文档库 最新最全的文档下载
当前位置:文档库 › 空间向量同步练习(含答案)

空间向量同步练习(含答案)

空间向量同步练习(含答案)
空间向量同步练习(含答案)

数学必修4平面向量综合练习题答案

一、选择题【共12道小题】 1、下列说法中正确的是( ) A.两个单位向量的数量积为1 B.若a··c且a≠0,则 C. D.若b⊥c,则()··b 参考答案与解析:解析:A中两向量的夹角不确定中若a⊥⊥与c反方向则不成立中应为中b⊥·0,所以()····b. 答案:D 主要考察知识点:向量、向量的运算 2、设e是单位向量222,则四边形是( ) A.梯形 B.菱形 C.矩形 D.正方形参考答案与解析:解析:,所以,且∥,所以四边形是平行四边形.又因为2,所以四边形是菱形. 答案:B 主要考察知识点:向量、向量的运算 3、已知1,a与b的夹角为90°,且2a3b,4b,若c⊥d,则实数k的值为( ) A.6 6 C.3 3 参考答案与解析:解析:∵c⊥d,∴c·(23b)·(4b)=0,即212=0,∴6. 答案:A 主要考察知识点:向量、向量的运算 4、设0≤θ<2π,已知两个向量=(θ,θ)(2θ,2θ),则向量长度的最大值是( )

A. B. C. D. 参考答案与解析:解析:=(2θθ,2θθ), 所以≤=. 答案:C 主要考察知识点:向量与向量运算的坐标表示 5、设向量(13),(-2,4),(-12),若表示向量4a、4b-2c、2()、d的有向线段首尾相接能构成四边形,则向量d为( ) A.(2,6) B.(-2,6) C.(26) D.(-26) 参考答案与解析:解析:依题意,4422()0,所以644(-2,-6). 答案:D 主要考察知识点:向量与向量运算的坐标表示 6、已知向量(3,4),(-3,1),a与b的夹角为θ,则θ等于( ) A. C.3 3 参考答案与解析:解析:由已知得a·3×(-3)+4×15,5,, 所以θ=. 由于θ∈[0,π], 所以θ=. 所以θ 3. 答案:D 主要考察知识点:向量与向量运算的坐标表示

高中数学-空间直角坐标系与空间向量典型例题

高中数学-空间直角坐标系与空间向量 一、建立空间直角坐标系的几种方法 构建原则: 遵循对称性,尽可能多的让点落在坐标轴上。 作法: 充分利用图形中的垂直关系或构造垂直关系来建立空间直角坐标系. 类型举例如下: (一)用共顶点的互相垂直的三条棱构建直角坐标系 例1 已知直四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2,底面ABCD 是直角梯形,∠ A 为直角,A B ∥CD ,AB =4,AD =2,D C =1,求异面直线BC 1与DC 所成角的余弦 值. 解析:如图1,以D 为坐标原点,分别以DA 、DC 、DD 1所在直线为x 、y 、z 轴建立空间直角坐标系,则C 1(0,1,2)、B (2,4,0), ∴1(232)BC =--u u u u r ,,,(010)CD =-u u u r ,,. 设1BC u u u u r 与CD uuu r 所成的角为θ, 则11317 cos 17BC CD BC CD θ== u u u u r u u u r g u u u u r u u u r . (二)利用线面垂直关系构建直角坐标系 例2 如图2,在三棱柱ABC -A 1B 1C 1中,AB ⊥侧面BB 1C 1C ,E 为棱CC 1上异于 C 、C 1的一点,EA ⊥EB 1.已知2AB = ,BB 1=2,BC =1,∠BCC 1= 3 π .求二面角A -EB 1-A 1的平面角的正切值. 解析:如图2,以B 为原点,分别以BB 1、BA 所在直线为y 轴、z 轴,过B 点垂直于平面AB 1的直线为x 轴建立空间直角坐标系. 由于BC =1,BB 1=2,AB = 2,∠BCC 1= 3 π,

高一数学必修四第二章平面向量测试题及答案

一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、B、C、D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、B、 C、D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2

(4)(b ) -( a )b 与 不一定垂直。其中真命题的个数是( )。 A 、1 B 、2 C 、3 D 、4 9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2+b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分)

高一数学必修4平面向量练习题及答案(完整版)

平面向量练习题 一、选择题 1、若向量a = (1,1), b = (1,-1), c =(-1,2),则 c 等于( ) A 、21-a +23b B 、21a 23-b C 、23a 2 1-b D 、2 3-a + 21b 2、已知,A (2,3),B (-4,5),则与共线的单位向量是 ( ) A 、)10 10 ,10103(- = B 、)10 10 ,10103()1010,10103(-- =或 C 、)2,6(-= D 、)2,6()2,6(或-= 3、已知k 3),2,3(),2,1(-+-==垂直时k 值为 ( ) A 、17 B 、18 C 、19 D 、20 4、已知向量=(2,1), =(1,7), =(5,1),设X 是直线OP 上的一点(O 为坐标原点),那么XB XA ?的最小值是 ( ) A 、-16 B 、-8 C 、0 D 、4 5、若向量)1,2(),2,1(-==分别是直线ax+(b -a)y -a=0和ax+4by+b=0的方向向量,则 a, b 的值分别可以是 ( ) A 、 -1 ,2 B 、 -2 ,1 C 、 1 ,2 D 、 2,1 6、若向量a =(cos α,sin β),b =(cos α ,sin β ),则a 与b 一定满足 ( ) A 、a 与b 的夹角等于α-β B 、(a +b )⊥(a -b ) C 、a ∥b D 、a ⊥b 7、设j i ,分别是x 轴,y 轴正方向上的单位向量,j i θθsin 3cos 3+=,i -=∈),2 ,0(π θ。若用 来表示与的夹角,则 等于 ( ) A 、θ B 、 θπ +2 C 、 θπ -2 D 、θπ- 8、设πθ20<≤,已知两个向量()θθsin ,cos 1=,()θθcos 2,sin 22-+=OP ,则向量21P P 长度的最大值是 ( ) A 、2 B 、3 C 、23 D 、 二、填空题 9、已知点A(2,0),B(4,0),动点P 在抛物线y 2=-4x 运动,则使BP AP ?取得最小值的点P 的坐标

高中数学典型例题解析平面向量与空间向量

高中数学典型例题分析 第八章 平面向量与空间向量 §8.1平面向量及其运算 一、知识导学1.模(长度):向量的大小,记作||。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a 长度相等,方向相反的向量叫做a 的相反向量。记作-a 。 5.向量的加法:求两个向量和的运算。 已知a ,b 。在平面内任取一点,作AB =a ,BC =b ,则向量AC 叫做a 与b 的和。 记作a +b 。 6. 向量的减法:求两个向量差的运算。 已知a ,b 。在平面内任取一点O ,作OA =a ,OB =b ,则向量BA 叫做a 与b 的差。 记作a -b 。 7.实数与向量的积: (1)定义: 实数λ与向量a 的积是一个向量,记作λa ,并规定: ①λa 的长度|λa |=|λ|·|a |; ②当λ>0时,λa 的方向与a 的方向相同; 当λ<0时,λa 的方向与a 的方向相反; 当λ=0时,λa =0 (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa )=(λμ) a ②(λ+μ) a =λa +μa ③λ(a +)=λa +λ 8.向量共线的充分条件:向量b 与非零向量a 共线的充要条件是有且只有一个实数λ,使得b =λa 。 另外,设a =(x 1 ,y 1), b = (x 2,y 2),则a //b x 1y 2-x 2y 1=0 9.平面向量基本定理: 如果1e 、2e 是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1、λ 2 使 a =λ11e +λ22e ,其中不共线向量1e 、2e 叫做表示这一

高中数学典型例题解析汇报平面向量与空间向量

实用文档 文案大全高中数学典型例题第八章平面向量与空间向量 §8.1平面向量及其运算 一、、疑难知识导析 1.向量的概念的理解,尤其是特殊向量“零向量” 向量是既有大小,又有方向的量.向量的模是正数或0,是可以进行大小比较的,由于方向不能比较大小,所以向量是不能比大小的.两个向量的模相等,方向相同,我们称这两个向量相等,两个零向量是相等的,零向量与任何向量平行,与任何向量都是共线向量; 2.在运用三角形法则和平行四边形法则求向量的加减法时要注意起点和终点; 3.对于坐标形式给出的两个向量,在运用平行与垂直的充要条件时,一定要区分好两个公式,切不可混淆。因此,建议在记忆时对比记忆; 4.定比分点公式中则要记清哪个点是分点;还有就是此公式中横坐标和纵坐标是分开计算的; 5.平移公式中首先要知道这个公式是点的平移公式,故在使用的过程中须将起始点的坐标给出,同时注意顺序。 二知识导学 1.模(长度):向量AB的大小,记作|AB|。长度为0的向量称为零向量,长度等于1个单位长度的向量,叫做单位向量。 2.平行向量:方向相同或相反的非零向量叫做平行向量,又叫做共线向量。 3.相等向量:长度相等且方向相同的向量。 4.相反向量:我们把与向量a?长度相等,方向相反的向量叫做a?的相反向量。记作-a?。 5.向量的加法:求两个向量和的运算。 已知a?,b?。在平面内任取一点,作AB=a?,BC=b,则向量AC 叫做a与b?的和。记作a?+b?。 6. 向量的减法:求两个向量差的运算。 已知a?,b?。在平面内任取一点O,作OA=a?,OB=b?,则向量BA 叫做a?与b?的差。记作a?-b?。 7.实数与向量的积: (1)定义:实数λ与向量a?的积是一个向量,记作λa?,并规定: ①λa?的长度|λa?|=|λ|·|a?|; ②当λ>0时,λa?的方向与a?的方向相同; 当λ<0时,λa?的方向与a?的方向相反; 当λ=0时,λa?=0? (2)实数与向量的积的运算律:设λ、μ为实数,则 ①λ(μa?)=(λμ) a?

北师大必修4《平面向量》测试题及答案

北师大必修4《平面向量》测试题及答案 一、选择题 1.若三点P (1,1),A (2,-4),B (x,-9)共线,则( ) A.x=-1 B.x=3 C.x= 2 9 D.x=51 2.与向量a=(-5,4)平行的向量是( ) A.(-5k,4k ) B.(- k 5,-k 4) C.(-10,2) D.(5k,4k) 3.若点P 分所成的比为43 ,则A 分所成的比是( ) A. 7 3 B. 37 C.- 37 D.-7 3 4.已知向量a 、b ,a ·a =-40,|a |=10,|b |=8,则向量a 与b 的夹角为 ( ) A.60° B.-60° C.120° D.-120° 5.若|a-b|=32041-,|a |=4,|b |=5,则向量a ·b =( ) A.103 B.-103 C.102 D.10 6.已知a =(3,0),b =(-5,5),则a 与b 的夹角为( ) A. 4 π B. 4 3π C. 3 π D.32π 7.已知向量a =(3,4),b =(2,-1),如果向量a +x ·b 与b 垂直,则x 的值 为( ) A. 3 23 B. 23 3 C.2 D.- 5 2 8.设点P 分有向线段21P P 的比是λ,且点P 在有向线段21P P 的延长线上,则λ的取值范围是( ) A.(-∞,-1) B.(-1,0) C.(-∞,0) D.(-∞,- 2 1) 9.设四边形ABCD 中,有=2 1 ,且||=||,则这个四边形是( ) A.平行四边形 B.矩形 C.等腰梯形 D.菱形

10.将y=x+2的图像C按a=(6,-2)平移后得C′的解析式为() A.y=x+10 B.y=x-6 C.y=x+6 D.y=x-10 11.将函数y=x2+4x+5的图像按向量a经过一次平移后,得到y=x2的图像,则a等于() A.(2,-1) B.(-2,1) C.(-2,-1) D.(2,1) 12.已知平行四边形的3个顶点为A(a,b),B(-b,a),C(0,0),则它的第4个顶点D的坐标是() A.(2a,b) B.(a-b,a+b) C.(a+b,b-a) D.(a-b,b-a) 二、填空题 13.设向量a=(2,-1),向量b与a共线且b与a同向,b的模为25,则b= 。 14.已知:|a|=2,|b|=2,a与b的夹角为45°,要使λb-a垂直,则λ= 。 15.已知|a|=3,|b|=5,如果a∥b,则a·b= 。 16.在菱形ABCD中,(AB+AD)·(AB-AD)= 。 三、解答题 17.如图,ABCD是一个梯形,AB∥CD,且AB=2CD,M、N分别是DC、AB 的中点,已知AB=a,AD=b,试用a、b分别表示DC、BC、MN。

第4章 n维向量空间复习过程

第4章 n 维向量空间 §4.1 n 维向量 定义 1 n 个有次序的数n a a a ,,,21 所组成的数组),,,(21n a a a 称为 n 维向量, 这n 个数称为该向量的n 个分量, 第i 个数i a 称为第i 个分量. n 维向量可写成一行,称为行向量,也可以写成一列,称为列向量. 向量常用黑体小写字母 、、、b a 等表示, 即n 维列向量记为 n a a a 21 ,n 维行向量记为),,,(21n . 行向量与列向量的计算按矩阵的运算规则进行运算. 例 设.)1,0,1,0(,)2,4,7,1(,)3,1,0,2(T T T (1) 求 32 ; (2) 若有x , 满足,0253 x 求 .x 解(1) 32 T T T )1,0,1,0(3)2,4,7,1()3,1,0,2(2 .)1,2,4,5(T (2)由,0253 x 得 x )53(21 ])1,0,1,0(5)2,4,7,1()3,1,0,2(3[2 1 T T T .)8,2/7,1,2/5(T 在解析几何中,我们把“既有大小又有方向的量”称为向量,并把可随意平行移动的有向线段作为向量的几何形象. 引入坐标系后,又定义了向量的坐标表示式(三个有次序实数),这就是上面定义的3维向量. 因此,当3 n 时,n 维向量可以把有向线段作为其几何形象. 当3 n 时,n 维向量没有直观的几何形象. §4.2 向量组的线性相关性 1、向量组的概念 若干个同维数的列向量(或行向量)所组成的集合称为向量组.

例如,一个n m 矩阵 mn m m n n a a a a a a a a a A 21 222 2111211 每一列 mj j j j a a a 21 ),2,1(n j 组成的向量组n ,,,21 称为矩阵A 的列向量组, 而由矩阵A 的的每一行),,2,1(),,,(21m i a a a T in i i i 组成的向量组 m ,,,21 称为矩阵A 的行向量组. 反之,由有限个向量所组成的向量组可以构成一个矩阵。 2、线性组合与线性表示 定义2 给定向量组s A ,,,:21 ,对于任何一组实数s k k k ,,,21 , 表达式s s k k k 2211称为向量组A 的一个线性组合, s k k k ,,,21 称为这 个线性组合的系数. 给定向量组s A ,,,:21 和向量 , 若存在一组数,,,,21s k k k 使 ,2211s s k k k 则称向量 是向量组A 的线性组合, 又称向量 能由向量组A 线性表示(或线性表出). 例 设).3,0,0,1(),1,4,0,3(),1,2,0,1(21 由于212 , 因此 是21, 的线性组合. 例2 n 维向量组 T n T T )1,,0,0(,,)0,1,0(,)0,,0,1(21 称为n 维单位坐标向量组,任意一个n 维向量T n a a a ),,,(21 都能由它们线性表示。

北师版高一数学必修四平面向量测试题及答案

第二章平面向量测试题 一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、 B、C、D、 5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。A、 B、 C、 D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、 B、 C、 D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2 (4)(b) -(a)b与不一定垂直。其中真命题的个数是()。 A、1 B、2 C、3 D、4 9.在ΔABC中,A=60°,b=1,,则等于()。

A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2 +b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶 向对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹角 为 。(10分) 16、已知平面上3个向量 、b 、 的模均为1,它们相互之间的夹角均为120。 (1) 求证:( -b )⊥ ;

空间向量和立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B . 3 C .3 D .2 3 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为11AO AB =另解:设1,,AB AC AA 为空间向量的一组基底,1,,AB AC AA 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为1111 33 OA AA AB AC =- -,11AB AB AA =+ 2111126 ,,333 OA AB a OA AB ?= == 则1AB 与底面ABC 所成角的正弦值为 111 12 3 OA AB AO AB ?= . 二、填空题: 1 .(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D --M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11 (),22 AN AC AB EM AC AE =+=-, 11()()22AN EM AB AC AC AE ?=+?-=1 2 故EM AN ,所成角的余弦值 1 6 AN EM AN EM ?= 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

高中数学必修四平面向量测试题及答案

高中数学必修四平面向量测试题 一、选择题: (本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.设点P(3,-6),Q(-5,2),R的纵坐标为-9,且P、Q、R三点共线,则R点的横坐标为()。 A、-9 B、-6 C、9 D、6 2.已知=(2,3), b=(-4,7),则在b上的投影为()。 A、 B、C、D、 3.设点A(1,2),B(3,5),将向量按向量=(-1,-1)平移后得 向量为()。 A、(2,3) B、(1,2) C、(3,4) D、(4,7)4.若(a+b+c)(b+c-a)=3bc,且sinA=sinBcosC,那么ΔABC是()。 A、直角三角形 B、等边三角形 C、等腰三角形 D、等腰直角三角形5.已知| |=4, |b|=3, 与b的夹角为60°,则| +b|等于()。 A、 B、 C、 D、 6.已知O、A、B为平面上三点,点C分有向线段所成的比为2,则()。 A、 B、 C、 D、 7.O是ΔABC所在平面上一点,且满足条件,则点O是ΔABC的()。 A、重心 B、垂心 C、内心 D、外心 8.设、b、均为平面内任意非零向量且互不共线,则下列4个命题:(1)( ·b)2= 2·b2(2)| +b|≥| -b| (3)| +b|2=( +b)2 (4)(b) -(a)b与不一定垂直。其中真命题的个数是()。 A、1 B、2 C、3 D、4

9.在ΔABC 中,A=60°,b=1, ,则 等 于( )。 A 、 B 、 C 、 D 、 10.设 、b 不共线,则关于x 的方程 x 2 +b x+ =0的解的情况是( )。 A 、至少有一个实数解 B 、至多只有一个实数解 C 、至多有两个实数解 D 、可能有无数个实数解 二、填空题:(本大题共4小题,每小题4分,满分16分.). 11.在等腰直角三角形ABC 中,斜边AC=22,则CA AB =_________ 12.已知ABCDEF 为正六边形,且AC =a ,AD =b ,则用a ,b 表示AB 为______. 13.有一两岸平行的河流,水速为1,速度为 的小船要从河的一边驶向 对岸,为使所行路程最短,小船应朝________方向行驶。 14.如果向量 与b 的夹角为θ,那么我们称 ×b 为向量 与b 的“向 量积”, ×b 是一个向量,它的长度| ×b |=| ||b |sin θ,如果| |=3, |b |=2, ·b =-2,则| ×b |=______。 三、解答题:(本大题共4小题,满分44分.) 15.已知向量 = , 求向量b ,使|b |=2| |,并且 与b 的夹 角为 。(10分) 16、已知平面上3个向量 、b 、 的模均为1,它们相互之间的夹角均

(完整版)必修4平面向量单元测试题

必修4第二章平面向量单元测试(一) 一、选择题(每小题5分,共50分) 1.在矩形ABCD 中,O 是对角线的交点,若15e =,23e =,则=OC ( ) A .)352 121e e +( B .)352121e e -( C .)532 112e e -( D .)352 112e e -( 2.对于菱形ABCD ,给出下列各式: ①= ②||||= ③||||+=- ④222||4||||=+ 其中正确的个数为 ( ) A .1个 B .2个 C .3个 D .4个 3 ABCD 中,设=,=,=,=,则下列等式中不正确的是( ) A .=+ B .=- C .=- D .=- 4.已知向量与反向,下列等式中成立的是 ( ) A .||||||-=- B .||||-=+ C .||||||b a b a -=+ D .||||||b a b a +=+ 5.已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),则第四个点的坐标为( ) A .(1,5)或(5,-5) B .(1,5)或(-3,-5) C .(5,-5)或(-3,-5) D .(1,5)或(-3,-5)或(5,-5) 6.与向量)5,12(d =平行的单位向量为 ( ) A .)5,13 12 ( B .)135,1312(-- C .)135,1312( 或 )135,1312(-- D .)13 5,1312(±± 7.若32041||-= -,4||=,5||=,则与的数量积为 ( )

A .103 B .-103 C .102 D .10 8.若将向量)1,2(=围绕原点按逆时针旋转 4 π 得到向量,则的坐标为 ( ) A.)223,22(-- B .)223,22( C .)22,223(- D .)2 2 ,223( - 9.设R k ∈,下列向量中,与向量)1,1(-=一定不平行的向量是 ( ) A .),(k k b = B .),(k k c --= C .)1,1(22++=k k d D .)1,1(22--=k k e 10.已知10||=,12||=,且36)5 1 )(3(-=,则与的夹角为 ( ) A .0 60 B .0120 C .0 135 D .0 150 二、填空题(每小题4分,共16分) 11.非零向量,满足||||||+==,则,的夹角为 . 12.在四边形ABCD 中,若=,=,且||||-=+,则四边形ABCD 的形状是__ 13.已知)2,3(=,)1,2(-=,若b a +λ与b a λ+平行,则=λ . 14.已知为单位向量,4||=a ,与的夹角为 π3 2 ,则在方向上的投影为 . 三、解答题(每题14分,共84分) 15.已知非零向量a ,b 满足||||b a b a -=+,求证: b a ⊥. 16.已知在ABC ?中,)3,2(=,),1(k =,且ABC ?中C ∠为直角,求k 的值.

线性代数 向量空间

第五节 向量空间 分布图示 ★ 向量空间 ★ 例1 ★ 例2 ★ 例3 ★ 例4 ★ 例5 ★ 子空间 ★ 例6 ★ 例7 ★ 向量空间的基与维数 ★ 例8 ★ 例9 ★ 向量在基下的坐标 ★ 例10 ★ 关于集合的坐标系的注记 ★ 例11 ★ 内容小结 ★ 课堂练习 ★ 习题3-5 内容要点 一、向量空间与子空间 定义1 设V 为n 维向量的集合,若集合V 非空,且集合V 对于n 维向量的加法及数乘两种运算封闭, 即 (1) 若,,V V ∈∈βα则V ∈+βα; (2) 若,,R V ∈∈λα则V ∈λα. 则称集合V 为R 上的向量空间. 记所有n 维向量的集合为n R , 由n 维向量的线性运算规律,容易验证集合n R 对于加法及数乘两种运算封闭. 因而集合n R 构成一向量空间, 称n R 为n 维向量空间. 注:3=n 时, 三维向量空间3R 表示实体空间; 2=n 时, 维向量空间2R 二表示平面; 1=n 时, 一维向量空间1R 表示数轴. 3>n 时, n R 没有直观的几何形象. 定义2 设有向量空间1V 和2V , 若向量空间21V V ?, 则称1V 是2V 的子空间. 二、向量空间的基与维数 定义3 设V 是向量空间, 若有r 个向量V r ∈ααα,,,21 , 且满足 (1) r αα,,1 线性无关; (2) V 中任一向量都可由r αα,,1 线性表示. 则称向量组r αα,,1 为向量空间V 的一个基, 数r 称为向量空间V 的维数,记为r V =dim 并称V 为r 维向量空间. 注: (1) 只含零向量的向量空间称为0维向量空间, 它没有基; (2) 若把向量空间V 看作向量组,则V 的基就是向量组的极大无关组, V 的维数就是向量组的秩; (3) 若向量组r αα,,1 是向量空间V 的一个基,则V 可表示为 }.,,,,|{2111R x x V r r r ∈++==λλλαλαλ 此时, V 又称为由基r αα,,1 所生成的向量空间. 故数组r λλ,,1 称为向量x 在基r αα,,1 中的坐标. 注: 如果在向量空间V 中取定一个基r a a a ,,,21 , 那么V 中任一向量x 可惟一地表示为 ,2211r r a a a x λλλ+++= 数组r λλλ,,,21 称为向量x 在基r a a a ,,,21 中的坐标.

高二数学空间向量苏教版(文)

高二数学空间向量苏教版(文) 【本讲教育信息】 一. 教学内容: 空间向量 二. 本周教学目标: 1. 运用类比的方法,经历向量及运算由平面向空间推广的过程。 2. 了解空间向量的概念,掌握空间向量的线性运算及其性质.理解空间向量共线的条件。 3. 了解向量共面的含义,理解共面向量定理,能运用共面向量定理证明有关线面平行和点共面的简单问题。 4. 掌握空间向量基本定理及推论,理解空间任意一个向量可以用不共面的三个已知向量线性表示,而且这种表示是唯一的。 5. 能用坐标表示空间向量,掌握空间向量的坐标运算,会根据向量的坐标判断两个空间向量的平行。 6. 掌握空间向量夹角的概念,掌握空间向量的数量积的概念、性质和运算率。了解空间向量的几何意义;掌握空间向量数量积的坐标形式,会用向量的方法解决有关垂直、夹角和距离的简单问题。 三. 本周知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)空间的两个向量可用同一平面内的两条有向线段来表示。 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ? ???ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共线 向量或平行向量,a ρ平行于b ρ,记作b a ρ ?//。

(人教版)必修四三角函数和平面向量测试题含答案

三角函数及平面向量综合测试题 命题人:伍文 一.选择题:(满分50分,每题5分) 1.下列向量给中,能作为表示它们所在平面内所有向量的基底的是( ) A .→ 1e = (0,0), → 2e =(1,-2) ; B .→ 1e = (-1,2), → 2e = (5,7); C .→ 1e = (3,5), → 2e =(6,10); D .→ 1e = (2,-3) , → 2e = ) 4 3,2 1( - 2.在平行四边形ABCD 中,若||||BC BA BC AB +=+ ,则必有( ) A .四边形ABCD 为菱形 B .四边形ABCD 为矩形 C .四边形ABC D 为正方形 D .以上皆错 3.已知向量→ 1e ,→ 2e 不共线,实数(3x -4y) → 1e +(2x -3y) → 2e =6→ 1e +3→ 2e ,则x -y 的值等于 ( ) A .3 B .-3 C .0 D .2 4.已知正方形ABCD 边长为 1, AB =→ a ,BC =→ b ,AC =→c ,则|→a +→b +→ c |等于( ) A .0 B .3 C .2 2 D .2 5.设()()AB CD BC DA +++= →a ,而→ b 是一非零向量,则下列个结论:(1) → a 与→ b 共线;(2) → a +→ b = → a ;(3) → a +→ b = → b ;(4) |→ a +→ b |<|→ a |+|→ b |中正确的是( ) A .(1) (2) B .(3) (4) C .(2) (4) D .(1) (3) 6. 已知sin α= 5 5则sin 4α- cos 4 α的值是( ) A .-5 3 B . -5 1 C . 5 1 D . 5 3 7. 在同一平面直角坐标系中,函数])20[)(2 32cos( ππ,∈+ =x x y 的图象和直线2 1=y 的交点个数 是( ) A .0 B .1 C .2 D .4 8.函数y =-xcosx 的部分图象是( ) 9.已知△ABC 的两个顶点A(3,7)和B(-2,5),若AC 的中点在x 轴上,BC 的中点在y 轴上,则顶点C 的坐标是 ( ) A .(-7,2) B .(2,-7) C .(-3,-5) D .(5,3) 10.AD 、B E 分别为△ABC 的边BC 、AC 上的中线,且AD =→ a ,BE =→ b ,那么BC 为( ) A . 3 2→ a - 3 4→ b B . 3 2→ a - 3 2→ b C . 3 2→ a + 3 4→ b D .- 3 2→ a + 3 4→ b

空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A. 13 D.2 3 1、解:C.由题意知三棱锥1A ABC -为正四面体,设棱长为a , 则1AB =, 棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =、 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 1OA AB AO AB ?=u u u u r u u u r u u u r u u u r 、 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D -- M N ,分别就是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1、答案: 1 6 、设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----, 1111(,,(,,)222222 M N ---,

必修四平面向量综合测试题

平面向量 综合测试题 一、选择题 1.已知ABC ?的边BC 的垂直平分线交BC 于Q ,交AC 于P ,若1=AB ,2=AC ,则BC AP ?的值为( ) A. 3 B.23 C.3 D.23 2.已知向量a =(1,0)与向量b =(-1,3),则向量a 与b 的夹角是( ) A.π6 B.π3 C.2π3 D.5π6 3. 设P 是△ABC 所在平面内的一点,BC →+BA →=2BP →,则( ) A.PA →+PB →=0 B.PC →+PA →=0 C.PB →+PC →=0 D.PA →+PB →+PC →=0 4.已知向量a =(2,3),b =(-1,2),若ma +nb 与a -2b 共线,则m n =( ) A .-2 B .2 C .-12 D.12 5.在ABC ?中, D 为BC 边上一点,且AD BC ⊥,向量AB AC +u u u v u u u v 与向量AD u u u v 共 线,若10AC =u u u v , 2BC =u u u v , 0GA GB GC ++=u u u v u u u v u u u v ,则AB CG =u u u v u u u v ( ) A. 3 B. 5 C. 2 D. 10 2 6.已知点A (-1,1),B (1,2),C (-2,-1),D (3,4),则向量AB →在CD →方向上的投影为( ) A.322 B.3152 C .-322 D .-3152 7. 已知|a |=2|b |,|b |≠0,且关于x 的方程x 2+|a |x +a·b =0有实根,则a 与b 的夹角的取值范围是( ) A .[0,π6] B .[π3,π] C .[π3,2π3] D .[π6,π] 8. 已知向量a ,b 满足|a |=1,(a +b )·(a -2b )=0,则|b |的取值范围为( ) A .[1,2] B .[2,4] C.??????2141, D.??????121, 9. 已知在AB C ?中, O 是ABC ?的垂心,点P 满足: 113222 OP OA OB OC =++u u u v u u u v u u u v u u u v ,则ABP ?的面积与ABC ?的面积之比是( )

第三章n维向量与向量空间

第三章 n 维向量与向量空间 §3—1 §3—2 §3—3 一、设向量(4,7,3,2)α=-,(11,12,8,58)β=-,求满足322(5)γαβγ-=-的向量γ. 二、选择题: 1.设1234,,,αααα是一组n 维向量,其中123,,ααα线性相关,则 ( ) (A ) 123,,a a a 中必有零向量 (B ) 12,αα必线性相关 (C ) 23,αα必线性无关 (D ) 1234,,,αααα必线性相关 2.若n 维向量组12,,,m αααL 线性无关,则 ( ) (A ) 组中增加一个向量后也线性无关 (B ) 组中去掉一个向量后仍线性无关 (C ) 组中只有一个向量不能由其余向量线性表示 (D )m n > 3.若n 维向量12,,,m αααL 线性无关,则 (A ) 每个向量增加第(1)n +个分量后也线性无关; (B ) 每个向量去掉第n 个分量后也线性无关; (C ) 每个向量去掉第n 个分量后也线性相关; (D )每个向量增加第(1)n +个分量后也线性相关 4.若n 维向量12,,,m αααL 线性无关,则必有 ( ) (A ) m n < (B ) m n > (C ) m n ≤ (D ) m n ≥ 三、判断题: 1.若m n >,则n 维向量组1,2,,m αααL 线性相关. ( ) 2.若向量组U 线性相关,则U 的任意一个部分组都线性相关. ( ) 四、判别下列向量组的线性相关性: 1.1(1,1,2)α=,2(2,4,5)α=,3(1,1,0)α=-,4(2,2,6)α=. 2.1(1,1,0)α=-,2(2,1,1)α=,3(1,3,1)α=-. 3.1(1,1,3,1)α=,2(4,1,3,2)α=-,3(1,0,1,2)α=-. 五、证明: 1.若向量组12,,,m αααL 线性无关,而且β不能由12,,,m αααL 线性表示,则向量组12,,,,m αααβL 线性无关.

相关文档
相关文档 最新文档