文档库 最新最全的文档下载
当前位置:文档库 › 精馏

精馏

精馏
精馏

苯-甲苯精馏塔课程设计报告书

课程设计任务书 一、课题名称 苯——甲苯混合体系分离过程设计 二、课题条件(原始数据) 1、设计方案的选定 原料:苯、甲苯 年处理量:108000t 原料组成(甲苯的质量分率):0.5 塔顶产品组成:%99>D x 塔底产品组成:%2

设计容 摘要:精馏是分离液体混合物最常用的一种单元操作,在化工﹑炼油﹑石油化工等工业中得到广泛的应用。本设计的题目是苯—甲苯二元物系板式精馏塔的设计。在确定的工艺要求下,确定设计方案,设计容包括精馏塔工艺设计计算,塔辅助设备设计计算,精馏工艺过程流程图,精馏塔设备结构图,设计说明书。关键词:板式塔;苯--甲苯;工艺计算;结构图 一、简介 塔设备是炼油、化工、石油化工等生产中广泛应用的气液传质设备。根据塔气液接触部件的结构型式,可分为板式塔和填料塔。板式塔设置一定数目的塔板,气体以鼓泡或喷射形式穿过板上液层进行质热传递,气液相组成呈阶梯变化,属逐级接触逆流操作过程。填料塔装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流向上(也有并流向下者)与液相接触进行质热传递,气液相组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的主要要:(1)生产能力大;(2)传热、传质效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量少;(6)制造安装容易,操作维修方便。此外,还要求不易堵塞、耐腐蚀等。 板式塔大致可分为两类:(1)有降液管的塔板,如泡罩、浮阀、筛板、导向筛板、新型垂直筛板、蛇形、S型、多降液管塔板;(2)无降液管的塔板,如穿流式筛板(栅板)、穿流式波纹板等。工业应用较多的是有降液管的塔板,如浮阀、筛板、泡罩塔板等。 苯的沸点为80.1℃,熔点为5.5℃,在常温下是一种无色、味甜、有芳香气味的透明液体,易挥发。苯比水密度低,密度为0.88g/ml,但其分子质量比水重。苯难溶于水,1升水中最多溶解1.7g苯;但苯是一种良好的有机溶剂,溶解有机分子和一些非极性的无机分子的能力很强。 甲苯是最简单,最重要的芳烃化合物之一。在空气中,甲苯只能不完全燃烧,火焰呈黄色。甲苯的熔点为-95 ℃,沸点为111 ℃。甲苯带有一种特殊的芳香味(与苯的气味类似),在常温常压下是一种无色透明,清澈如水的液体,密度为0.866克/厘米3,对光有很强的折射作用(折射率:1,4961)。甲苯

精馏塔设计流程

在一常压操作的连续精馏塔内分离水—乙醇混合物。已知原料的处理量为2000吨、组成为36%(乙醇的质量分率,下同),要求塔顶馏出液的组成为82%,塔底釜液的组成为6%。设计条件如下: 操作压力 5kPa(塔顶表压); 进料热状况自选; 回流比自选; 单板压降≤0.7kPa; 根据上述工艺条件作出筛板塔的设计计算。 【设计计算】 (一)设计方案的确定 本设计任务为分离水—乙醇混合物。对于二元混合物的分离,应采用连续精馏流程。 设计中采用泡点进料,将原料液通过预料器加热至泡点后送入精馏塔内。塔顶上升蒸气采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内其余部分经产品冷却器冷却后送至储罐。该物系属易分离物系,最小回流比较小,故操作回流比取最小回流比的1.5倍。塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。 (二)精馏塔的物料衡算 1.原料液及塔顶、塔底产品的摩尔分率 M=46.07kg/kmol 乙醇的摩尔质量 A M=18.02kg/kmol 水的摩尔质量 B

F x =18.002 .1864.007.4636.007.4636.0=+= D x =64.002 .1818.007.4682.007.4682.0=+= W x =024.002.1894.007.4606.007.4606.0=+= 2.原料液及塔顶、塔底产品的平均摩尔质量 F M =0.18×46.07+(1-0.18)×18.02=23.07kg/kmol D M =0.64×46.07+(1-0.64)×18.02=35.97kg/kmol W M =0.024×46.07+(1-0.024)×18.02=18.69kg/kmol 3.物料衡算 以每年工作250天,每天工作12小时计算 原料处理量 F = 90.2812 25007.2310002000=???kmol/h 总物料衡算 28.90=W D + 水物料衡算 28.90×0.18=0.64D+0.024W 联立解得 D =7.32kmol/h W =21.58kmol/h (三)塔板数的确定 1. 理论板层数T N 的求取水—乙醇属理想物系,可采用图解法求理论板层数。 ①由手册查得水—乙醇物系的气液平衡数据,绘出x —y 图,如图。 ②求最小回流比及操作回流比。 采用作图法求最小回流比。在图中对角线上,自点e(0.18 , 0.18)作垂线ef 即为进料线(q 线),该线与平衡线的交点坐标为 q y =0.52 q x =0.18 故最小回流比为 min R =q q q D x y y x --=35.018 .0-52.052.0-64.0=3 取操作回流比为 R =min R =1.5×0.353=0.53 ③求精馏塔的气、液相负荷 L =RD =17.532.753.0=?=kmol/h V =D R )1(+=(0.53+1)20.1132.7=?kmol/h

精馏塔设计图(参考)

∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料12345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10 111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

精馏塔课程设计

目录 一、概述 二、设计方案和工艺流程的确定 三、塔的物料衡算四、回流比确定 五、塔板数的确立 六、塔的工艺条件及物性数据计算 七:塔和塔板主要工艺尺寸计算 八、塔板的流体力学验算 十、热量衡算 十一、筛板塔的设计结果总表 十二、辅助设备选型及接管尺寸 十三、精馏塔机械设计计算 十四、设计中的心得体会 一、概述: 塔设备是炼油、化工、石油化工等生产广泛应用的气液传质设备。根据塔内气液接触部件的结构型式,可分为板式塔和填料塔。板式塔内设置一定数量的塔板,气体以鼓泡或喷射形式穿过板上液层进行质,热传递,气液相组成呈阶梯变化,属逐渐接触逆流操作过程。填料塔内装有一定高度的填料层,液体自塔顶沿填料表面下流,气体逆流而上(也有并流向下者)与液体接触进行质热传递,气液组成沿塔高连续变化,属微分接触操作过程。 工业上对塔设备的要求:(1)生产能力大;(2)传质传热效率高;(3)气流的摩擦阻力小;(4)操作稳定,适应性强,操作弹性大;(5)结构简单,材料耗用量小(6)制作安装容易,维修方便。(7)设备不易堵塞,耐腐蚀。 其中板式塔又可分为有降液管的塔板(如泡罩塔,浮阀塔,筛板塔,舌型,S型等)和无降液管的(如穿流式筛板,穿流式波纹板)该课程涉及到的是板式塔中的浮阀塔,其广泛用于精馏、吸收、和解吸等过程。其主要特点是再塔板的开孔上装有可浮动的浮阀,气流从浮阀的周边以稳定的速度水平地进入塔板上液层进行两相接触,浮阀课根据气流流速地大小上下浮动,自行调节。浮阀有盘式、条式等多种。国内多采用盘式,其优点为生产能力大,操作弹性大,分离效率较大,塔板结构较简单。此型中的F-1型结构简单,已经列入部颁标准,因此型号的重阀操作稳定性好,一般采用重阀。 二、设计方案和工艺流程的确定: 在此次课程涉及中主要介绍浮阀塔在精馏中的应用,精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器、和产品冷却器等设备。热量自塔釜输入,物料再塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器的冷却物质将余热带走。此过程中因考虑节能。 另外,为保持塔的稳定性,流程除用泵直接送入塔原料外,也可采用高位槽送料以受泵操作波动影响。 塔顶冷凝器装置根据生产情况以决定采用全凝器和分凝器。一般,塔顶分凝器对上升蒸汽虽由一定的增浓作用,当在石油等工业中获取液相产品时往往采用全凝器,以便于准确的控制回流比。若后继装置使用气态物料,则宜用分凝器 操作压强由常压、低压和高压操作,其取决于冷凝温度,一般都采用常压,对于热敏性物质或混合液沸点过高的物质则宜采用减压操作,而常压下为气态的物质采用高压操作。 对于物料的进料,一般情况下采用冷进料,但是为了考虑塔的操作稳定性,则一把采用泡点进料。

多效蒸馏水机的特点与应用(精制甲类)

多效蒸馏水机的特点与应用 摘要:阐述多效蒸馏水机的基本机器结构,工作原理,工作流程,通过分析蒸发和冷凝的相变过程中的的热量吸收和释放变化,依据注射用水在制备总过程中是由水(原料水)到水(注射水)的过程,无相变的情况,说明多效蒸馏水机充分利用相变释放的能量的特点实现节能以及在实际生产中的应用。 主题词:多效;一次蒸汽;蒸发与冷凝;相变;能量消耗;节能应用正文: 注射用水制备系统是注射剂生产的关键系统。注射用水是注射剂日常生产过程中不可缺少的组成部分,在房间和设备清洗,容器、工器具、胶塞、洁净服清洗,药液配制等都需要用到大量的注射用水,因此分析注射用水的制备系统特点和注射用水制备过程中应做到尽可能节能就变得十分有必要了。多效蒸馏水机是目前应用最为广泛的注射用水制备系统的关键设备。多效蒸馏水机采用高温高压操作,确保稳定生产无热原注射用水。多效蒸馏水机所生产的蒸馏水,完全满足现行美国药典、欧洲药典、日本药典和中国药典中关于注射用水的要求。 1 . 多效蒸馏水机的机器结构、工作原理与工作流程 1.1 多效蒸馏水机的机器结构 多效蒸馏水机主要由蒸发器、预热器、冷凝器、电气自动控制部分组成。蒸发器采用垂直列管降膜蒸发原理,为确保蒸馏水质量,蒸

发器内装有特殊的汽水分离装置(分螺旋离心分离式及丝网除沫式两种)离心分离器的作用是除去蒸汽中的液滴示。 1.2 多效蒸馏水机的工作原理 多效蒸馏水机依据各效蒸发器之间工作压力不同,第一效产生的纯蒸汽可以作下一效的加热蒸汽(一效加热蒸汽为锅炉蒸汽)如此经过多效的换热蒸发,原料水被充分汽化,各效产生的纯蒸汽则在换热过程中被冷却为蒸馏水,从而达到节约加热蒸汽和冷却水的目的。 1.3工作流程 合格的原料水(注1)由多级泵增压后经流量计进入冷凝器进行热交换,再依次进入各效预热器,经热交换后温度可以达到比各效蒸发器加热蒸汽低10 ~15℃,然后进入一效蒸发器经料水分配器喷射在加热管内壁,使料水在管内成膜状流动,被来自锅炉的蒸汽加热汽化(垂直列管降膜蒸发),产生夹带水滴的二次蒸汽,从加热管下端进入汽水分离装置,被分离的纯蒸汽进入下一效,未被蒸发的原料水进入下一效,重复上述过程,其余各效工作流程与第一效相同。唯有第一效蒸发器的加热蒸汽是来自锅炉,因而该效的冷凝水不能作为蒸馏水(注2)用,应排回锅炉房或作它用,其余各效的冷凝水是由纯蒸汽冷凝,热源已经丢掉,故可成为合格蒸馏水。另外,末效的蒸剩水,因为夹带全部料水中的杂质和热源,必须作为污水排放或另作它用;末效产生的纯蒸汽进入冷凝器后,同来自各效的冷凝水汇合冷却,经排除不溶性气体后,成为蒸馏水,温度可达到92~99℃。同时

精馏塔工艺设计

一、苯-氯苯板式精馏塔的工艺设计任务书(一)设计题目 设计一座苯-氯苯连续精馏塔,要求年产纯度为%的苯36432吨,塔底馏出液中含苯1%,原料液中含苯为61%(以上均为质量百分数)。 (二)操作条件 1.塔顶压强4kPa(表压) 2.进料热状况:饱和蒸汽进料 3.回流比:R=2R 4.单板压降不大于 min (三)设计内容 设备形式:筛板塔 设计工作日:每年330天,每天24小时连续运行 厂址:青藏高原大气压约为的远离城市的郊区 设计要求 1.设计方案的确定及流程说明 2.塔的工艺计算 3.塔和塔板主要工艺尺寸的确定 (1)塔高、塔径及塔板结构尺寸的确定 (2)塔板的流体力学验算 (3)塔板的负荷性能图绘制 (4)生产工艺流程图及精馏塔工艺条件图的绘制 4、塔的工艺计算结果汇总一览表 5、对本设计的评述或对有关问题的分析与讨论 (四)基础数据

1.组分的饱和蒸汽压 p(mmHg) i 2.组分的液相密度ρ(kg/m3) 3.组分的表面张力σ(mN/m) 4.液体粘度μ(mPas) 常数

二、苯-氯苯板式精馏塔的工艺计算书(精馏段部分) (一)设计方案的确定及工艺流程的说明 原料液经卧式列管式预热器预热至泡点后送入连续板式精馏塔(筛板塔),塔顶上升蒸汽流采用强制循环式列管全凝器冷凝后一部分作为回流液,其余作为产品经冷却后送至苯液贮罐;塔釜采用热虹吸立式再沸器提供汽相流,塔釜产品经卧式列管式冷却器冷却后送入氯苯贮罐。 典型的连续精馏流程为原料液经预热器加热后到指定的温度后,送入精馏塔的进料板,在进料上与自塔上部下降的回流液体汇合后,逐板溢流,最后流入塔底再沸器中。在每层板上,回流液体与上升蒸气互相接触,进行热和质的传递过程。操作时,连续地从再沸器取出部分液体作为塔底产品(釜残液),部分液体汽化,产生上升蒸气,依次通过各层塔板。塔顶蒸气进入冷凝器中被全部冷凝,并将部分冷凝液用泵送回塔顶作为回流液体,其余部分经冷却器后被送出作为塔顶产品(馏出液)。 (二)全塔的物料衡算 1.料液及塔顶底产品含苯的摩尔分率 苯和氯苯的相对摩尔质量分别为 kg/kmol 和kmol =+= 6 .112/39.011.78/61.011 .78/61.0F x 2.平均摩尔质量 3.料液及塔顶底产品的摩尔流率 依题给条件:一年以330天,一天以24小时计,有:

精馏塔工艺工艺设计方案计算

第三章 精馏塔工艺设计计算 塔设备是化工、石油化工、生物化工、制药等生产过程中广泛采用的气液传质设备。根据塔内气液接触构件的结构形式,可分为板式塔和填料塔两大类。 板式塔内设置一定数量的塔板,气体以鼓泡或喷射形势穿过板上的液层,进行传质与传热,在正常操作下,气象为分散相,液相为连续相,气相组成呈阶梯变化,属逐级接触逆流操作过程。 本次设计的萃取剂回收塔为精馏塔,综合考虑生产能力、分离效率、塔压降、操作弹性、结构造价等因素将该精馏塔设计为筛板塔。 3.1 设计依据[6] 3.1.1 板式塔的塔体工艺尺寸计算公式 (1) 塔的有效高度 T T T H E N Z )1( -= (3-1) 式中 Z –––––板式塔的有效高度,m ; N T –––––塔内所需要的理论板层数; E T –––––总板效率; H T –––––塔板间距,m 。 (2) 塔径的计算 u V D S π4= (3-2) 式中 D –––––塔径,m ; V S –––––气体体积流量,m 3/s u –––––空塔气速,m/s u =(0.6~0.8)u max (3-3) V V L C u ρρρ-=max (3-4) 式中 L ρ–––––液相密度,kg/m 3

V ρ–––––气相密度,kg/m 3 C –––––负荷因子,m/s 2 .02020?? ? ??=L C C σ (3-5) 式中 C –––––操作物系的负荷因子,m/s L σ–––––操作物系的液体表面张力,mN/m 3.1.2 板式塔的塔板工艺尺寸计算公式 (1) 溢流装置设计 W OW L h h h += (3-6) 式中 L h –––––板上清液层高度,m ; OW h –––––堰上液层高度,m 。 3 2100084.2??? ? ??=W h OW l L E h (3-7) 式中 h L –––––塔内液体流量,m ; E –––––液流收缩系数,取E=1。 h T f L H A 3600= θ≥3~5 (3-8) 006.00-=W h h (3-9) ' 360000u l L h W h = (3-10) 式中 u 0ˊ–––––液体通过底隙时的流速,m/s 。 (2) 踏板设计 开孔区面积a A : ??? ? ??+-=-r x r x r x A a 1222sin 1802π (3-11)

精馏塔常用的一些控制方案

精馏塔常用的一些控制方案 塔的作用是在同一个设备中进行质量和热量的交换,是石油化工装置非常重要的设备。塔的型式有板式塔(泡罩塔、浮阀塔、栅板塔等)、填料塔(高效填料、常规填料、散装填料、规整填料等)、空塔。塔由筒体和内件组成。 蒸馏塔由精馏段和提馏段组成,进料口以上是精馏段,进料口以下是提馏段。 精馏塔的控制方案主要从塔压、釜温、顶温、塔釜液面四个方面来说明: 1.精馏操作中塔压的控制调节方法 塔的压力是精馏塔主要的控制指标之一。任何一个精馏塔的操作,都应当把塔压控制在规定的指标内,以相应地调节其它参数。塔压波动过大,就会破坏全塔的物料平衡和气液平衡,使产品达不到所要求的质量。所以,许多精馏塔都有其具体的措施,确保塔压稳定在适宜范周内。 对于加压塔的塔压,主要有以下三种调节方法 (1)塔顶冷凝器为分凝器时,塔压一般是靠气相采出量来调节的,如图6-1所示。在其它条件不变的情况下,气相采出量增大,塔压下降,气相采出量减小,塔压上升。

(2)塔顶冷凝器为全凝器时,塔压多是靠冷剂量的大小来调节,即相当于调节回流液温度,如图6-2所示。在其它条件不变的前提下,加大冷剂量,则回流液的温度降低,塔压降低,若减少冷剂量,回流液温度上升,塔压上升。 (3)热旁通(浸没式)法调节塔压。 对于常压塔的压力控制,主要有以下三种方法 (1)对塔顶压力在稳定性要求不高的情况下,无需安装压力控制系统,应当在精馏设备(冷凝器或回流罐)上设置一个通大气的管道,以保证塔内压力接近于大气压。 (2)对塔顶压力的稳定性要求较高或被分离的物料不能和空气接触时,塔顶压力的控制可采用加压塔塔压的控制方法,如图6-1、图6-2。

(精馏设计)

(1)精馏塔全塔物料衡算 1确定塔顶、塔底物料量及组成 有全塔物料衡算式W D F Wx Dx Fx W D F ?? ?+=+= 联立得:D=81.08h kmol ,W=29.92h kmol 汇总列表如下: F/(h kmol D/h kmol W/h kmol F x D x W x 111 81.08 29.92 0.712 0.96 0.04 2.确定塔板数 查表得,常压下甲醇的沸点b T =64.6℃,乙醇的沸点b T =78.3℃,在65~78℃之间甲醇和乙醇的平衡数据如下图示: 温度T(℃) 甲醇液相摩尔分数x 甲醇气相摩尔分数y 65 0.9202 0.9532 66 0.8362 0.8998 67 0.7575 0.8455 68 0.6837 0.7906 69 0.6142 0.7349 70 0.5488 0.6787 71 0.4638 0.5991 72 0.3846 0.5180 73 0.3108 0.4357 74 0.2417 0.3521 75 0.1781 0.2639 76 0.1161 0.1819 77 0.0589 0.0955 78 0.0049 0.0082 不同温度下甲醇的气、液相组成:(图)t-x-y (图)

进料状态方程:1 1---= q x x q q y F 在x -y 图上画出q 线,764.0=q x ,851.0=q y 2529.1764 .0851.0851 .096.0min =--= --= q q q D x y y x R 取5.225.122min =?==R R 精馏段操作线方程:2743.07143.01 1+=+++=x R x x R R y D 提溜段操作线方程:0048.01195.1-=-+--++= x x W qF L W x W qF L qF L y W 利用t -x -y 图查得: 塔顶温度:65=D t ℃ 塔底温度:3.77=W t ℃ 进料温度:6.67=F t ℃ 712 3 .778.642=+=+= 底顶平t t t ℃ 在71℃下查《化工数据手册》并利用内差法求取: s mPa cp LA ?==303.00303.0μ,s mPa cp LB ?==519.0519.0μ 。 查y x t --图,71=t ℃时:51.0,375.0==A A y x )375.01(519.0375.0303.0)1(-?+?=-+=A LB A LA L x x μμμ s mPa cp ?==438.0438.0 根据公式: B A p p =α求顶α,底α 在65℃时: 1.7646446.115787.215=== 顶顶 顶B A p p α 在3.77℃时: 1.686738.5336 1245.332=== 底底 底B A p p α

化工原理课程设计(乙醇_水溶液连续精馏塔优化设计)

专业资料 化工原理课程设计题目乙醇-水溶液连续精馏塔优化设计

目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7.参考文献 (23) 8.课程设计心得 (23)

精馏塔优化设计任务书 一、设计题目 乙醇—水溶液连续精馏塔优化设计 二、设计条件 1.处理量: 16000 (吨/年) 2.料液浓度: 40 (wt%) 3.产品浓度: 92 (wt%) 4.易挥发组分回收率: 99.99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强:1.03 atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务 a) 流程的确定与说明; b) 塔板和塔径计算; c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。

乙醇——水溶液连续精馏塔优化设计 (某大学化学化工学院) 摘要:设计一座连续浮阀塔,通过对原料,产品的要求和物性参数的确定及对主要尺寸的计算,工艺设计和附属设备结果选型设计,完成对乙醇-水精馏工艺流程和主题设备设计。 关键词:精馏塔,浮阀塔,精馏塔的附属设备。 (Department of Chemistry,University of South China,Hengyang 421001) Abstract: The design of a continuous distillation valve column, in the material, product requirements and the main physical parameters and to determine the size, process design and selection of equipment and design results, completion of the ethanol-water distillation process and equipment design theme. Keywords: rectification column, valve tower, accessory equipment of the rectification column.

精馏塔

填料塔的操作是从物料平衡、热量平衡、相平衡及填料塔性能等几个方面考虑,通过控制系统建立并调节塔的操作条件,使填料塔满足分离要求。 控制系统可采用手动、一般自动化仪表或智能计算机操作。 (一)、控制参数 图中表示了塔操作控制的典型参数,其中6个流量参数:进料量、塔顶和塔釜产品流量、冷凝量、蒸发量和回流量。 除流量参数外,还有压力、塔釜液位、回流罐液位、塔顶产品组成和塔釜产品组成等参数。 此主题相关图片如下: 精馏塔常用控制参数 压力和液位控制是为了建立塔稳态操作条件,液位恒定阻止了液体累积,压力恒定阻止了气体累积。对于一个连续系统,若不阻止累积就不可能取得稳态操作,也就不可能稳定。压力是精馏操作的主要控制参数,压力除影响气体累积外,还影响冷凝、蒸发、温度、组成、相对挥发度等塔内发生的几乎所有过程。 产品组成控制可以直接使用产品组成测定值, 也可以采用代表产品组成的物性,如密度、蒸气压等。最常用的是采用灵敏点温度。 (二)、填料塔操作瓶颈及解决方法 任何一个设计都不可能把装置中的每个设备及每个设备中的每个部分设计在同一最大负荷百分数下操作,而许多工厂则希望采取各种手段使装置生产能力达到最大,这就使装置中的至少一个部分成为操作瓶颈,填料塔操作中,填料塔的任一部分、塔顶冷凝器、塔釜再沸器等都可能成为操作瓶颈,这里所指的瓶颈是指装置已达到设计负荷需进一步提高分离效率和生产能力,而装置中的某一设备或某一设备的某一部分限制了生产能力和分离效率的提高。 1、填料塔为操作瓶颈 填料塔在设计气液负荷范围内操作可取得所需的分离效率,超过此负荷范围,会导致分离效率下降、压降升高泛塔等现象,多数情况下填料塔操作提高处理能力和分离效率的瓶颈是填料塔本身。 (1)填料塔处理能力的提高

精馏塔的设计(毕业设计)讲义

精馏塔尺寸设计计算 初馏塔的主要任务是分离乙酸和水、醋酸乙烯,釜液回收的乙酸作为气体分离塔吸收液及物料,塔顶醋酸乙烯和水经冷却后进行相分离。塔顶温度为102℃,塔釜温度为117℃,操作压力4kPa。 由于浮阀塔塔板需按一定的中心距开阀孔,阀孔上覆以可以升降的阀片,其结构比泡罩塔简单,而且生产能力大,效率高,弹性大。所以该初馏塔设计为浮阀塔,浮阀选用F1型重阀。在工艺过程中,对初馏塔的处理量要求较大,塔内液体流量大,所以塔板的液流形式选择双流型,以便减少液面落差,改善气液分布状况。 4.2.1 操作理论板数和操作回流比 初馏塔精馏过程计算采用简捷计算法。 (1)最少理论板数N m 系统最少理论板数,即所涉及蒸馏系统(包括塔顶全凝器和塔釜再沸器)在全回流下所需要的全部理论板数,一般按Fenske方程[20]求取。 式中x D,l,x D,h——轻、重关键组分在塔顶馏出物(液相或气相)中的摩尔分数; x W,l,x W,h——轻、重关键组分在塔釜液相中的摩尔分数; αav——轻、重关键组分在塔内的平均相对挥发度; N m——系统最少平衡级(理论板)数。 塔顶和塔釜的相对挥发度分别为αD=1.78,αW=1.84,则精馏段的平均相对挥发度: 由式(4-9)得最少理论板数: 初馏塔塔顶有全凝器与塔釜有再沸器,塔的最少理论板数N m应较小,则最少理论板数:。 (2)最小回流比 最小回流比,即在给定条件下以无穷多的塔板满足分离要求时,所需回流比R m,可用Underwood法计算。此法需先求出一个Underwood参数θ。 求出θ代入式(4-11)即得最小回流比。

式中——进料(包括气、液两相)中i组分的摩尔分数; c——组分个数; αi——i组分的相对挥发度; θ——Underwood参数; ——塔顶馏出物中i组分的摩尔分数。 进料状态为泡点液体进料,即q=1。取塔顶与塔釜温度的加权平均值为进料板温度(即计算温度),则 在进料板温度109.04℃下,取组分B(H2O)为基准组分,则各组分的相对挥发度分别为αAB=2.1,αBB=1,αCB=0.93,所以 利用试差法解得θ=0.9658,并代入式(4-11)得 (3)操作回流比R和操作理论板数N0 操作回流比与操作理论板数的选用取决于操作费用与基建投资的权衡。一般按R/R m=1.2~1.5的关系求出R,再根据Gilliland关联[20]求出N0。 取R/R m=1.2,得R=26.34,则有: 查Gilliland图得 解得操作理论板数N0=51。 4.2.2 实际塔板数 (1)进料板位置的确定 对于泡点进料,可用Kirkbride提出的经验式进行计算。

乙醇—水溶液精馏塔设计

乙醇-水溶液连续精馏塔设计 目录 1.设计任务书 (3) 2.英文摘要前言 (4) 3.前言 (4) 4.精馏塔优化设计 (5) 5.精馏塔优化设计计算 (5) 6.设计计算结果总表 (22) 7., 8.参考文献 (23) 9.课程设计心得 (23) 精馏塔设计任务书 一、设计题目 乙醇—水溶液连续精馏塔设计 二、设计条件 1.处理量: 15000 (吨/年) 2.料液浓度: 35 (wt%) ! 3.产品浓度: 93 (wt%) 4.易挥发组分回收率: 99% 5.每年实际生产时间:7200小时/年 6. 操作条件: ①间接蒸汽加热; ②塔顶压强: atm(绝对压强) ③进料热状况:泡点进料; 三、设计任务

a) 流程的确定与说明; b) 塔板和塔径计算; 、 c) 塔盘结构设计 i. 浮阀塔盘工艺尺寸及布置简图; ii. 流体力学验算; iii. 塔板负荷性能图。 d) 其它 i. 加热蒸汽消耗量; ii. 冷凝器的传热面积及冷却水的消耗量 e) 有关附属设备的设计和选型,绘制精馏塔系统工艺流程图和精馏塔装配 图,编写设计说明书。 乙醇——水溶液连续精馏塔优化设计 前言 ! 乙醇在工业、医药、民用等方面,都有很广泛的应用,是很重要的一种原料。在很多方面,要求乙醇有不同的纯度,有时要求纯度很高,甚至是无水乙醇,这是很有困难的,因为乙醇极具挥发性,也极具溶解性,所以,想要得到高纯度的乙醇很困难。 要想把低纯度的乙醇水溶液提升到高纯度,要用连续精馏的方法,因为乙醇和水的挥发度相差不大。精馏是多数分离过程,即同时进行多次部分汽化和部分冷凝的过程,因此可使混合液得到几乎完全的分离。化工厂中精馏操作是在直立圆形的精馏塔内进行的,塔内装有若干层塔板或充填一定高度的填料。为实现精馏分离操作,除精馏塔外,还必须从塔底引入上升蒸汽流和从塔顶引入下降液。可知,单有精馏塔还不能完成精馏操作,还必须有塔底再沸器和塔顶冷凝器,有时还要配原料液预热器、回流液泵等附属设备,才能实现整个操作。 浮阀塔与20世纪50年代初期在工业上开始推广使用,由于它兼有泡罩

ld3000-6sb型全自动多效蒸馏水机使用说明书

LD3000-6S型(PID全自动)多效蒸馏水机使用维修说明书 江苏华东净化设备有限公司 1、作用及用途

本机是一种以去离子水为原料水,用蒸汽加热的并流降膜式多效蒸发型蒸馏水制取设备,具有结构紧凑、外形美观大方、节能效果好、操作简便易行、开机启动快、运行稳定可靠等优点,该机生产的蒸馏水水质好,符合《中华人民共和国药典》(2010版)中“注射用水”的各项规定。是制药企业制取“注射用水”的理想设备。 2、多效蒸馏水机的的主要结构及工作原理 本机主要由六个列管式降膜蒸发器,蒸发器内装有特殊的汽水分离装置,六个列管式双程原料水通道的预热器、两个原料水四流程通道的冷凝器、两个可分体式机架组成。六个蒸发器在后排并列一排,六个预热器在前排并列一排,两个冷凝器横向上下排列在预热器的上方,使得整体布置合理、有序、美观大方。 本机采用了并流降膜式多效蒸发工艺流程,依据各效蒸发器之间的工作压力差,使能量逐级降阶七次使用,达到了节省能源蒸汽、纯化水和不用冷却水的理想效果。另一方面,在每个蒸发器中均装有重力沉降、螺旋扰流、高效丝网三级除雾分离装置,使得产出的蒸馏水水质更好,这一点是目前国内外其他类型的多效蒸馏水机根本无法相比的,既本机所生产的蒸馏水的内毒素含量<0.125EU/mL。 工艺流程如下: 原料水(纯化水)由多级泵经流量计送入冷凝器管程通过管壁对壳程的来自末效的二次纯蒸汽进行冷凝操作而自身却被加热,之后便顺次进入弟六、五、四、三、二、一预热器管程被壳程的汽凝水再行加热,出第一预热器后进第一效蒸发器料水分布器,被均匀的分布淋洒在蒸发管的内壁面上端,料水成膜状液流沿着蒸发管内壁面由上向下流淌,在流淌过程中不断接受通过管壁传给的一次蒸汽汽化潜热而不断的蒸发,未被蒸发的料水流到器底被效间压力差动力送入第二效蒸发器的料水分布器中再次进行如上工作,依此类推乃至末效,末效未被蒸发的料水(既称“浓缩水”)

化工原理课程设计苯-甲苯板式精馏塔设计

化工原理课程设计------------苯-甲苯连续精馏板式塔的设计专业年级:11级化工本2 姓名:申涛 指导老师:代宏哲 2014年7月

目录 一序言 (3) 二板式精馏塔设计任务书 (4) 三设计计算 (5) 1.1 设计方案的选定及基础数据的搜集 (5) 1.2 精馏塔的物料衡算 (8) 1.3 精馏塔的工艺条件及有关物性数据的计算 (12) 1.4 精馏塔的塔体工艺尺寸计算 (17) 1.5 塔板主要工艺尺寸的计算 (18) 1.6 筛板的流体力学验算 (21) 1.7 塔板负荷性能图 (24) 四设计结果一览表 (30) 五板式塔得结构与附属设备 (31) 5.1附件的计算 (31) 5.1.1接管 (31) 5.1.2冷凝器 (33) 5.1.3 再沸器 (33) 5.2 板式塔结构 (34) 六参考书目 (36) 七设计心得体会 (36) 八附录......................................................................................... 错误!未定义书签。

一序言 化工原理课程设计是综合运用《化工原理》课程和有关先修课程(《物理化学》,《化工制图》等)所学知识,完成一个单元设备设计为主的一次性实践教学,是理论联系实际的桥梁,在整个教学中起着培养学生能力的重要作用。通过课程设计,要求更加熟悉工程设计的基本内容,掌握化工单元操作设计的主要程序及方法,锻炼和提高学生综合运用理论知识和技能的能力,问题分析能力,思考问题能力,计算能力等。 精馏是分离液体混合物(含可液化的气体混合物)最常用的一种单元操作,在化工,炼油,石油化工等工业中得到广泛应用。精馏过程在能量剂驱动下(有时加质量剂),使气液两相多次直接接触和分离,利用液相混合物中各组分的挥发度的不同,使易挥发组分由液相向气相转移,难挥发组分由气相向液相转移,实现原料混合液中各组分的分离。根据生产上的不同要求,精馏操作可以是连续的或间歇的,有些特殊的物系还可采用衡沸精馏或萃取精馏等特殊方法进行分离。本设计的题目是苯-甲苯连续精馏筛板塔的设计,即需设计一个精馏塔用来分离易挥发的苯和不易挥发的甲苯,采用连续操作方式,需设计一板式塔将其分离。

多效蒸馏水机工作原理

多效蒸馏水机工作原理(2009-04-08 10:01:27) 标签:资料摘录转载分类:资料查询 注射用水制备系统是GMP关键系统。 多效蒸馏水机是目前应用最为广泛 的注射用水制备系统的关键设备。多 效蒸馏水机采用高温高压操作,确保 稳定生产无热原注射用水。多效蒸馏 水机所生产的蒸馏水,完全满足现行 美国药典、欧洲药典、日本药典和中 国药典中关于注射用水的要求。 技术特点 ?结构材质:与蒸馏水、二次纯蒸汽接触的压力容器体、管道采用316L,密封材料使用PTFE。其他材料包括机架采用304材质。 ?三级分离装置:进入设备的原料水经过降液膜蒸发、重力分离、特殊分离装置三级分离。 ?电化学抛光:不锈钢表面电化学抛光,保证生产注射用水的品质,提高设备使用年限。 ?双管板设计:外置预热器、冷凝器和第一效蒸发器均为双管板设计,符合cGMP的要求,有效消除低卫生级别介质污染系统的可能性。 ?换热管采用优质无缝管:无缝管具有更好的强度和耐用性,保证在加工、焊接、胀接及运行时的热胀冷缩过程中保持完好状态,确保避免 任何工业蒸汽、原料水和冷却水泄漏进入洁净的蒸馏水、二次蒸汽侧。 ?三维弯管:在管路上尽可能采用不锈钢管直接拉伸弯管,避免焊接。 ?使用自动焊接:管路与零件的连接,尽可能使用自动氩气保护轨迹焊接,保证焊接质量。 ?隔热:蒸发器和预热器均采用无氯、无石棉的矿物棉隔热层,并包以不锈钢包层。 ?仅需经济的料水预处理:无需昂贵的纯化水设备,原料水只需电导率小于5μS/cm的去离子水或反渗透水即可。 ?经济节能:多效蒸馏水机由于二次蒸汽在各效中逐级利用,因此对工业蒸汽的利用率很高,具有明显的节能效果。随着蒸发器效数的增多,

精馏塔设计图(参考)

1 / 2 ∠1∶10 设计数量 职务姓名日期制图校核审核审定批准 比例 图幅 1∶20 A1 版次 设计项目设计阶段 毕业设计施工图 精馏塔 重量(Kg) 单件总重备注 件号 图号或标准号 名称 材料1 2345基础环 筋板盖板垫板静电接地板14824241Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A·F 16MnR Q235-A 6 789 10111213 14151617JB4710-92 GB/T3092-93HG20594-97JB4710-92GB/T3092-93HG20594-97JB4710-92 GB/T3092-93HG20594-97HG5-1373-80引出孔 φ159×4.5引出管 DN40法兰 PN1.0,DN40排气管 φ80接管 DN20,L=250法兰 PN1.0,DN20液封盘 塔釜隔板筒体 φ1600×16进料管 DN32法兰 PN1.0,DN32吊柱 111411111111 6.723.931.55322.7 94.2374.19140.62.97 5.382.364.67 1.170.411.0321.9376181210.69 2.02380Q235-A·F Q235-A 1111111311177511组合件16MnR Q235-A Q235-A Q235-A Q235-A Q235-A Q235-A 45Q235-A·F Q235-A Q235-A Q235-A Q235-A 组合件Q235-A 111111224Q235-A 16MnR Q235-A Q235-A Q235-A Q235-A Q235-A 1819202122232425 2627282930313233343536 3738394041 扁钢 8×16HG20594-97HG20594-97HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93HG8162-87JB/T4737-95HG20594-97HG20594-97GB/T3092-93GB/T3092-93GB/T3092-93JB/T4736-95HG21515-95HJ97403224-3HJ97403224-7JB/T4734-95JB4710-92JB4710-921Q235-A HG20652-1998JB/ZQ4363-86上封头DN1600×16接管 DN20,L=250法兰 PN1.0,DN20出气管 DN600法兰 PN1.0,DN600接管 DN20,L=250法兰 PN1.0,DN20气体出口挡板回流管 DN45法兰 PN1.0,DN45补强圈 DN450×8人孔 DN450塔盘接管 DN20,L=250法兰 PN1.0,DN20下封头DN1600×16裙座筒体 法兰 PN1.0,DN20引出管 DN20引出孔 φ133×4检查孔 排净孔地脚螺栓M42×4.5GB704-88370.70.411.0382.3248.10.411.031.874.150.962.36118.3 310.10.411.03370.738021.032.612.2442.540.6 16.944.3δ=8 1 40 6 23 45 41 39 38 37789 10 1112 3635 34 33 3213 14 31 15 1630 2917 28 2726 25 24 2318 19 202122 a b c d e f i g h j1 k l n m5 m7 Ⅵ Ⅴ Ⅳ Ⅲ Ⅱ Ⅰ 技术要求 1、本设备按GB150-1998《钢制压力容器》和HG20652-95《钢制化工容器制造技术要求》进行 制造、试验和验收,并接受劳动部颁发《压力容器安全技术监察规程》的监督;2、焊条采用电弧焊,焊条牌号E4301; 3、焊接接头型式及尺寸,除图中标明外,按HG20583-1998规定,角焊缝的焊接尺寸按较薄板 厚度,法兰焊接按相应法兰中的规定; 4、容器上A、B类焊缝采用探伤检查,探伤长度20%; 5、设备制造完毕后,卧立以0.2MPa进行水压试验; 6、塔体直线允许度误差是H/1000,每米不得超过3mm,塔体安装垂直度允差是最大30mm; 7、裙座螺栓孔中心圆直径允差以及相邻两孔或任意两弦长允差为2mm; 8、塔盘制造安装按JB1205《塔盘技术条件》进行; 9、管口及支座方位见接管方位图。 技术特性表 管口表 总质量:27685 Kg e m1-7a f i g h j2n j4 l j3 k j1 b c d j3 序号 项 目指 标11 109 87654 3 21设计压力 MPa 设计温度 ℃工作压力 MPa 工作温度 ℃工作介质主要受压元件许用应力 MPa 焊缝接头系数腐蚀裕量 mm 全容积 m 容器类别 0.11500.027102 筒体、封头、法兰1700.58157.9327符号公称尺寸连接尺寸标准紧密面 型式用途或名称b c d e f g h i j1-4k l m1-7n 2060020453220202020402045040 HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97HG20594-97 HG21515-95凹凹凹凹凹凹凹凹凹凹凹凹凹 温度计口气相出口压力计口回流口进料口液面计口液面计口温度计口排气管口至再沸器口出料口人孔再沸器返回口 313028263335373929 2732 3436 38404142 43 444546 474849 505125 24 2322 21201918 1716 151******** 8 7654 32114m6 m7 m5 m4 m3 m2 m1 1 2 3 4 5 30 31 32 33 3435 5051管口方位示意图 A、B类焊缝 1:2 整体示意图1:2 Ⅵ Ⅴ 1:5 1:5 Ⅳ A B B向 A向 Ⅲ 1:5 Ⅱ 1:5 Ⅰ 1:10 平台一 平台二 357 2901

相关文档