文档库 最新最全的文档下载
当前位置:文档库 › 分部积分法

分部积分法

分部积分法
分部积分法

分部积分法是种积分的技巧。它是由微分的乘法定则和微积分基本定理推导而来的。其基本思路是将不易求得结果的积分形式,转化为等价的但易于求出结果的积分形式。

规则

假设与是两个连续可导函数. 由乘积法则可知

对上述等式两边求不定积分,得

移项整理,得不定积分形式的分部积分方程

由以上等式我们可以推导出分部积分法在区间的定积分形式

已经积出的部分可以代入上下限表示为以下等式,

而以上这条等式可以通过函数求导乘积法则,以及微积分基本定理通过以下方式倒推并得以验证

在传统的微积分教材里分部积分法通常写成不定积分形式:

如果更简单些, 令, , 微分和

, 就可以得到更常见到的形式:

注意,上面的原式中含有g的导数; 在使用这个规则时必须先找到不定积分g, 并且积分

必须是可积的. 在级数的离散分析中也可以用到类似的公式表达, 称为分部求和. 另一可用的表达方式可以将原表达方式里的因子仅写成f和g, 但缺点是引进了镶套积分:

这个表达方式只有当f是连续可导而且g是连续是才有效.

在黎曼-斯蒂尔吉斯积分和勒贝格-斯蒂尔吉斯积分有更多分部积分的公式.

提示: 部分积分下面这样更复杂一点的积分运算里也是有效的:

[编辑] 例题

用分部积分法求积分:

先设:

u= x, 故du = dx,

dv= cos(x) dx, 故v = sin(x).

代入原积分:

这里C是任意积分常数.

连续使用分部积分可以求解这类积分:

每次分部积分后x的幂减低1次.

下面这个例子需要用点技巧:

和其他例题不同的是分部积分之后得出的结果里含有要求解的积分式, 在这时不必再按积分做下去.

此题要使用两次分部积分.先令:

u= cos(x); 故du= ?sin(x) dx

d v =

e x dx; 故v = e x

于是有:

对余下的积分式再用分部积分, 设:

u= sin(x); d u = cos(x) dx

v= e x; dv = e x dx

得到:

把两次分部积分的结果合在一起:

注意, 要求解的积分式同时出现在等式两边. 我们只要把它移到等式一边就可以得到积分结果:

同样, C在这里是积分常数.

同样的技巧用在求解正割函数的立方的积分里.

另外两个很有用的分部积分范例是分布积分法用在函数本身和1的乘积. 这里的前提是函数的导数是已知的,而且这个导数和x的乘积的积分已知.

第一个范例是∫ ln(x) d x.我们把它写成:

设:

u= ln(x); d u = 1/x d x

v= x; d v = 1·d x

于是:

同样, C 是积分常数.

第二个范例是∫ arctan(x) d x, 这里arctan(x) 是反三角函数.成重写入下:

令:

u= arctan(x); d u = 1/(1+x2) d x

v= x; d v = 1·d x

代入后有:

其中用到换元积分法和自然对数积分.

[编辑] ILATE 约法

用分部积分法时选择哪个函数为u哪个为dv很要紧,ILATE约法给出一个简单的选择u的方法:

I: 反三角函数: arctan x, arcsec x, etc.

L: 对数函数: ln x, , etc.

A: 代数函数: , , etc.

T: 三角函数: sin x, tan x, etc.

E: 指数函数: , , etc.

u确定后,另一个函数自然是dv. ILATE这个口诀代表优先选择的顺序。. 其中的道理是求列在后面的函数的积分比列在前面的更容易.

以下面这个积分作示范:

根据ILATE约法, u = x和dv = cos x dx , 于是du = dx和v = sin x , 这个积分就变成

等同于

总的来说在选u和dv时都是选得du比u简单,dv容易被积. 换过来,如果选cos x为u,x为dv, 就要求这样的积分

分部积分的结果还需要应用分部积分, 陷入一个无限循环.

ILATE约法尽管很有用,也还是会有例外. 所以有时可以用"LIATE"顺序替换. 另外, 在个别情况要将指数项拆开. 例如, 求积分

要拆成

积分结果为

基本积分公式

§5.3基本积分公式 重点与难点提示 基本积分公式均直接由基本导数公式表得到,因此,导数运算的基础好坏直接影响积分的能力,应熟记一些常用的积分公式. 因为求不定积分是求导数的逆运算,所以由基本导数公式对应可以得到基本积分公式. (1) ( 5.6 ) (2) ( 5.7 ) (3) ( 5.8 ) (4) ( 5.9 ) (5) ( 5.10 ) (6) ( 5.11 ) (7) ( 5.12 ) (8) ( 5.13 ) (9) ( 5.14 )

(10) ( 5.15 ) (11) ( 5.16 ) 对这些公式应正确熟记.可根据它们的特点分类来记. 公式(1)为常量函数0的积分,等于积分常数. 公式(2)、(3)为幂函数的积分,应分为与. 当时,, 积分后的函数仍是幂函数,而且幂次升高一次. 特别当时,有. 当时, 公式(4)、(5)为指数函数的积分,积分后仍是指数函数,因为 ,故(,)式右边的是在分母,不在分子,应记清. 当时,有.

是一个较特殊的函数,其导数与积分均不变. 应注意区分幂函数与指数函数的形式,幂函数是底为变量,幂为常数;指数函数是底为常数,幂为变量.要加以区别,不要混淆.它们的不定积分所采用的公式不同. 公式(6)、(7)、(8)、(9)为关于三角函数的积分,通过后面的学习还会增加其他三角函数公式. 公式(10)是一个关于无理函数的积分 公式(11)是一个关于有理函数的积分 下面结合恒等变化及不定积分线性运算性质,举例说明如何利用基本积分公式求不定积分. 例1 求不定积分. 分析:该不定积分应利用幂函数的积分公式. 解: (为任意常数)

分部积分的计算方法

§7.2分部积分法与换元积分法 (一) 教学目的:熟练掌握第一、二换元积分法与分部积分法. (二) 教学内容:第一、二换元积分法;分部积分法. ———————————————————————— 如何计算不定积分 ?xdx 2cos ?我们知道, ?+=C x xdx sin cos ,那么是否有 C x xdx +=?2sin 2cos ?显然不对。 计算不定积分,仅有直接积分法还是不行的。如?xdx 2cos 、?xdx ln 、? xdx tan 等积分就不能直接积分,下面探讨其它的计算不定积分的方法。 一、换元积分法 1.凑微分法 定理1(第一换元积分法)若函数)(x u φ=在[a,b]可导,且βφα≤≤)(x ,],[βα∈?u ,有 )()(x f x F =',则函数)()]([x x f φφ'存在原函数)]([x F φ,即 C x F dx x x f +='?)]([)()]([φφφ **具体应用此定理计算不定积分时,其过程是这样的: ???+====+======'==C x F C u F du u f x d x f dx x x f x u x u )]([)()()()]([)()]([) ()(φφφφφφφ 例7.求 ? +dx x 3 5 分析:我们有公式 ? +=C x dx x 34 3 4 3 ,而上述积分中被积函数根号里面还要加5,不能直接用公式。 为了能用公式计算,进行凑微分: )5(+=x d dx 解: C x C u du u x d x dx x x u x u ++====+=====++=+? ?? +=+=34 53 4 3 5 3 3 )5(4 343)5(55 例8.求? +dx x )85sin( 分析:为了能应用公式计算,进行凑微分:)85(51 += x d dx 解:???+=====++=+udu x d x dx x x u sin 5 1)85()85sin(51 )85sin(85 C x C u x u ++-====+-=+=)85cos(5 1 cos 5185 一般地,在计算积分的时候,有时为了化为能用公式计算,我们常根据需要作下面的凑微分公式: (1))()(1 )(b ax d b ax f a dx b ax f ++= +

(完整版)分部积分法教案.doc

分部积分法 教学目的:使学生理解分部积分法,掌握分部积分法的一般步骤及其应用。 重点:分部积分法及其应用 难点:在分部积分法中,要恰当的选取u 和v 教学方法:讲练法 0回顾 上几节课我们学习了不定积分的求法,要求我们①熟记基本初等函数积分公式表②熟练、灵活的运用第一换元积分法(凑微法)③熟练、灵活的运用第二换元积分法。 凑微法:实质是在被积函数中凑出中间变量的微分; f ( x)dx f [ ( x)] '( x)dx f [ ( x)]d[ ( x)] 令 u (x) ( ) f u du F (u) C F [ ( x)] C 第二换元积分法:关键是通过适当的变量替换x (t) ,使得难求的积分易求 f (x)dx 令 x ( t ) f [ (t )] '(t)dt f [ (t )]d (t) F [ (t)] C F(x) C 1 引入 用我们已经掌握的方法求不定积分x cosxdx 分析:①被积函数为两函数的乘积不是基本的积分公式。 ②凑微法失效。x cos x ③第二类换元积分法 解:不妨设cos x t 则x arccost 原方程t arccost 1 dt 更为复杂1 t 2 所以凑微法和第二换元积分法都失效。 反之考虑,两函数乘积的积分不会,但两函数乘积的求导我们会,比如:(假设 u、 v 为两个函数)已知:(u v)' u' v uv'

对上式两边积分得:移项得:uv u'vdx uv' dx uv'dx uv u'vdx 观察上式发现被积函数也是两函数乘积的形式,注意:uv'dx 中v’为导数形式。 故,我们可以尝试来解一下上面的积分。 x cosxdx 先要化的和要求积分的形式一样 x(sin x)'dx x sin x x'sin xdx x sin x cosx C 真是:山重水复疑无路,柳暗花明又一村。通过上面的方法,我们顺利的解决两函数乘积的积分。其实上面的公式正是这一节课要讲述的“分部积分法” 。 2 公式 2.1 定理设函数 u u(x) 和 v v(x) 及都具有连续的导数,则有分部积分公式: uv'dx uv u'vdx (或 udv uv vdu ) 说明:①两函数的积分等于将其中一个放在 d 里后,里外相乘减去换位的积分。 ②内外积减去换位“积”。 ③步骤: a、放 d 中, b、套公式。 2.2 例 1 求不定积分x sin xdx 解: x sin xdx x sin xdx xd (cos x)① 放d中 x cos x cos xdx② 套公式 x cos x sin x C 3U、V 的选取问题 例 2 求不定积分e x xdx 解: e x xdx e x d ( 1 x2 ) 2 1 x2e x 1 x 2 de x 2 2 1 x2e x 1 e x x 2 dx 2 2

不定积分解题方法及技巧总结剖析

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(??

定积分的基本公式

第三讲 定积分的基本公式 【教学内容】 1.变上限积分函数 2.牛顿-莱布尼兹公式 【教学目标】 1.掌握变上限积分函数 2.掌握牛顿-莱布尼兹公式 【教学重点与难点】 牛顿-莱布尼兹公式 【教学过程】 一、引例 一物体作变速直线运动时,其速度)(t v v =,则它从时刻a t =到时刻b t =所经过的路程S : dt t v S b a ? = )( 另一方面,如果物体运动时的路程函数)(t S S =,则它从时刻a t =到时刻b t =所经过的路程 S 等于函数)(t S S =在],[b a 上的增量 )()(a S b S - 同一物理量(路程)的两种不同数学表达式应该是相等的, ∴ dt t v S b a ? = )()()(a S b S -= ∵ )()(/ t v t S = ∴ ? ? = = b a b a dt t S dt t v S )()(/)()(a S b S -= 二、变上限积分函数 1.定义:如果函数)(x f 在区间],[b a 上连续,那么对于区间],[b a 上的任一点x 来说,)(x f 在区间],[x a 上仍连续,所以函数)(x f 在],[x a 上的定积分 ? x a dx x f )( 存在。也就是说,对于每一个确定的x 值,这个积分将有一个确定的值与之对应,因此它是积分上限x 的函数,此函数定义在区间],[b a 上,把它叫做变上限积分函数,记为)(x Φ。即 )()()()(b x a dt t f dx x f x x a x a ≤≤==Φ?? 2.定理1 如果函数)(x f y =在区间],[b a 上连续,则变上限积分函数 )()()(b x a dt t f x x a ≤≤=Φ? 是函数)(x f y =的原函数,即

分部积分法word版

4.3 分部积分法 前面介绍的基本积分法和换元积分法的共同特点是经过适当的变形或变换,将不易计算的不定积分转化为易于计算的另一种不定积分,达到化难为易,化未知为已知的目的. 现在我们介绍另一种求不定积分的方法——分部积分法,用于求两种不同类型函数乘积的不定积分,这是与两个函数乘积的导数法则对应的积分方法. 设函数)(x u u =,)(x v v =具有连续导数,因为两个函数乘积的导数公式为 v u v u uv '+'=')( 或 v u uv v u '-'=')( 于是,对上式两边求不定积分,得 ???'-'='vdx u dx uv dx v u )( 即 ??'-='vdx u uv dx v u (4.3.1) 或 ??-=vdu uv udv (4.3.2) 上述公式叫做分部积分公式. 例如: C e xe dx e xe de x dx xe x x x x x x +-=-==??? 【注】:(1)分部积分法主要用于解决被积函数是两类不同类型函数的乘积的不定积分。如 dx xe x ?,dx x x ?sin ,dx x x ?ln ,dx x e x ?sin 等等。 (2)关键是选择合适的u 和dv ,选取原则: (a )v 要容易求出。(b ) du v ?比dv u ?容易求出。 例如: x x x x de x e x x d e dx xe ??? -=??? ??=222212 1 21 不合适。 (3)步骤:运用分部积分公式求不定积分?dx x f )(的主要步骤是把被积函数)(x f 分解为两部分因式相乘的形式,其中一部分因式看作u,另一部分因式看作v ',而后套用公式,这样就把求不定积分?'dx v u 的问题转化为求不定积分?'vdx u 的问题. ()dx x f ? ()()dx x v x u ?'= 确定()x u 和() x v '

定积分基本公式

定积分基本公式 定积分是高等数学中一个重要的基本概念,在几何、物理、经济学等各个领域中都有广泛的应用.本章将由典型实例引入定积分概念,讨论定积分性质和计算方法,举例说明定积分在实际问题中的具体运用等. 第二节 微积分基本公式 一、变上限的定积分 设函数()f x 在[[,]a b ] 上连续,x ∈[,]a b ,于是积分()d x a f x x ?是一个定数, 这种写法有一个不方便之处,就是 x 既表示积分上限,又表示积分变量.为避免 t ,于是这个积分就写成了 ()d x a f t t ? . x 值,积分()d x a f t t ?就有一个确定的的一个函数,记作 ()Φx =()d x a f t t ? ( a ≤x ≤ b )通常称函数 ()Φx 为变上限积分函数或变上限积分,其几何意义如图所示. 定理1 如果函数()f x 在区间[,]a b 上连续,则变上限积分 ()Φx =()d x a f t t ?在[,]a b 上可导,且其导数是 d ()()d ()d x a Φx f t t f x x '= =?( a ≤x ≤ b ). 推论 连续函数的原函数一定存在. 且函数()Φx =()d x a f t t ?即为其原函数.

例1 计算()Φx =2 0sin d x t t ?在x =0 ,处的导数. 解 因为2 d sin d d x t t x ?=2sin x ,故 2 (0)sin 00Φ'==; πsin 242Φ'==. 例2 求下列函数的导数: (1) e ln ()d (0)x a t Φx t a t =>? ; 解 这里()Φx 是x 的复合函数,其中中间变量e x u =,所以按复合函数求导 法则,有 d d ln d(e )ln e (d )e d d d e x x u x x a Φt t x x u t x ===?. (2) 2 1()(0) x Φx x θ=>? . 解 21d d d d x Φx x θ=-?2 2()x x ='=2sin 2sin 2x x x x x =- ?=-. 二、牛顿-莱布尼茨(Newton-Leibniz )公式 定理2 设函数()f x 在闭区间[,]a b 上连续,又 ()F x 是()f x 的任一个原函数,则有()d ()() b a f x x F b F a =-? . 证 由定理1知,变上限积分 ()()d x a Φx f t t =?也是()f x 的一个原函数,于 是知0()()Φx F x C -=, 0C 为一常数, 即 0 ()d ()x a f t t F x C =+?.

公开课(分部积分法)教案

《高职数学》公开课教案 课题:§ 4.4 分部积分法 课型:讲授 教学目的、要求:理解分部积分法的思想方法,正确选取u 、dv ,熟练掌握分部 积分法公式 教学重点、难点:分部积分法及其应用,恰当选取u 、dv 教学内容: 一、分部积分法 设函数u =u (x )及v =v (x )具有连续导数. 那么, 两个函数乘积的导数公式为 '+'='uv u (uv)v 移项得 v '-'='u (uv)uv 对这个等式两边求不定积分, 得 ??'-='v d x u uv dx v u , 或??-=vdu uv udv ,称为不定积分的分部积分公式。 二、例题 例1 C e xe dx e xe xde dx xe x x x x x x +-=-==??? 例2 ???-==xdx x x x xd xdx x sin sin sin cos C x x x ++=c o s s i n . 利用这个公式的关键在于选取适当的u 和dv 选取的一般原则:1.v 容易求得(凑微分法); 2.u vd ?比?udv 容易求. 例3求 ?dx e x x 2 解: x x de x dx e x ? ?=22 C e xe e x dx e xe e x dx xe e x dx e e x x x x x x x x x x x ++-=--=-=-=???22) (222222 2

例4求 ?xdx x arctan 解: ??= 2arctan 2 1arctan xdx xdx x [][] C x x x x dx x x x dx x x x x x d x x x ++-=?? ????+--=??????+-=-=???arctan arctan 2 1)111(arctan 211arctan 21arctan arctan 2122222222 例5 34434411111ln ln ()ln ln 444416 x x xd x x x x dx x x x C ==-=-+蝌? 分部积分法的使用技巧 (1)被积函数是两个不同类型函数的乘积; (2)u 的选取按“反、对、幂、三、指”顺序。 例6求xdx e x sin ?. 解 因为???-==x d e x e xde xdx e x x x x sin sin sin sin ??-=-=x x x x x d e x e x d x e x e c o s s i n c o s s i n ?+-=x d e x e x e x x x c o s c o s s i n ?--=xdx e x e x e x x x sin cos sin , 所以 C x x e xdx e x x +-= ?)cos (sin 21sin . 练习: (1) (2)xdx x ln 2? 例7 求 ?dx e x 解: 令 t x =,则 2t x =,tdt dx 2=,因此 []C x e C e te dt te tdt e dx e x t t t t x +-=+-===???)1(2 2 2 2

求不定积分的方法及技巧小汇总~

求不定积分的方法及技巧小汇总~ 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 C x F x d x f dx x x f +==???)]([)()]([)(')]([????? 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1 111)'ln )1(ln(+- =-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2 )ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 )ln (ln 1 【解】x x x ln 1)'ln (+= C x x x x x dx dx x x x +-==++??ln 1 )ln (ln )1(ln 122 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式 ??=dt t t f dx f )(')]([x)(?? 第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会 用。主要有以下几种: acht x t a x t a x a x asht x t a x t a x a x t a x t a x x a ===-===+==-;;:;;:;:csc sec )3(cot tan )2(cos sin )1(222222

定积分常用公式

定积分常用公式 二、基本积分表(188页1—15,205页16—24) (1) (k是常数) kdxkxC,,, ,,1x,(2) xdxC,,,(1)u,,,,,1 1(3) dxxC,,ln||,x dx(4) ,,arlxCtan2,1,x dx(5) ,,arcsinxC,21,x (6)cossinxdxxC,, , (7)sincosxdxxC,,, , 1(8) dxxC,,tan2,cosx 1(9) dxxC,,,cot2,sinx sectansecxxdxxC,,(10) , csccotcscxxdxxC,,,(11) , xxedxeC,,(12) , xax(13), (0,1)aa,,且adxC,,,lna shxdxchxC,,(14) , chxdxshxC,,(15) , 11x(16) dxarcC,,tan22,axaa, 1 11xa,(17) dxC,,ln||22,xaaxa,,2 1x(18) dxarcC,,sin,22aax, 122(19) dxxaxC,,,,ln(),22ax, dx22(20) ,,,,ln||xxaC,22xa,

(21)tanln|cos|xdxxC,,, , (22)cotln|sin|xdxxC,, , )secln|sectan|xdxxxC,,, (23, cscln|csccot|xdxxxC,,,(24) , 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把换成仍成立,是以为自变量的函数。 xuux 3、复习三角函数公式: 1cos2,x22222, sincos1,tan1sec,sin22sincos,xxxxxxx,,,,,cosx,2 1cos2,x2。 sinx,2 fxxdxfxdx[()]'()[()](),,,,,注:由,此步为凑微分过程,所以第一,, 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。 2 小结: 1常用凑微分公式 积分类型换元公式11.f(ax,b)dx,f(ax,b)d(ax,b)(a,0)u,ax,b,,a u,x11,2.f(x)xdx,f(x)d(x)(,0),,,,,,,,,1u,lnx3.f(lnx),dx,f(lnx)d(lnx), ,x 4..f(e),edx,f(e)dexxxxu,ex,,第 1一5.f(a),adx,f(a)daxxxx,,lnau,ax换 6.f(sinx),cosxdx,f(sinx)dsinxu,sinx元,, u,cosx积7.f(cosx),sinxdx,,f(cosx)dcosx,,分 28.f(tanx)secxdx,f(tanx)dtanxu,tanx,,法 u,cotx29.f(cotx)cscxdx,,f(cotx)dcotx,,

不定积分解题方法及技巧总结

不定积分解题方法及技巧 总结 Prepared on 24 November 2020

? 不定积分解题方法总结 摘要:在微分学中,不定积分是定积分、二重积分等的基础,学好不定积分十分重要。然而在学习过程中发现不定积分不像微分那样直观和“有章可循”。本文论述了笔者在学习过程中对不定积分解题方法的归纳和总结。 关键词:不定积分;总结;解题方法 不定积分看似形式多样,变幻莫测,但并不是毫无解题规律可言。本文所总结的是一般规律,并非所有相似题型都适用,具体情况仍需要具体分析。 1.利用基本公式。(这就不多说了~) 2.第一类换元法。(凑微分) 设f(μ)具有原函数F(μ)。则 其中)(x ?可微。 用凑微分法求解不定积分时,首先要认真观察被积函数,寻找导数项内容,同时为下一步积分做准备。当实在看不清楚被积函数特点时,不妨从被积函数中拿出部分算式求导、尝试,或许从中可以得到某种启迪。如例1、例2: 例1:? +-+dx x x x x ) 1(ln )1ln( 【解】) 1(1111)'ln )1(ln(+-=-+= -+x x x x x x C x x x x d x x dx x x x x +-+-=-+-+-=+-+??2)ln )1(ln(2 1)ln )1(ln()ln )1(ln()1(ln )1ln(例2:? +dx x x x 2 ) ln (ln 1 【解】x x x ln 1)'ln (+= 3.第二类换元法: 设)(t x ?=是单调、可导的函数,并且)(')]([.0)('t t f t ???又设≠具有原函数,则有换元公式

第二类换元法主要是针对多种形式的无理根式。常见的变换形式需要熟记会用。主要有以下几种: (7)当根号内出现单项式或多项式时一般用t 代去根号。 但当根号内出现高次幂时可能保留根号, (7)当根号内出现单项式或多项式时一般用t 代去根号。 但当根号内出现高次幂时可能保留根号, 4.分部积分法. 公式:??-=νμμννμd d 分部积分法采用迂回的技巧,规避难点,挑容易积分的部分先做,最终完成不定积分。具体选取νμ、时,通常基于以下两点考虑: (1)降低多项式部分的系数 (2)简化被积函数的类型 举两个例子吧~! 例3:dx x x x ? -?2 31arccos 【解】观察被积函数,选取变换x t arccos =,则 例4:?xdx 2arcsin 【解】 ? ?--=dx x x x x x xdx 2 2 211arcsin 2sin arcsin 上面的例3,降低了多项式系数;例4,简化了被积函数的类型。 有时,分部积分会产生循环,最终也可求得不定积分。 在??-=νμμννμd d 中,νμ、的选取有下面简单的规律: 将以上规律化成一个图就是: ν

定积分公式

二、基本积分表(188页1—15,205页16—24) (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+=++? (1)u ≠- (3)1ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+? (6)cos sin xdx x C =+? (7)sin cos xdx x C =-+? (8)2 1 tan cos dx x C x =+? (9)2 1 cot sin dx x C x =-+? (10)sec tan sec x xdx x C =+? (11)csc cot csc x xdx x C =-+? (12)x x e dx e C =+? (13)ln x x a a dx C a = +?,(0,1)a a >≠且 (14)shxdx chx C =+? (15)chxdx shx C =+? (16)2 2 11tan x dx arc C a x a a = ++?

(17)2 2 11ln | |2x a dx C x a a x a -= +-+? (18) sin x arc C a =+? (19) ln(x C =++? (20) ln |x C =++? (21)tan ln |cos |xdx x C =-+? (22)cot ln |sin |xdx x C =+? (23)sec ln |sec tan |xdx x x C =++? (24)csc ln |csc cot |xdx x x C =-+? 注:1、从导数基本公式可得前15个积分公式,(16)-(24)式后几节证。 2、以上公式把x 换成u 仍成立,u 是以x 为自变量的函数。 3、复习三角函数公式: 2 2 2 2 sin cos 1,tan 1sec ,sin 22sin cos ,x x x x x x x +=+==2 1cos 2cos 2 x x += , 2 1cos 2sin 2 x x -= 。 注:由[()]'()[()]() f x x dx f x d x ????= ?? ,此步为凑微分过程,所以第一 类换元法也叫凑微分法。此方法是非常重要的一种积分法,要运用自如,务必熟记基本积分表,并掌握常见的凑微分形式及“凑”的技巧。

不定积分求解方法及技巧

不定积分求解方法及技巧小汇总 摘要:总结不定积分基本定义,性质和公式,求不定积分的几种基本方法和技巧,列举个别典型例子,运用技巧解题。 一.不定积分的概念与性质 定义1如果F(x)是区间I上的可导函数,并且对任意的x∈I,有F’(x)=f(x)dx则称F(x)是f(x)在区间I上的一个原函数。 定理1(原函数存在定理)如果函数f(x)在区间I上连续,那么f(x)在区间I上一定有原函数,即存在可导函数F(x),使得F(x)=f(x)(x∈I) 简单的说就是,连续函数一定有原函数 定理2设F(x)是f(x)在区间I上的一个原函数,则 (1)F(x)+C也是f(x)在区间I上的原函数,其中C是任意函数; (2)f(x)在I上的任意两个原函数之间只相差一个常数。 定义2设F(x)是f(x)在区间I上的一个原函数,那么f(x)的全体原函数F(x)+C称为f(x)在区间I上的不定积分,记为?f(x)d(x),即?f(x)d(x)=F(x)+C 其中记号?称为积分号,f(x)称为被积函数,f(x)d(x)称为被积表达式,x称为积分 变量,C称为积分常数。 性质1设函数f(x)和g(x)存在原函数,则?[f(x)±g(x)]dx=?f(x)dx±?g(x)dx.性质2设函数f(x)存在原函数,k为非零常数,则?kf(x)dx=k?f(x)dx. 二.换元积分法的定理 如果不定积分?g(x)dx不容易直接求出,但被积函数可分解为g(x)=f[?(x)] ?’(x). 做变量代换u=?(x),并注意到?‘(x)dx=d?(x),则可将变量x的积分转化成变量u的积 分,于是有?g(x)dx=?f[?(x)] ?’(x)dx=?f(u)du. 如果?f(u)du可以积出,则不定积分?g(x)dx的计算问题就解决了,这就是第一类换 元法。第一类换元法就是将复合函数的微分法反过来用来求不定积分。 定理1 设F(u)是f(u)的一个原函数,u=?(x)可导,则有换元公式

常用的求导和定积分公式

一.基本初等函数求导公式 (1) 0)(='C (2) 1 )(-='μμμx x (3) x x cos )(sin =' (4) x x sin )(cos -=' (5) x x 2 sec )(tan =' (6) x x 2 csc )(cot -=' (7) x x x tan sec )(sec =' (8) x x x cot csc )(csc -=' (9) a a a x x ln )(=' (10) (e )e x x '= (11) a x x a ln 1 )(log = ' (12) x x 1)(ln = ', (13) 211)(arcsin x x -= ' (14) 211)(arccos x x -- =' (15) 21(arctan )1x x '= + (16) 21(arccot )1x x '=- + 函数的和、差、积、商的求导法则 设)(x u u =,)(x v v =都可导,则 (1) v u v u '±'='±)( (2) u C Cu '=')((C 是常数) (3) v u v u uv '+'=')( (4) 2v v u v u v u '-'=' ??? ?? 反函数求导法则

若函数)(y x ?=在某区间y I 内可导、单调且0)(≠'y ?,则它的反函数) (x f y =在对应区间 x I 内也可导,且 )(1)(y x f ?'= ' 或 dy dx dx dy 1 = 复合函数求导法则 设)(u f y =,而)(x u ?=且)(u f 及)(x ?都可导,则复合函数)]([x f y ?=的导数为 dy dy du dx du dx = 或()()y f u x ?'''= 二、基本积分表 (1)kdx kx C =+? (k 是常数) (2)1 ,1 x x dx C μμ μ+= ++? (1)u ≠- (3)1 ln ||dx x C x =+? (4)2 tan 1dx arl x C x =++? (5) arcsin x C =+?

积分基本公式

2.基本积分公式表 (1)∫0d x=C (2)=ln|x|+C (3)(m≠-1,x>0) (4)(a>0,a≠1) (5) (6)∫cos x d x=sin x+C (7)∫sin x d x=-cos x+C (8)∫sec2x d x=tan x+C (9)∫csc2x d x=-cot x+C (10)∫sec x tan x d x=sec x+C (11)∫csc x cot x d x=-csc x+C (12)=arcsin x+C (13)=arctan x+C 注.(1)不是在m=-1的特例. (2)=ln|x|+C,ln后面真数x要加绝对值,原因是(ln|x|)' =1/x. 事实上,对x>0,(ln|x|)' =1/x;若x<0,则 (ln|x|)' =(ln(-x))' =. (3)要特别注意与的区别:前者是幂函数的积分,后者是指数函数的积分. 下面我们要学习不定积分的计算方法,首先是四则运算.

6. 复合函数的导数与微分 大量初等函数含有复合函数的成分,它们的导数与微分计算法则具有特别重要的意义. 定理.(链锁法则)设z=f(y),y=?(x)分别在点y0=?(x0)与x0可导,则复合函数z=f[?(x)]在x0可导,且 或(f o?)' (x0)=f '(y0)??'(x0). 证.对应于自变量x0处的改变量?x,有中间变量y在y0=?(x0)处的改变量?y及因变量z在z0=f(y0)处的改变量?z,(注意?y可能为0).现 ?z=f'(y0)??y+v,?y='?(x0)?x+u, 且令,则v=?αy,(注意,当?y=0时,v=?αy仍成立).y在x 0可导又蕴含y在x0连续,即?y=0.于是 =f '(y0)?? '(x0)+0??'(x0)=f'(y0)??'(x0) 为理解与记忆链锁法则,我们作几点说明: (1) 略去法则中的x=x0与y=y0,法则成为公式 , 其右端似乎约去d y后即得左端,事实上,由前面定理的证明可知,这里并不是一个简单的约分过程. (2) 计算复合函数的过程:x→?y →?z 复合函数求导的过程:z→?y →?x :各导数相乘 例2.3.15求y=sin5x的导数. 解.令u=5x,则y=sin u.于是

常见求积分方法总结

常见求积分方法总结-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

Y i b i n U n i v e r s i t y 毕业论文(设计) 题目常见求积分方法总结 系别数学学院 专业数学与应用数学 学生姓名罗大宏 学号 120204036 年级 12级4班 指导教师刘信东职称 xxx 2016 年 3 月 10 日

常见求积分方法总结 作者:罗大宏 单位:宜宾学院数学学院12级4班 指导教师:刘兴东 摘要:微积分是数学分析中的一个重要基础学科,并且微积分中的积分运算是求导的逆运算,它是连接微分学和积分学的枢纽。因此怎样求积分就显得非常重要,本文讲解了常见求积分的几种方法:直接积分法、分部积分法、换元积分法和有理函数积分的待定系数法,掌握了这些方法,将对我们迅速求解积分来说非常重要。 关键词:定积分、不定积分、换元积分法、分部积分法、待定系数法 引言 数学分析是大学数学与应用数学专业必修专业课,而微积分是数学分析的重点,又不定积分是积分学的基础,会影响到后面学习其它的积分,特别是定积分的求解。它的目的是形成一定的思维方法和解决问题的能力。并且不定积分的求解要比导数的求解复杂很多,运用积分的基本公式只能解决一些容易的积分,更多的不定积分要因函数的差别而采用相应的方法。另外,如果我们掌握了求不定积分的方法,那么求解定积分就变得容易。本文我们就对常见求积分方法进行总结,以便帮助我们解决一些实际问题。 1.积分的概念 1.1、不定积分 若()x F是函数()x f在区间I上的一个原函数,则()x f在I的所有原函数 ()C F+(C为任意常数)称为()x f在区间I上的不定积分。记作 x

换元积分法与分部积分法

8.2 换元积分法与分部积分法(4时) 【教学目的】熟练掌握换元积分法和分步积分法。 【教学重点】换元积分法和分步积分法。 【教学难点】灵活运用换元积分法和分步积分法。 【教学过程】 一 换元积分法 由复合函数求导法,可以导出换元积分法. 定理8.4(换元积分法) 设g(u )在[]βα,上有定义,)(x u ?=在[]b a ,上可导,且 []b a x x ,,)(∈≤≤β?α,并记 [].,),())(()(b a x x x g x f ∈'=?? (i)若)(u g 在[]βα,上存在原函数)(u G ,则)(x f 在[]b a ,上也存在原函数 C x G x F x F +=))(()(),(?,即 ???='=du u g dx x x g dx x f )()())(()(?? .))(()(C x G C u G +=+? (ii) 又若[],,,0)(b a x x ∈≠'?则上述命题(i)可逆,即当)(x f 在[]b a ,上存在原函数F(x )时,g(u )在[βα,]上也存在原函数G(u ),且G(u )=C u F +-))((1 ?,即 ???='=dx x f dx x x g du u g )()())(()(??. .))(()(1 C u F C x F +=+=-? 证 (i ) 用复合函数求导法进行验证: )())(())((x x G x G dx d ???''= ).()())((x f x x g ='?? 所以)(x f 以))((x G ?为其原函数,(1)式成立. ( ii ) 在0)(≠'x ?的条件下,)(x u ?=存在反函数)(1 u x -=?,且 .) (1) (1u x x du dx -='= ?? 于是又能验证(2)式成立: ) (1)()(1)())((1x x f x x F u F du d ???'?='?'=-

常用积分公式

常 用 积 分 公 式 (一)含有ax b +的积分(0a ≠) 1. d x ax b +?=1 ln ax b C a ++ 2.()d ax b x μ +? = 11 ()(1) ax b C a μμ++++(1μ≠-) 3. d x x ax b +?=21 (ln )ax b b ax b C a +-++ 4.2d x x ax b +? =22311()2()ln 2ax b b ax b b ax b C a ?? +-++++???? 5. d ()x x ax b +?=1ln ax b C b x +-+ 6. 2 d () x x ax b +? =21ln a ax b C bx b x +-++ 7. 2 d ()x x ax b +?=21(ln )b ax b C a ax b ++++ 8.22 d ()x x ax b +?=2 31(2ln )b ax b b ax b C a ax b +-+-++ 9. 2d ()x x ax b +? = 2 11ln ()ax b C b ax b b x +-++ 的积分 10. x C + 11.x ?=2 2(3215ax b C a - 12.x x ?=2223 2(15128105a x abx b C a -+ 13. x ? =22 (23ax b C a -

14 . 2x ? =2223 2 (34815a x abx b C a -+ 15 .? (0) (0) C b C b ?+>< 16 . ? 2a b - 17. d x x ? =b ?18. 2d x x ? =2a + (三)含有2 2 x a ±的积分 19. 22d x x a +?=1arctan x C a a + 20. 22d ()n x x a +?=2221222123d 2(1)()2(1)()n n x n x n a x a n a x a ---+-+-+? 21. 22d x x a -?=1ln 2x a C a x a -++ (四)含有2 (0)ax b a +>的积分 22.2d x ax b +? =(0) (0) C b C b ?+>+< 23. 2d x x ax b +?=2 1ln 2ax b C a ++

分部积分法顺序口诀

不便于进行换元的组合分成两部份进行积分,其原理是函数四则运算的求导法则的逆用。 根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。 5 本词条无参考资料, 欢迎各位编辑词条,额外获取5个金币。 基本信息 中文名称 分布积分法 外文名称 Integration by parts 目录 1定义 2应用 折叠编辑本段定义

不便于进行换元的组合分成两部份进行积 分部积分法 分部积分法 分,其原理是函数四则运算的求导法则的逆用。根据组成积分函数的基本函数将积分顺序整理为口诀:“反对幂三指”。分别代指五类基本函数:反三角函数、对数函数、幂函数、三角函数、指数函数的积分次序。 折叠编辑本段应用 在不定积分上的应用 具体操作如:根据“反对幂三指”先后顺序,前者为u,后者为v(例:被积函数由幂函数和三角函数组 分部积分法 分部积分法 成则按口诀先积三角函数(即:按公式∫udv = uv - ∫vdu + c把幂函数看成U,三角函数看成V,))。原公式:(uv)'=u'v+uv'求导公式:d(uv)/dx = (du/dx)v + u(dv/dx) 写成全微分形式就成为:d(uv) = vdu + udv

移项后,成为:udv = d(uv) -vdu 两边积分得到:∫udv = uv - ∫vdu 例:∫xcosxdx = xsinx - ∫sinxdx从这个例子中,就可以体会出分部积分法的应用。 在定积分上的应用 与不定积分的分部积分法一样,可得∫b/a u(x)v'(x)dx=[∫u(x)v'(x)dx]b/a =[u(x)v(x) - ∫v(x)u'(x)dx]b/a =[u(x)-v(x)]b/a- ∫b/a v(x)u'(x)dx 简记作∫b/a uv'dx=[uv]b/a-∫b/a u'vdx 或∫b/a udv=[uv]b/a-∫b/a vdu 例如∫1/0arcsin xdx=[xarcsinx]1/0-∫1/0 xdarcsinx从这个例子中就可以看到在定积分上是如何应用的。

相关文档