很大的影响。因此在选定输送装置前要先对物料进行性能测定。现在常见适合气力输送物料示例如下:

浓相气力输送系统 浓相气力输送系统根据国外先进技术及经验,结合科学实验,经过数年实践,被确认为是一种既经济又可靠的气力输送系统。该系统输送灰气比高,耗气量少,输送速度低,有效降低管道磨损。该系统主要由压缩空气气源,发送器、控制柜、输送管、灰库五大部分。 1、压缩空气气源: 由空气压缩机、除油器、干燥器、储气罐及管道组成,主要为发送器及气控元件提供高质量的压缩空气。 2、发送器: 器集灰斗的飞灰,经流化后通过输送管道送至灰库。 3、控制柜: 以电脑集中控制各种机械元件动作,并附有手动操作机构。 4、输送管道: 经实验,输送距离可达1300米,管路寿命可达20000小时以上。 5、灰库: 由灰库本体、布袋除尘器、真空释放阀、料位计、卸灰设备等组成。 浓相气力输送系统示意图

天然气长输管道的知识

关于天然气长输管道知识普及 随着我国天然气勘探开发力度的加大以及人民群众日益提高的物质和环保需要,近年来天然气长输管道的发展十分迅速。随着管道的不断延伸,管道企业所担负的社会责任、政治责任和经济责任也越来越大。因此,对于天然气长输管道知识普及显得尤为重要。 一、线路工程 输气管道工程是指用管道输送天然气和煤气的工程,一般包括输气线路、输气站、管道穿(跨)越及辅助生产设施等工程内容。 线路工程分为输气干线与输气支线。输气干线是由输气首站到输气末站间的主运行管线;输气支线是向输气干线输入或由输气干线输出管输气体的管线。 线路截断阀室属于线路工程的一部分,主要设备包括清管三通、线路截断球阀、上下游放空旁通流程、放空立管等,功能是在极端工况或线路检修时,对线路进行分段截断。阀室设置依据线路所通过的地区等级不同,进行不同间距设置。 阀室系统包括手动阀室和RTU阀室两大类。 二、工艺站场 输气站是输气管道工程中各类工艺站场的总称。一般包括输气首站、输气末站、压气站、气体接收站、气体分输站、清管站等站场。 输气站是输气管道系统的重要组成部分,主要功能包括调压、过滤、计量、清管、增压和冷却等。其中调压的目的是保证输入、输出

的气体具有所需的压力和流量;过滤的目的是为了脱除天然气中固体杂质,避免增大输气阻力、磨损仪表设备、污染环境等;计量是气体销售、业务交接必不可少的,同时它也是对整个管道进行自动控制的依据;清管的目的在于清除输气管道内的杂物、积污,提高管道输送效率,减少摩阻损失和管道内壁腐蚀,延长管道使用寿命;增压的目的是为天然气提供一定的压能;而冷却是使由于增压升高的气体温度降低下来,保证气体的输送效率。根据输气站所处的位置不同,各自的作用也有所差异。 1、首站 首站就是输气管道的起点站。输气首站一般在气田附近。 2、末站 末站就是输气管道的终点站。气体通过末站,供应给用户。因此末站具有调压、过滤、计量、清管器接受等功能。此外,为了解决管道输送和用户用气不平衡问题,还设有调峰设施,如地下储气库、储气罐等。 3、清管站 清管站是具有清管器收发、天然气分离设备设施及清管作业功能的工艺站场。 4、压气站 压气站是在输气管道沿线,用压缩机对管输气体增压而设置的站。 5、分输站

克莱德气力输送系统介绍

克莱德贝尔格曼华通 物料输送 气力输送系统介绍 现场培训用材料(试行版) 05.3.30

前言:气力输送的相关概念和原理 一:电厂输送的物料(输送对象) 1:电除尘的飞灰。 2:省煤器和空气预热器灰。 3:循环流化床锅炉的炉底渣。 4:循环流化床锅炉的石灰石粉料。 二:电除尘飞灰的主要性能指标及对输送的影响 1:粒度 粒度是对粉煤灰颗粒大小的度量,是粉煤灰的基本物理参数之一。粉煤灰许多的物化性能与此参数有密切的联系。 测量方法:筛分(围)和粒度分析仪(围更小的数值围)。 粒度大将引起在浓相输送中不容易形成灰栓、导致输送困难并引起耗气量增加。2:密度 密度:单位容积的重量。 气化密度:灰层处于气化状态下的密度。 在粒度相同时,密度小、孔隙率高,易输送。 3:粘附力 粘附力是分子力(分子间的引力,和距离的)、静电力(带相同电荷和相反电荷之间颗粒的引力和排斥力)、毛细粘附力(2个相邻湿润颗粒之间的拉力)总合。 分子力:分子间的引力,和距离的成反比,距离超过100A(1A=0.00001μM)时,此力忽略不计。当分子力很大时,粉粒从环境中吸收水分,增加粘性力. 静电力:带相同电荷和相反电荷之间颗粒的引力和排斥力.在相邻带电的粒子间的空气介质湿度教大,册静电力的作用就会显著减弱或全部消失. 粘附力大,会导致灰的流动性差,导致落灰困难并会增加浓相输送的困难。 4:磨蚀性 粉煤灰在流动中对管道壁的磨损。 影响磨蚀性的因素:粉煤灰颗粒的硬度、灰的几何形状、大小、密度、强度、流动速度。 粉煤灰颗粒的硬度:是物料磨蚀性及抗破碎性程度的表征,又是物料强度、流动性好坏的度量。硬度高:流动性差;导致为输送高硬度的物料需要耗费大的耗气量。。 一般:多棱体比光滑表面磨蚀性大、粗灰比细灰磨蚀性大。 在5-10μ的颗粒磨蚀性可以忽略;颗粒增大;磨蚀性增加,增大到极限值后,磨蚀性下降。 磨蚀性与气流速度的2-3次方成正比。灰的浓度低,磨蚀性大;灰的浓度高、其磨蚀性低。 5:灰斗的架桥和离析 架桥(棚灰):粉料堵塞在排料口以至于不能进行自由落体的排料。 架桥的原因:堆积密度(大)、压缩性(高)、粘附性(粘、软)、可湿性(高)、喷流性(差)、拱顶物料强度(高)、储存时间(长)、出料口(小) 括号是增加架桥发生的诱因变化趋势。

天然气管道系统安全保护通用范本

内部编号:AN-QP-HT710 版本/ 修改状态:01 / 00 When Carrying Out Various Production T asks, We Should Constantly Improve Product Quality, Ensure Safe Production, Conduct Economic Accounting At The Same Time, And Win More Business Opportunities By Reducing Product Cost, So As T o Realize The Overall Management Of Safe Production. 编辑:__________________ 审核:__________________ 单位:__________________ 天然气管道系统安全保护通用范本

天然气管道系统安全保护通用范本 使用指引:本安全管理文件可用于贯彻执行各项生产任务时,不断提高产品质量,保证安全生产,同时进行经济核算,通过降低产品成本来赢得更多商业机会,最终实现对安全生产工作全面管理。资料下载后可以进行自定义修改,可按照所需进行删减和使用。 1. 系统保护 (1) 管道保护系统 管道保护系统需进行分级设置,并确定优先顺序。例如,部分单体设备应单独采取本地保护措施,以保护其自身系统;通过站控系统和安全系统来对整个场站设施进行保护;按照管道系绑保护原则,通过SCADA系统对整个管道系统进行保护。SCADA系统监控整个系统的异常情况或威胁系统完整性的情况,如果控制中心操作员没有采取任何措施,SCADA系统可自动采取保护措施确保整个管道系统的安全。

电厂仓泵干除灰气力输送系统的PLC控制详述

电厂仓泵干除灰气力输送系统的PLC控制详述 文摘本文详细介绍了火力发电厂气力输送(干除灰)系统的工作流程和控制要求,仓泵气力输送技术开始在国内的运用,进一步促进了国内电厂粉煤灰气力输送技术的发展并且气力输送系统的输送距离、输送浓度、系统出力和设备的制造工艺及自动化水平得到加强和提高。 发电厂控制系统采用OMRON公司的C200H可编程序控制器,并在仓泵的输灰控制系统中的应用,实现了对仓泵的进料,进气,排气,出料等过程的计算机控制。本文给出了具体的实施方案,由该装置所构成的控制系统运行正常,其综合效益十分明显。 一、系统构成简介 在仓泵输灰控制过程中有大量连锁及闭锁。如: ①在仓泵体仍有余压得情况下就只能开放气阀降压而禁止开进料阀,进料和放气两阀未完全关闭时则禁止打开进风阀,以防止返灰;②在灰管压力较允许值高时则闭锁打开出料阀和进风阀,以防灰管堵塞或堵塞故障变大;③在空气母管压力较低时闭锁打开进风阀,防止堵管;④在进风阀未完全关闭时,闭锁大开放气阀和进料阀;⑤当仓泵内的灰料高度已达到预定位置、同侧的另一台仓泵不再出料状态且空气母管压力已达到规定值时,连锁打开出料计进风阀进行出料; 当空气母管压力降到规定值后,连锁关闭进风、出料阀,停止出料;另外还者有阀门故障检测系统,当一阀门从全关位置到全开位置或从全开位置到全关位置的动作时间超过一定时间值时,则发出声报警信号,提醒运行人员,该阀门已卡,应立即进行处理。 二、气力输送管中颗粒的运动状态 气力除灰是一种以空气为载体的方法,借助于某种压力设备(正压或负压)在管道中输送粉煤灰的方法。在输送管中,粉体颗粒的运动状态随气流速度与灰气比不同有显著变化,气流速度越大,颗粒在气流中的悬浮分布越均匀;气流速度越小,粉粒则越容易接近管低,形成停流,直至堵塞管道。 通过实验观察到某些粉体在不同的气流速度下所呈现的运动状况具有下面六种类型: (1)均匀流当输送气流速度较高,灰气比很低时,粉粒基本上及以接近均匀分布的状态在气流中悬浮输送。 (2)管底流当风速减小时,在水平管中颗粒向管底聚集,越接近管底,分布越密,当尚未出现停址。颗粒一面做不规则的旋转或碰撞,一面被输送走。 (3)疏密流当风速在降低或灰气进一步增大时,则会出现疏密流,这是粉体悬浮输送的极限状态。以上三种状态为悬浮流。 (4)集团流疏密流的风速再降低,则密集部分进一步增大,其速度也降低,大部分颗粒失去悬浮能力而开始在管道底滑动,形成集团流。粗大的颗粒透气好容易形成集团流。集团流只是在风速较小的水平管和倾斜管中产生。在垂直管中,颗粒所需要的浮力,已由气流的压力损失补偿了,所以不存在集团流。 (5)部分流常见的是栓塞流上部被吹走后的过度现象所形成的流动状态。 (6)栓塞流堆积的物料充满一段管路,水泥及粉灰煤灰一类不容易悬浮的粉粒,容易形成栓塞流。它的输送是靠料栓前后压差的推动。与悬浮流输送相比,在力的作用方式和管壁的摩擦上,都存在原则性区别,即悬浮流为气动力输送,栓塞流为压差输送。 2.1 气力除灰技术特点 气力除灰是一种以空气为载体,借助于某种压力设备在管道中输送粉煤灰的方法。气力除灰技术具有如下的特点: (1)节省大量的冲灰水; (2)在输送过程中,灰不与水接触,固灰的固有活性及其他特性不受影响,有利于粉煤灰的综合利用; (3)减少灰场占地; (4)避免灰场对地下水及周围大气环境的污染;

天然气输送管道安全管理规程QSYGD0062

天然气输送管道安全管理规程 Q/SY GD0062-2001 l 范围 本标准规定了天然气长距离输送管道工艺站场、干线、阀室及其放空、排污、清管等过程中的安全管理要求。 本标准适用于大然气输送管道的安全管理。 2 引用标准 2.1 SY 5225一1994 石油天然气钻井、开发、储运防灾、防爆安全管理规定 2.2 SYJ 43-89 油气田地面管线和设备涂色规定 2.3 SY 7514-88 天然气 2.4 质技监局锅发[1999]154号压力容器安全技术监察规程 3 输气站安全菅理要求 3.1 一般要求 3.1.1 站场入口处应有醒目的进站安全规定,生产区与非生产区之间应设置明显的分界标志。 3.1.2 外来人员因工作需进入工艺场区,必须经站领导批准,留下火种,登记入站。 3.1.3 非生产所需的机动车辆不准进入工艺站场,生产作业车辆进入站内必须配戴防火帽,按规定的路线、指定的地点行驶和停放,变在规定时间内离开。 3.1.4 按《石油天然气钻井、开发储运防火防爆安全管理规定》标准配备消防器材和设施,并按国家有关部门最新的要求进行灭火器材品类的淘汰和更换,消防器材和消防设施必须保证完好,消防道路必须保持畅通,禁止占用消防通道或在道路上堆放物品。 3.1.5 生产区应平整、整洁,无易燃物堆积。 3.2 工艺站场 3.2.l 工艺站场的各种设备应实行挂牌管理。管网设备及其附属设施应处于壳好状态,无跑、冒、滴、漏现象。管道及设备的着色应符合有关标准规定,管道表面应有气体流向标志。 3.2.2 工艺站场安装一定数量的固定式可燃气体报警器,且一年至少检验一次. 3.2.3 站内安装的安全阀、压力表、温度计等仪器仪装应符合设计和生产要求,并按相应的规定年限进行校验. 3.2.4 工艺站场安装的各种设备、仪器仪表,生产作业所使用的工器具必须符合防火防爆要求. 3.2.5 工艺站场的工艺管网、设备、自动控制仪表及控制盘(柜〕须安装防感应雷避雷器和防静电接地设施,工艺站区及建筑物应安装防直击雷避雷设施,接地电阻位应小于10Ω。管道、设备等的法兰间应设跨接铜线。 3.2.6 工艺场区严禁拉设临时电气线路,严禁擅自拆接各种装置仪表,严禁擅自外接气源。 3.2.7 未经上级调度指令,站场工艺流程不得擅自改变. 3.2.8 工艺站场高于1.5m的作业点应设置操作平台,并设两通向的梯子,斜度小60度,并有扶手、拦杆。3.3 装置及其他 3.3.1 工艺站场区已报废或停用的工艺装置、设备应予拆除,不能拆除的必须与在用的工艺管线加盲板隔离。 3.3.2 站内天然气储罐、分离器和阀门等输气设备在冬季运行前应采取防冻措施。 3.3.3 工艺站场的电缆沟盖板应封严,并有排水措施。 3.3.4 天燃气的脱水、脱油操作,应严格执行操作规程,经脱水、脱油后的天然气应达到SY 7514的标准 规定。 3.3.5 工艺站场进行的改、扩建、维修以及更换孔板等作业时,应严格遵守“先卸压、后作业"的操作程序,

城市燃气管网GIS系统

城市燃气管网GIS系统 城市燃气GIS系统解决方案 (成都方位导向科技开发有限公司) 公司自主研发,利用GIS技术,FLEX富客户表现技术,空间数据库,采用B/S 开发,java 跨平台部署,实现城市燃气高压管线、低压管线、阀们、外业工程车辆的调度安排、作业管理、应急指挥等纳入到信息化的管理当中。一方面,通过本系统的事务处理的能力对阀门,管线报警预警并同时进行工程车辆出警调度管理,另一方面,通过本系统的智能化处理技术,将管线采集作业情况实现智能化采集入库。提高管线采集作业管理。 系统总体架构 系统总体架构是以面向对象(OOP)的设计为基础,以面向服务(SOA)的设计为应用扩展,系统主要采用Browser - Server(B/S)表现形式。 系统服务端是基于J2EE技术标准规范下进行开发的,有着良好的安全性、扩展性以及跨平台的适应能力,GIS服务平台采用本公司自己的一套解决方案MAPHAOSERVER进行应用开发,MAPHAOSER企业级GIS平台跨平台部署,支持发布WMS\WFS地图服务,支持shp\tab\dwg\dgn\等目前国内外GIS各种矢量数据以及光栅图的发布;支持缓冲区分析、叠加分析、路径分析、网络分析等各种空间分析算法;支持浏览器端直接绘制点、线、面矢量数据入库。数据库选用PostgreSQL。

系统维护管理端应用环境 服务端:可在windows或者linux的服务器上部署系统,维护简单。客户端:终端用户只需要浏览器即可访问,支持各种主流浏览器。系统主界 面 系统功能简介 1.阀门管理 ①.能查询到所有的阀门列表,并以表格形式展示。

②.能根据阀门的各种参数模糊查询阀门。 ③.查询到的阀门,点击定位后,能在地图上定位该阀门。 ④.在表格中能删除选定阀门。 ⑤.在表格中能修改选定阀门。 ⑥.可以直接在地图上绘制点并输入阀门其他参数添加阀门。

气力输送系统的组成气力输送

《食品加工机械与设备》 前言 研究内容:农产品加工中常用的机械和设备以及其构成、各部分的功能,特性,适用范围,使用与维护和相关性能指标的测定(生产率、功率消耗等)。 研究目的和意义:了解现有的设备,设计未来的产品。 第一章物料输送机械 本章学习目标 1)了解各种形态物料的输送特点; 2)掌握输送机械的主要类型及其工作原理; 3)了解各种主要输送机械的基本结构; 4)掌握输送机械的基本性能特点; 5)掌握输送机械的选用和使用要点。 一前言: 输送机械的类型:按传送过程的连续性分为连续式和间歇式 按传送时运动方式可分为直线式和回转式 按驱动方式分机械驱动、液压驱动、气压驱动和电磁驱动 按所传送的物料形态分为固体物料输送机械和液体物料输送机械输送物料的状态:固体物料状态有块状、粒状和粉状,输送机械有带式、螺旋、振动式、刮板式、斗式输送机与气力输送装置,固体物料的组织结构、形状、表面状态、摩擦系数、密度、粒度大小;液体物料状态有牛顿流体和非牛顿流体,输送机械有离心泵、齿轮泵和螺杆泵,液体物料的粘度、成分构成。 良好输送效果,应考虑物料性质、工艺要求、输送路线及运送位置的不同选择适当形式的输送设备。 二固体物料输送机械 (一)带式输送机应用最广泛,连续输送机械,用于块状、颗粒状物料及整件物料的水平或倾斜方向的运送,还常用于连续分选、检查、包装、清洗和预处理的

操作台。v=0.02~4m/s 1.工作原理和类型:环形输送带作为牵引及承载构件,绕过并张紧于两滚筒上,输送带依靠 其与驱动滚筒之间的摩擦力产生连续运动,同时,依靠其与物料之间的 摩擦力和物料的内摩擦力使物料随输送带一起运动,从而完成输送物料 的任务。主要组成部件:环形输送带,驱动滚筒,张紧滚筒,张紧装置, 装料斗、卸料装置、托辊及机架组成 特点:结构简单,适应性广;使用方便,工作平稳,不损失被运输物料;输送过程中物料与输送带间无相对运动,输送带易磨损,在输送轻质粉料时易形成飞扬。 1.2主要构件: 1.2.1输送带: A种类:食品工业常用的输送带有橡胶带、纤维编织带、网状钢丝带及塑料带。 1)橡胶带纤维织品与橡胶构成的复合结构,上下两面为橡胶层,耐磨损,具有良好 的摩擦性能。工作表面有平面和花纹两种,后者适宜于内摩擦力较小的光滑颗粒物 料的输送。规格:300、400~1600mm宽 2)钢带0.6~1.4mm厚,宽<650mm;强度大耐高温、不易伸长和损伤 3)网状钢丝带强度高、耐高温、耐腐蚀,网孔大小可选,常用于水冲洗+输送, 边输送,并清、沥水、炸制、通分冻结、干燥。 4)塑料带耐磨、耐酸碱、耐油、耐腐蚀,适用温度变化范围大,一般有单层和多层 结构。 B托辊: 作用:承托输送带及其上面的物料,避免作业时输送带产生过大的挠曲变形。 种类:上托辊(载运托辊)和下托辊(空载托辊) 上托辊有单辊式和多辊组合式。前者输送带表明平直,物料运送量较少,适合运输成件物品;后者输送带弯曲呈槽形,运输量大、生产率高,适合运送 颗粒状物料,单输送带易磨损。 材料:铸铁、钢管+端头 1)上托辊φ89、φ108、φ159mm , 间距<1/2物件长(大于20公斤)一般 0.4~0.5m 2)下托辊只起托运输送作用,多为平面单辊。 C: 滚筒 1)驱动滚筒一般有电机+减速机+带、链传动,电动滚筒。宽大于带宽10~20cm.

输油管道系统输送工艺设计规范

输油管道系统输送工艺设计规范 3. 1一般规定 3.1.1输油管道工程设计计算输油量时,年工作天数应按354d计算。 3. 1. 2应按设计委托书或设计合同规定的输量(年输量、月输量、日输量)作为设计输量。设计最小输量应符合经济及安全输送条件。 3. 1. 3输油管道设计宜采用密闭输送工艺。若采用其他输送工艺,应进行技术经济论证,并说明其可行性。 3. 1. 4管输多种油品,宜采用顺序输送工艺。若采用专管专用输送工艺,应进行技术经济论证。 3.1.5输油管道系统输送工艺方案应依据设计内压力、管道管型及钢种等级、管径、壁厚、输送方式、输油站数、顺序输送油品批次等,以多个组合方案进行比选,确定最佳输油工艺方案。 3.1.6管输原油质量应符合国家现行标准《出矿原油技术条件》(SY 7513的规定;管输液态液化石油气的质量应符合

现行国家标准《油气田液化石油气》(GB 9052.1)或《液化石油气》(GB 11174)的规定;管输其他成品油质量应符合国家现行产品标准。 3.1.7输油管道系统输送工艺总流程图应标注首站、中间站、末站的输油量,进出站压力及油温等主要工艺参数。并注明线路截断阀、大型穿跨越、各站间距及里程、高程(注明是否有翻越点)。 3.1.8输油管道系统输送工艺设计应包括水力和热力计算,并进行稳态和瞬态水力分析,提出输油管道在密闭输送中瞬变流动过程的控制方法。 3. 2原油管道系统输送工艺 3. 2. 1应根据被输送原油的物理化学性质及其流变性,通过优化比选,选择最佳输送方式。原油一般物理化学性质测定项目,应符合本规范附录A的规定;原油流变性测定项目,应符合本规范附录B的规定。 3.2.2加热输送的埋地原油管道,应优选加热温度;管道是否需保温,应进行管道保温与不保温的技术经济比较,确

灰渣稀相气力输送系统设计计算说明书

灰渣稀相气力输送系统设计计算说明书灰渣稀相气力输送系统设计计算说明书一系统出力 按污泥处理量在设计点400t/d、进厂污泥固含率在设计点(20%),污泥中可燃质在设计低限(38.5%,DS)计算,焚烧炉系统的灰渣产率为2.05t/h;如果按污泥处理量在设计点400t/d、固体中可燃质含量在设计点(56%,DS)、进厂污泥固含率在设计高限(27%)计算,则系统的灰渣产率为1.98t/h,如果按污泥中固含率在设计点20%、固体中可燃质含量在设计点(56%,DS)、污泥处理量在设计高限450t/d计算,系统的灰渣产率为1.65t/h。系统的最大灰渣产率按第一种情况计算,即取2.05t/h。尾气干法处理时碳酸氢钠的加入量为460 kg/h,活性炭的加入量为 4.6kg/h。为便于灰渣分别处置,余热锅炉和电除尘器收集的灰渣通过一套输送系统输送到灰渣储仓,而袋式除尘器收集的飞灰以及尾气处理时加入系统的碳酸氢钠和活性炭则通过另一套系统输送到飞灰储仓。卸灰时,依据灰斗料位或按顺序开启旋转阀,在同一时间,每套输灰系统只能开启一台旋转阀。根据经验数据,两台余热锅炉排出的灰渣量约为440kg/h。按电除尘器最高除尘效率99.9%计算,则其灰斗最大灰渣产率1.61t/h,余热锅炉和电除尘器共用的灰渣输送线灰渣最大产率为2.05t/h。按余热锅炉加电除尘器最低除尘效率为90%,袋式除尘器除尘效率按99.9%计算,飞灰输送线的最大产灰率(包括烟气处理系统加入的碳酸氢钠粉和活性炭粉)0.67t/h。因为对每个灰斗来说,灰渣输送系统采用的是间歇运行的方式,且灰渣和飞灰输送都没有备用线,参考《火力发电厂除尘 设计规程》有关规定,灰渣输送系统的出力按系统最大灰渣产率的250%进行设计。 综合上述因素,余热锅炉和电除尘器的灰渣输送线设计出力取5.125t/h,袋式除尘器的飞灰输送系统的设计出力取1.675t/h。二灰渣输送线操作参数选取

原油管道输送方式及工艺流程

原油管道输送方式及工艺流程 一、组成 长距离输油管道由输油站和线路组成; 输油站就是给油流一定的能量(压力能和热力能),按所处位置分首站、中间站、末站; 中间站按任务不同分加热站、加压站、热泵站(加压、加热); 首站:输油管道起点的输油站,任务是接受(计量、储存)原油,经加压、加热向下一站输送; 输油管道终点的输油站称末站,接受来油和把油品输给用油单位,配有储罐、计量、化验及运转设施。 二、输送工艺 1、“旁接油罐”式输送工艺: 上站来油可进入泵站的输油泵也可同时进入油罐的输送工艺,油罐通过旁路连接到干线上,当本站与上下站的输量不平衡时,油罐起缓冲作用 特点; a 各管段输量可不等,油罐起缓冲作用; b 各管段单独成一水力系统,有利于运行调节和减少站间的相互影响; c 与“从泵到泵”相比,不需较高的自动调节系统,操作简单。 2、“从泵到泵” 输送工艺: 为密闭输送工艺,中间站不设缓冲罐,上站来油全部直接进泵

特点: a 可基本消除中间站的蒸发损耗; b整个管道成一个统一的水力系统,充分利用上站余压,减少节流,但各站要有可靠的自动调节和保护装置; c工艺流程简单。 三、输油站的基本组成 1、主生产区 (1)油泵房(输油泵机组、润滑、冷却、污油回收等系统);(2)加热系统(加热炉和换热器); (3)总阀室(控制和切换流程); (4)清管器收发室; (5)计量间(流量计及标定装置); (6)油罐区; (7)站控室; (8)油品预处理设施(热处理、添加剂、脱水等)。 2、辅助生产区 (1)供电系统(变、配、发电); (2)供热系统(锅炉房、燃料油系统、热力管网等); (3)给排水系统(水源、循环水、软化水、消防水等); (4)供风系统(仪表风、扫线用风); (5)阴极保护设施; (6)消防及警卫、机修化验、库房、办公后勤设施等。

天然气管道系统安全保护(最新版)

When the lives of employees or national property are endangered, production activities are stopped to rectify and eliminate dangerous factors. (安全管理) 单位:___________________ 姓名:___________________ 日期:___________________ 天然气管道系统安全保护(最新 版)

天然气管道系统安全保护(最新版)导语:生产有了安全保障,才能持续、稳定发展。生产活动中事故层出不穷,生产势必陷于混乱、甚至瘫痪状态。当生产与安全发生矛盾、危及职工生命或国家财产时,生产活动停下来整治、消除危险因素以后,生产形势会变得更好。"安全第一" 的提法,决非把安全摆到生产之上;忽视安全自然是一种错误。 1.系统保护 (1)管道保护系统 管道保护系统需进行分级设置,并确定优先顺序。例如,部分单体设备应单独采取本地保护措施,以保护其自身系统;通过站控系统和安全系统来对整个场站设施进行保护;按照管道系绑保护原则,通过SCADA系统对整个管道系统进行保护。SCADA系统监控整个系统的异常情况或威胁系统完整性的情况,如果控制中心操作员没有采取任何措施,SCADA系统可自动采取保护措施确保整个管道系统的安全。 保护系统的逻辑至关重要,在管道系统出现问题时,不能简单地通过停止设备或关闭阀门来解决,这样可能会增加问题的严重性而不能消除问题。 此外,还应考虑SCADA远控失效情况下的系统保护。如果SCADA 系统不能正常下发控制命令来保护系统或找出问题时,本地保护系统应该能够控制和保护现场设备。如果站控PLC或RTU与控制中心通讯

油气管道输送习题集

天然气管道输送 第一章天然气输送概述 1、什么是天然气虚拟临界常数,在实际中有何应用? 2、根据热力学稳定判据,推导RK、SRK和PR状态方程的2个参数a、b的表达式。 3、按照压缩系数方程RK、SRK、PR和BWRS,编程计算不同压力和温度下的压缩系数,并说明它们的大致使用范围。 4、什么是气体的对比态原理,在实际中有何应用? 5、根据气体焓和熵的热力学关系,利用RK、SRK、PR状态方程分别推导实际气体焓和熵的计算公式。 6、根据表1-1和表1-2所提供的不同气田天然气组分,分别按照式1-95和1-102计算不同压力和温度下的气体焓和熵,并与按照图法得到的结果进行比较。 7、根据热力学关系,证明气体质量定压热容和质量定容热容满足式1-108。 8、根据气体热力学关系,证明气体焦耳-汤姆逊系数满足式1-119。 9、如何用RK、SRK、PR状态方程来计算气体的质量定压热容、质量定容热容和焦耳-汤姆逊系数? 10、什么是燃气的燃烧值?在实际生产中为什么采用低热值而不是高热值? 11、什么是燃气的爆炸极限?惰性气体含量对爆炸极限有何影响? 12、定性说明温度对液体和气体粘度的不同影响。 13、根据粘度计算方法,编程计算天然气在不同压力和温度下的粘度。 14、什么是气体的导热系数?给出计算实际气体导热系数的步骤并编程。 15、什么是天然气的水露点和烃露点?说明确定水露点和烃露点的几种方法。 16、如何根据平成常数列线图计算天然气的烃露点? 17、试说明气体流动连续方程1-159、运动方程1-161和能量方程1-163的物理意义和适用条件。

第二章输气管水力计算 1、在什么情况下,输气管的流量计算公式中可以忽略速度变化对流量的影响? 2、为什么管道沿线地形起伏、高差超过200m以上,要考虑地形对工艺参数Q或P的影响? 3、公式2-53~2-62适用于何种流态?若管内实际流动偏离该液态,应如何处理? 4、为什么干线输气管道采用高压输气较为经济? 5、对于已建成的一条输气管道,若要增大输气量,其扩建工程可以采用哪些措施? 6、流量系数法能解决哪些复杂输气管道的设计计算? 7、用公式2-112、2-115、2-120、2-124计算的流量是整个输气管道的通过能力,这一说法是否正确?试说明用上述任意一个公式计算沿线既有分气工况又有进气工况时的步骤,并编写计算机程序。 8、试说明沿线有进、分气直线的环形输气管网如何设计? 9、如图所示,已知管道起点压力P Q = 4.0 MPa,重点压力P Z = 3.0 MPa,气体压缩系数Z=0.95,气体密度Δ= 0.6,气体温度T = 293K,求同径管管径D和节点压力P1、P2。 第三章输气管道热力计算 1、根据第二章所给的气体压力沿管道分布关系,由式3-10推导气体温度沿管道变化的计算公式。 2、若考虑气体质量定压热容和焦耳-汤姆逊系数随压力和温度变化,如何根据式3-10或3-12计算气体温度沿线变化? 3、在什么条件下,埋地输气管道中气体温度会低于地温? 4、试定性说明地温变化、土壤湿度变化如何影响埋地输气管道总传热系数? 5、在什么条件下,输气管道中会形成水合物?如何判断输气管道中形成水合物? 6、已知天然气组分如下表,试按照经验图解法、相平衡法和热力学统计学法计算压力为5 MPa和10 MPa时形成水合物的最高温度,计算温度为270K和300K时形成水合物的最低压力。

相关文档