文档库 最新最全的文档下载
当前位置:文档库 › 排列组合基础知识及习题分析

排列组合基础知识及习题分析

排列组合基础知识及习题分析
排列组合基础知识及习题分析

排列组合基础知识及习题分析

在介绍排列组合方法之前我们先来了解一下基本的运算公式!

C53=(5×4×3)/(3×2×1) C62=(6×5)/(2×1)通过这2个例子看出

n

C m n公式是种子数M开始与自身连续的N个自然数的降序乘积做为分子。

以取值N的阶层作

为分母

p53=5×4×3 p66=6×5×4×3×2×1

通过这2个例子

p m n=从M开始与自身连续N个自然数的降序乘积当N=M时即M的阶层排列、组合的本质是研究“从n个不同的元素中,任取m (m≤n)个元素,有序和无序摆放的各种可能性”.区别排列与组合的标志是“有序”与“无序”.

解答排列、组合问题的思维模式有二:

其一是看问题是有序的还是无序的?有序用“排列”,无序用“组合”;其二是看问题需要分类还是需要分步?分类用“加法”,分步用“乘法”.

分类:“做一件事,完成它可以有n类方法”,这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则:①完成这件事的任何一种方法必须属于某一类;②分别属于不同两类的两种方法是不同的方法.

分步:“做一件事,完成它需要分成n个步骤”,这是说完成这件事的任何一种方法,都要分成n个步骤.分步时,首先要根据问题的特点,确定一个可行的分步标准;其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤后,这件事才算最终完成.

两个原理的区别在于一个和分类有关,一个与分步有关.如果完成一件事有n类办法,这n 类办法彼此之间是相互独立的,无论那一类办法中的那一种方法都能单独完成这件事,求完成这件事的方法种数,就用加法原理;如果完成一件事需要分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事的方法种类就用乘法原理.

在解决排列与组合的应用题时应注意以下几点:

1.有限制条件的排列问题常见命题形式:“在”与“不在”“邻”与“不邻”

在解决问题时要掌握基本的解题思想和方法:

⑴“相邻”问题在解题时常用“合并元素法”,可把两个以上的元素当做一个元素来看,这是处理相邻最常用的方法.

⑵“不邻”问题在解题时最常用的是“插空排列法”.

⑶“在”与“不在”问题,常常涉及特殊元素或特殊位置,通常是先排列特殊元素或特殊位置.

⑷元素有顺序限制的排列,可以先不考虑顺序限制,等排列完毕后,利用规定顺序的实情求出结果.

2.有限制条件的组合问题,常见的命题形式:“含”与“不含”“至少”与“至多”在解题时常用的方法有“直接法”或“间接法”.

3.在处理排列、组合综合题时,通过分析条件按元素的性质分类,做到不重、不漏,按事件的发生过程分步,正确地交替使用两个原理,这是解决排列、组合问题的最基本的,也是最重要的思想方法。. *****************************************************************************

提供10道习题供大家练习

1、三边长均为整数,且最大边长为11的三角形的个数为(C )(A)25个(B)26个(C)36个(D)37个------------------------------------------------------

【解析】根据三角形边的原理两边之和大于第三边,两边之差小于第三边可见最大的边是11 则两外两边之和不能超过22 因为当三边都为11时是两边之和最大的时候因此我们以一条边的长度开始分析如果为11,则另外一个边的长度是11,10,9,8,7,6,。。。。。。1 如果为10 则另外一个边的长度是10,9,8。。。。。。2,(不能为1 否则两者之和会小于11,不能为11,因为第一种情况包含了11,10的组合)如果为9 则另外一个边的长度是9,8,7,。。。。。。。3 (理由同上,可见规律出现)规律出现总数是11+9+7+。。。。1=(1+11)×6÷2=36

2、(1)将4封信投入3个邮筒,有多少种不同的投法?------------------------------------------------------------

【解析】每封信都有3个选择。信与信之间是分步关系。比如说我先放第1封信,有3种可能性。接着再放第2封,也有3种可能性,直到第4封,所以分步属于乘法原则即3×3×3×3=3^4

(2)3位旅客,到4个旅馆住宿,有多少种不同的住宿方法?-------------------------------------------------------------

【解析】跟上述情况类似对于每个旅客我们都有4种选择。彼此之间选择没有关系不够成分类关系。属于分步关系。如:我们先安排第一个旅客是4种,再安排第2个旅客是4种选择。知道最后一个旅客也是4种可能。根据分步原则属于乘法关系即4×4×4=4^3 (3)8本不同的书,任选3本分给3个同学,每人一本,有多少种不同的分法?-------------------------------------------------------------

【解析】分步来做第一步:我们先选出3本书即多少种可能性C8取3=56种

第二步:分配给3个同学。P33=6种这里稍微介绍一下为什么是P33 ,我们来看第一个同学可以有3种书选择,选择完成后,第2个同学就只剩下2种选择的情况,最后一个同学没有选择。即3×2×1 这是分步选择符合乘法原则。最常见的例子就是1,2,3,4四个数字可以组成多少4位数?也是满足这样的分步原则。用P来计算是因为每个步骤之间有约束作用即下一步的选择受到上一步的压缩。所以该题结果是56×6=336 3、七个同学排成一横排照相.

(1)某甲不站在排头也不能在排尾的不同排法有多少种?(3600)---------------------------------------------

【解析】这个题目我们分2步完成第一步:先给甲排应该排在中间的5个位置中的一个即C5取1=5

第二步:剩下的6个人即满足P原则P66=720 所以总数是720×5=3600

(2)某乙只能在排头或排尾的不同排法有多少种?(1440)-------------------------------------------------

【解析】第一步:确定乙在哪个位置排头排尾选其一C2取1=2

第二步:剩下的6个人满足P原则P66=720 则总数是720×2=1440

(2)甲不在排头或排尾,同时乙不在中间的不同排法有多少种?(3120)---------------------------------------------------

【解析】特殊情况先安排特殊第一种情况:甲不在排头排尾并且不在中间的情况去除3个位置剩下4个位置供甲选择C4取1=4,剩下6个位置先安中间位置即除了甲乙2人,其他5人都可以即以5开始,剩下的5个位置满足P原则即5×P55=5×120=600 总数是4×600=2400 第2种情况:甲不在排头排尾,甲排在中间位置则剩下的6个位置满足P66=720 因为是分类讨论。所以最后的结果是两种情况之和即2400

+720=3120

(4)甲、乙必须相邻的排法有多少种?(1440)----------------------------------------------- 【解析】相邻用捆绑原则2人变一人,7个位置变成6个位置,即分步讨论第1:选位置C6取1=6 第2:选出来的2个位置对甲乙在排即P22=2 则安排甲乙符合情况的种数是2×6=12 剩下的5个人即满足P55的规律=120 则最后结果是120×12=1440 (5)甲必须在乙的左边(不一定相邻)的不同排法有多少种?(2520)-------------------------------------------------------

【解析】这个题目非常好,无论怎么安排甲出现在乙的左边和出现在乙的右边的概率是一样的。所以我们不考虑左右问题则总数是P77=5040 ,根据左右概率相等的原则则排在左边的情况种数是5040÷2=2520

4、用数字0,1,2,3,4,5组成没有重复数字的数. (1)能组成多少个四位数?(300)--------------------------------------------------------

【解析】四位数从高位开始到低位高位特殊不能排0。则只有5种可能性接下来3个位置满足P53原则=5×4×3=60 即总数是60×5=300 (2)能组成多少个自然数?(1631)---------------------------------------------------------

【解析】自然数是从个位数开始所有情况分情况

1位数:C6取1=6

2位数:C5取2×P22+C5取1×P11=25

3位数:C5取3×P33+C5取2×P22×2=100

4位数:C5取4×P44+C5取3×P33×3=300

5位数:C5取5×P55+C5取4×P44×4=600

6位数:5×P55=5×120=600 总数是1631 这里解释一下计算方式比如说2位数:C5取2×P22+C5取1×P11=25 先从不是0的5个数字中取2个排列即C5取2×P22 还有一种情况是从不是0的5个数字中选一个和0搭配成2位数即C5取1×P11 因为0不能作为最高位所以最高位只有1种可能

(3)能组成多少个六位奇数?(288)---------------------------------------------------

【解析】高位不能为0 个位为奇数1,3,5 则先考虑低位,再考虑高位即3×4×P44=12×24=288

(3)能组成多少个能被25整除的四位数?(21)----------------------------------------------------

【解析】能被25整除的4位数有2种可能后2位是25:3×3=9 后2位是50:P42=4×3=12 共计9+12=21 (5)能组成多少个比201345大的数?(479)------------------------------------------------

【解析】从数字201345 这个6位数看是最高位为2的最小6位数所以我们看最高位大于等于2的6位数是多少?4×P55=4×120=480 去掉201345这个数即比201345大的有480-1=479

(6)求所有组成三位数的总和. (32640)---------------------------------------------

【解析】每个位置都来分析一下百位上的和:M1=100×P52(5+4+3+2+1) 十位上的和:M2=4×4×10(5+4+3+2+1) 个位上的和:M3=4×4(5+4+3+2+1) 总和M=M1+M2+M3=32640

5、生产某种产品100件,其中有2件是次品,现在抽取5件进行检查.

(1)“其中恰有两件次品”的抽法有多少种?(152096)【解析】也就是说被抽查的5件中有3件合格的,即是从98件合格的取出来的所以即C2取2×C98取3=152096 (2)“其中恰有一件次品”的抽法有多少种?(7224560)

【解析】同上述分析,先从2件次品中挑1个次品,再从98件合格的产品中挑4个C2取1×C98取4=7224560 (3)“其中没有次品”的抽法有多少种?(67910864)

【解析】则即在98个合格的中抽取5个C98取5=67910864 (4)“其中至少有一件次品”的抽法有多少种?(7376656)

【解析】全部排列然后去掉没有次品的排列情况就是至少有1种的C100取5-C98取5=7376656 (5)“其中至多有一件次品”的抽法有多少种?(75135424)

【解析】所有的排列情况中去掉有2件次品的情况即是至多一件次品情况的C100取5-C98取3=75135424

6、从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型和乙型电视机各1台,则不同的取法共有()(A)140种(B)84种(C)70种(D)35种--------------------------------------------------------

【解析】根据条件我们可以分2种情况

第一种情况:2台甲+1台乙即C4取2×C5取1=6×5=30

第二种情况:1台甲+2台乙即C4取1×C5取2=4×10=40 所以总数是30+40=70种7、在50件产品中有4件是次品,从中任抽5件,至少有3件是次品的抽法有__种. -------------------------------------------------------

【解析】至少有3件则说明是3件或4件3件:C4取3×C46取2=4140 4件:C4取4×C46取1=46 共计是4140+46=4186 8、有甲、乙、丙三项任务, 甲需2人承担, 乙、丙各需1人承担.从10人中选派4人承担这三项任务, 不同的选法共有(C )(A)1260种(B)2025种(C)2520种(D)5040种----------------------【解析】分步完成第一步:先从10人中挑选4人的方法有:C10取4=210 第二步:分配给甲乙并的工作是C4取2×C2取1×C1取1=6×2×1=12种情况则根据分步原则乘法关系210×12=2520

9、12名同学分别到三个不同的路口进行车流量的调查,若每个路口4人,则不同的分配方案共有_____种C(4,12)C(4,8)C(4,4) --------------------【解析】每个路口都按次序考虑

第一个路口是C12取4

第二个路口是C8取4

第三个路口是C4取4 则结果是C12取4×C8取4×C4取4 可能到了这里有人会说三条不同的路不是需要P33吗其实不是这样的在我们从12人中任意抽取人数的时候,其实将这些分类情况已经包含了对不同路的情况的包含。如果再×P33 则是重复考虑了.

如果这里不考虑路口的不同即都是相同路口则情况又不一样因为我们在分配人数的时候考虑了路口的不同。所以最后要去除这种可能情况所以在上述结果的情况下要÷P33

10、在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法?990 ------------------------

【解析】这是排列组合的一种方法叫做2次插空法直接解答较为麻烦,故可先用一个节目去插9个空位,有P(9,1)种方法;再用另一个节目去插10个空位,有P(10,1)种方法;用最后一个节目去插11个空位,有P(11,1)方法,由乘法原理得:所有不同的添加方法为P(9,1)×P(10,1)×P(11,1)=990种。

另解:先在11个位置中排上新添的三个节目有P(11,3)种,再在余下的8个位置补上原有的8个节目,只有一解,所以所有方法有P311×1=990种。

解决排列组合问题的策略

1、逆向思维法:我们知道排列组合都是对一个元素集合进行筛选排序。我们可以把这个集

合看成数学上的单位1,那么1=a+b 就是我们构建逆向思维的数学模型了,当a不

利于我们运算求解的时候,我们不妨从b的角度出发思考,这样同样可以求出a=1-b。例题:7个人排座,甲坐在乙的左边(不一定相邻)的情况有多少种?例题:一个正方体有8个顶点我们任意选出4个,有多少种情况是这4个点可以构成四面体的。

例题:用0,2,3,4,5这五个数字,组成没有重复数字的三位数,其中偶数共有()A.24个B.30个C.40个D.60个

2、解含有特殊元素、特殊位置的题——采用特殊优先安排的策略:

(1)无关型:两个特殊位置上分别可取的元素所组成的集合的交是空集

例题:用0,1,2,3,4,5六个数字可组成多少个被10整除且数字不同的六位数?

(2)包含型:两个特殊位置上分别可取的元素所组成集合具有包合关系

例题:用0,1,2,3,4,5六个数字可组成多少个被5整除且数字不同的六位奇数?

P55×-P44=120-24=96 用0,1,2,3,4,5六个数字可组成多少个被25整除且数字不同的六位数? 25,75 (3×3×2×1)×2+P44=36+24=60

(3)影响型:两个特殊位置上可取的元素既有相同的,又有不同的。

例题:用1,2,3,4,5这五个数字,可以组成比20000大并且百位数字不是3的没有重复数字的五位数有多少个?

3.解含有约束条件的排列组合问题一――采用合理分类与准确分步的策略

例题:平面上4条平行直线与另外5条平行直线互相垂直,则它们构成的矩形共有________个。

简析:按构成矩形的过程可分为如下两步:第一步.先在4条平行线中任取两条,有C4取2种取法;第二步再在5条平行线中任取两条,有C5取2种取法。这样取出的四条直线构成一个矩形,据乘法原理,构成的矩形共有6×10=60个

4、解排列组台混合问题——采用先选后排策略对于排列与组合的混合问题,可采取先选出元素,后进行排列的策略。

例:4个不同小球放入编号为1、2、3、4的四个盒子,则恰有一个空盒的放法有___种。144 5、插板法插板法的条件构成:1元素相同,2分组不同,3必须至少分得1个插板法的类型:

(1)、10块奶糖分给4个小朋友,每个小朋友至少1块,则有多少种分法?(典型插板法点评略)

(2)、10块奶糖分给4个小朋友有多少种方法?(凑数插板法:这个题目对照插板法的3个条件我们发现至少满足1个这个条件没有,所以我们必须使其满足,最好的方法就是用14块奶糖来分,至少每人1块,当每个人都分得1块之后,剩下的10块就可以随便分了,就回归到了原题)

(3)、10块奶糖放到编号为1,2,3的3个盒子里,每个盒子的糖数量不少于其编号数,则有几种方法?(定制插板法:已然是最后一个条件不满足,我们该怎么处理呢,应该学会先去安排使得每个盒子都差1个,这样就保证每个盒子必须分得1个,从这个思路出发,跟第二个例题是姊妹题思路是一样的对照条件想办法使其和条件吻合!)

(4)、8块奶糖和另外3个不同品牌的水果糖要放到编号为1~11的盒子里面,每个盒子至少放1个,有多少种方法?(多次插空法这里不多讲,见我排列组合基础讲义)

6、递归法(枚举法)公考也有这样的类型,排错信封问题,还有一些邮票问题归纳法:例如:5封信一一对应5个信封,其中有3个封信装错信封的情况有多少种?枚举法:

例如:10张相同的邮票分别装到4个相同的信封里面,每个信封至少1张邮票,有多少种方法?枚举:

81,1,1,7

1,1,2,6

1,1,3,5

1,1,4,4

1,2,2,5

1,2,3,4

1,3,3,3

2,2,2,4

2,2,3,39种方法!

疑难问题

1、如何验证重复问题

2、关于位置与元素的相同问题,

例如:6个人平均分配给3个不同的班级,跟6个学生平分成3组的区别

3.关于排列组合里面,充分运用对称原理。

例题:1,2,3,4,5 五个数字可以组成多少个十位数小于个位数的四位数?

例题:7个人排成一排,其中甲在乙右边(可以不相邻)的情况有多少种?

注解:分析2种对立情况的概率,即可很容易求解。当对立情况的概率相等,即对称原理。

4、环形排列和线性排列问题。(见我的基础排列组合讲义二习题讲解)

例如:3个女生和4个男生围坐在一个圆桌旁。问有多少种方法?

例如:3对夫妇围坐在圆桌旁,男女间隔的坐法有多少种?

注解:排列组合中,特殊的地方在于,第一个坐下来的人是作为参照物,所以不纳入排列的范畴,我们知道,环形排列中每个位置都是相对的位置,没有绝对位置,所以需要有一个人坐下来作为参照位置。

5、几何问题:见下面部分的内容。例析立体几何中的排列组合问题在数学中,排列、组合无论从内容上还是从思想方法上,都体现了实际应用的观点。1 点

1.1 共面的点

例题:四面体的一个顶点为A,从其它顶点与棱的中点中取3个点,使它们和点A在同一平面上,不同的取法有()A.30种B.33种C.36种D.39种

答案:B

点评:此题主要考查组合的知识和空间相像能力;属难度中等的选择题,失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算在内。

1.2 不共面的点例2:四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同的取法共有()A.150种B.147种C.144种D.141种

解析:从10 个点中任取4个点有C(10,4)=210 种取法,其中4点共面的情况有三类:第一类,取出的4个点位于四面体的同一个面内,有C(6,2)=15种;第二类,取任一条棱上的3 9 个点及对棱的中点,这4点共面有6种;第三类,由中位线构成的平行四边形,它的4个顶点共面,有3种。以上三类情况不合要求应减掉,所以不同取法共有210-4×15-6-3=141 种。答案:D。

点评:此题难度很大,对空间想像能力要求高,很好的考察了立体几何中点共面的几种情况;排列、组合中正难则反易的解题技巧及分类讨论的数学思想。

几何型排列组合问题的求解策略

有关几何型组合题经常出现在各类试题中,它的求解不仅要具备排列组合的有关知识,而且还要掌握相关的几何知识.这类题目新颖、灵活、能力要求高,因此要求掌握四种常用求解策略.

一分步求解

例1 圆周上有2n个等分点(n>1),以其中三个点为顶点的直角三角形的个数为______.解:本题所求的三角形,即为圆的内接直角三角形,由平面几何知识,应分两步进行:先从2n个点中构成直径(即斜边)共有n种取法;再从余下的(2n-2)个点中取一点作为直角顶点,有(2n-2)种不同取法.故总共有n(2n-2)=2n(n-1)个直角三角形.故填2n(n-1).例2:从集合{0、1、2、3、5、7、11}中任取3个元素分别作为直线方程Ax+By+C=0中的A、B、C,所得的经过坐标原点原直线共有____条(结果用数值来表示).

解:因为直线过原点,所以C=0. 从1、2、3、5、7、11这6个数中任取2个作为A、B,两数的顺序不同,表示的直线也不同,所以直线的条数为P(6,2)=30.

二分类求解

例3 四边体的一个顶点为A,从其它顶点与各棱的中点中取3点,使它们和A在同一平面上,不同取法有()(A)30种(B)33种(C)36种(D)39种

解:符合条件的取法可分三类:①4个点(含A)在同一侧面上,有3 =30种;②4个点(含A)在侧棱与对棱中点的截面上,有3种;由加法原理知不同取法有33种,故选B. 三排除法求解例4 从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有()(A) 8种(B) 12种(C) 16种(D) 20种

解:由六个任取3个面共有C(6,3)=20种,排除掉3个面都相邻的种数,即8个角上3个平面相邻的特殊情形共8种,故符合条件共有20-8=12种,故选(B).

例5 正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有()个?

解:从7个点中任取3个点,共有C(7,3)=35 个,排除掉不能构成三角形的情形.3点在同一直线上有3个,故符合条件的三角形共有35-3=32个.

四转化法求解例6 空间六个点,它们任何三点不共线,任何四点不共面,则过每两点的直线中有多少对异面直线?

解:考虑到每一个三棱锥对应着3 对异面直线,问题就转化为能构成多少个三棱锥. 由于这六个点可构成C(6,4)=15 个三棱锥,故共有3×15 =45对异面直线.

例7一个圆的圆周上有10个点,每两个点连接一条弦,求这些弦在圆内的交点个数最多有几个?

解:考虑到每个凸四边形的两条对角线对应一个交点,则问题可转化为构成凸四边形的个数.显然可构成C(10,4)=210个圆内接四边形,故10个点连成的点最多能在圆中交点210个.

6、染色问题:不涉及环形染色可以采用特殊区域优先处理的方法来分步解决。环形染色可采用如下公式解决:

An=(a-1)^n+(a-1)×(-1)^n n表示被划分的个数,a表示颜色种类

原则:被染色部分编号,并按编号顺序进行染色,根据情况分类在所有被染色的区域,区分特殊和一般,特殊区域优先处理

例题1:将3种作物种植在如图4所示的5块试验田里,每块种植一种作物,且相邻的

色可以反复使用,也可以不使用,则符合要求的不同染色方法有多少种?

例题32个端点不同色,且只由五个颜色可

以使用,有多少种染色方法?

例题4:一个地区分为如图4所示的五个行政区域,现在有4种颜色可供选择,给地图着色,要求相邻区域不同色,那么则有多少种染色方法?

例题5:某城市中心广场建造了一个花圃,分6个部分(如图5)现在要栽种4种不同的颜色的花,每部分栽种一种且相邻部分不能种同样颜色的花,则有多少种不同栽种方式?

1.排列组合题(系列之二)

一)1, 2, 3, 4作成数字不同的三位数,试求其总和?但数字不重复。

[解析] 组成3位数我们以其中一个位置(百位,十位,个位)为研究对象就会发现当某个位置固定比如是1,那么其他的2个位置上有多少种组合? 这个大家都知道是剩下的3个数字的全排列P32 我们研究的位置上每个数字都会出现P32次所以每个位置上的数字之和就可以求出来了个位是:P32*(1+2+3+4)=60 十位是:P32*(1+2+3+4)*10=600 百位是:P32*(1+2+3+4)*100=6000 所以总和是6660 (二)将“PROBABILITY ”11个字母排成一列,排列数有______种,若保持P, R, O次序,则排列数有______种。

[解析] 这个题目就是直线全排列出现相同元素的问题:在我的另外一个帖子里面有介绍: (1)我们首先把相同元素找出来,B有2个, I 有2个我们先看作都是不同的11个元素全排列这样就简单的多是P11,11 然后把相同的元素能够形成的排列剔除即可P11/(P2,2*P2,2)=9979200。

(2)第2个小问题因要保持PRO的顺序,就将PRO视为相同元素(跟B,I类似的性质),则其排列数有11!/(2!×2!×3!)= 166320种。

(三)李先生与其太太有一天邀请邻家四对夫妇共10人围坐一圆桌聊天,试求下列各情形之排列数:

(1)男女间隔而坐。

(2)主人夫妇相对而坐。

(3)每对夫妇相对而坐。

(4)男女间隔且夫妇相邻。

(5)夫妇相邻。

(6)男的坐在一起,女的坐在一起。

[解析] (1) 这个问题也在介绍过先简单介绍一下环形排列的特征,环形排列相对于直线排列缺少的就是参照物.第一个坐下来的人是没有参照物的,所以无论做哪个位置都是一样的. 所以从这里我们就可以看出环形排列的特征是第一个人是做参照物,不参与排列. 下面就来解答6个小问题:

(1)先让5个男的或5个女的先坐下来全排列应该是P44, 空出来的位置他们的妻子(丈夫), 妻子(丈夫)的全排列这个时候有了参照物所以排列是P55 答案就是P44*P55=2880种(2)先让主人夫妇找一组相对座位入座其排列就是P11(记住不是P22 ),这个时候其他8个人再入座,就是P88,所以此题答案是P88

(3)每对夫妇相对而坐,就是捆绑的问题.5组相对位置有一组位置是作为参照位置给第一个入座的夫妇的,剩下的4组位置就是P44, 考虑到剩下来的4组位置夫妇可以互换位置即P44*2^4=384

(4)夫妇相邻,且间隔而坐. 我们先将每对夫妇捆绑那么就是5个元素做环形全排列即P44 这里在从性别上区分男女看作2个元素可以互换位置即答案是P44*2=48种(值得注意的是,这里不是*2^4 因为要互换位置,必须5对夫妇都得换要不然就不能保持男女间隔) (5) 夫妇相邻这个问题显然比第4个问题简单多了,即看作捆绑答案就是P44 但是这里却是每对夫妇呼唤位置都可以算一种方法的. 即最后答案是P44*2^5

(6)先从大方向上确定男女分开座,那么我们可以通过性别确定为2个元素做环形全排列.即P1,1 , 剩下的5个男生和5个女生单独做直线全排列所以答案是P1,1 *P55*P55 (四)在一张节目表中原有8个节目,若保持原有节目的相对顺序不变,再增加三个节目,求共有多少种安排方法?

[解析] 这个题目相信大家都见过就是我们这次2008年国家公务员考试的一道题目: 这是排列组合的一种方法叫做2次插空法或多次插空法直接解答较为麻烦,我们知道8个节目相对位置不动,前后共计9个间隔,故可先用一个节目去插9个空位,有C9取1种方法;这样9个节目就变成了10个间隔,再用另一个节目去插10个空位,有C10取1种方法;同理用最后一个节目去插10个节目形成的11个间隔中的一个,有C11取1方法,由乘法原理得:所有不同的添加方法为9*10*11=990种。

方法2: 我们先安排11个位置,把8个节目按照相对顺序放进去,在放另外3个节目,11个位置选3个出来进行全排列那就是P11,3=11*10*9=990

(五)0,1,2,3,4,5五个数字能组成多少个被25整除的四位数?

[解析] 这里考察了一个常识性的问题即什么样数才能被25整除即这个数的后2位必须是25或者50,或者75或者00 方可. 后两位是25的情况有:千位只有3个数字可选(0不能) 百位也是3个可选即3*3=9种后两位是50的情况有:剩下的4个数字进行选2位排列P4,2=12种75不可能,因为数字中没有7 00也不可能,因为数字不能重复共计9+12=21种

2.“插板法”的条件模式隐藏运用分析在说这2 道关于“插板法”的排列组合题目之前,我们需要弄懂一个问题:插板法排列组合是需要什么条件下才可以使用?这个问题清楚了,我们在以后的答题中就可以尽量的变化题目使其满足这个条件。这个条件就是:分组或者分班等等至少分得一个元素。注意条件是至少分得1个元素!好我们先来看题目,

例题1:某学校四、五、六三个年级组织了一场文艺演出,共演出18个节目,如果每个年级至少演出4个节目,那么这三个年级演出节目数的所有不同情况共有几种?【解析】这个题目是Q友出的题目,题目中是不考虑节目的不同性你可以视为18个相同的节目不区分!发现3个年级都是需要至少4个节目以上!跟插板法的条件有出入,插板法的条件是至少1个,这个时候对比一下,我们就有了这样的思路,为什么我们不把

18个节目中分别给这3个年级各分配3个节目。这样这3个班级就都少1个,从而满足至少1个的情况了3×3=9 还剩下18-9=9个剩下的9个节目就可以按照插板法来解答。9个节目排成一排共计8个间隔。分别选取其中任意2个间隔就可以分成3份(班级)!C8取2=28

练习题目:有10个相同的小球。分别放到编号为1,2,3的盒子里要使得每个盒子的小球个数不小于其编号数。那么有多少种放法?

【解析】还是同样的原理。每个盒子至少的要求和插板法有出入那么我们第一步就是想办法满足插板法的要求。编号1的盒子是满足的至少需要1个,编号2至少需要2个,那么我们先给它1个,这样就差1个编号3至少需要3个,那么我们先给它2个,这样就差1个现在三个盒子都满足插板法的要求了我们看还剩下几个小球?10-1-2=7 7个小球6个间隔再按照插板法来做C6,2=15种!

3. 【纠错】两个相同的正方体的六个面上分别标有数字的排列组合问题有两个

相同的正方体,每个正方体的六个面上分别标有数字1、2、3、4、5、6。将两个正方体放到桌面上,向上的一面数字之和为偶数的有多少种情形?()

A.9 B.12 C.18 D.24 -------------------------很多教材给出的答案是18

这里我更正以下:请大家注意红色字体“相同”如果一个显示3,一个显示1,交换以下是1,3 是否是2种呢?显然不是是1种这是这个题目存在的陷阱

方法一:为偶数的情形分2种情况(1)、奇数+奇数:(1,3,5)C(3,1)×C(3,1)注意因为这里是相同的两个色子。所以3,1和1,3是不区分的要去掉C3,2=3种实际上是6种,(2)、偶数+偶数(2,4,6)偶数的情况跟奇数相同也是6种!答案是6+6=12

方法二:当然我们也可以算总的,那么就是C6,1×C6,1-C6,2=36-15=21种(为什么要减去C(6,2 ),因为任意2个数字颠倒都是一种情况)看奇数:奇数=奇数+偶数C3,1×C3,1=9种所以答案是21-9=12种 4. 【讨论】裴波纳契数列的另类运用先说典型的裴波纳契数列:图片:

裴波纳契数列就是移动求和A+B=C 因为第一个月这对小兔长成大兔所以第一个月还是1对即A从1开始。第2个月开始剩下一对小兔合计2对B从2开始。1,2,3,5,8,13,21,34,55,89,144,233

小明家住二层,他每次回家上楼梯时都是一步迈两级或三级台阶。已知相邻楼层之间有16级台阶,那么小明从一层到二层共有多少种不同的走法?A:54 B:64 C:

57 D:37

这个题目刚刚看到讨论我也用排列组合的办法参与了讨论现在我再来说说裴波纳契数列的解法

楼梯级数:1,2,3,4,5,6........

走法情况:0,1,1,1,2,2........ 这是一个裴波纳契的间隔运用因为他没有走1步的情况即A+B=D 0,1,1,1,2,2,3,4,5,7,9,12,16,21,28,37 在举例1题:小明家住二层,他每次回家上楼梯时都是一步迈一级,两级或三级台阶。

已知相邻楼层之间有10级台阶,那么小明从一层到二层共有多少种不同的走法?

因为是1,2,3级都可以所以可以采用A+B+C=D的裴波纳契数列变式!列举前3个分别是1,2,3 则10个是1,2,4,7,13,24,44,81,149,274 练习题目:小明家住二层,他每次回家上楼梯时都是一步迈一级或三级台阶。已知相邻楼层之间有10级台阶,那么小明从一层到二层共有多少种不同的走法?

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1. 相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列 例1. A,B,C,D,E 五人并排站成一排,如果 A,B 必须相邻且B 在A 的右边,则不同的排法有( ) A 、60 种 B 、48 种 C 、36 种 D 、24 种 2. 相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几 个元素全排列,再把规定的相离的 几个元素插入上述几个元素的空位和两端 ? 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是( ) A 、1440 种 B 、3600 种 C 、4820 种 D 、4800 种 3. 定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法 例3.A,B,C,D,E 五人并排站成一排,如果 B 必须站在A 的右边(A, B 可以不相邻)那么不同的排法有 ( ) 4. 标号排位问题分步法:把元素排到指定位置上, 可 先把某个元素按规定排入, 第二步再排另一个元素, 如 此继续下去,依次即可完成 ? 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所 填数字均不相同的填法有( ) A 、6 种 B 、9 种 C 、11 种 D 、23 种 5. 有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法 例5.( 1 )有甲乙丙三项任务,甲需 2人承担,乙丙各需一人承担,从 10人中选出4人承担这三项任务, 不同的选法种数是( ) A 、1260 种 B 、2025 种 C 、2520 种 D 、5040 种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口 6. 全员分配问题分组法: 例6.( 1)4名优秀学生全部保送到 3所学校去,每所学校至少去一名,则不同的保送方案有多少种? A 、24 种 B 、60 种 C 、90 种 D 、 120 种 4人,则不同的分配方案有( 4 4 4 C 12C 8C 4 种 4 4 3C 12C 8C C 、 C 12C 8 A 3 种

计数原理与排列组合经典题型

计数原理与排列组合题型解题方法总结 计数原理 一、知识精讲 1、分类计数原理: 2、分步计数原理: 特别注意:两个原理的共同点:把一个原始事件分解成若干个分事件来完成。 不同点:如果完成一件事情共有n类办法,这n类办法彼此之间相互独立的,无论哪一类办法中的哪一种方法都能单独完成这件事情,求完成这件事情的方法种数,就用分类计数原理。分类时应不重不漏(即任一种方法必须属于某一类且只属于这一类) 如果完成一件事情需要分成n个步骤,各个步骤都是不可缺少的,需要依次完成所有的步骤,才能完成这件事,而完成每一个步骤各有若干种不同的方法,求完成这件事情的方法种数就用分步计数原理。各步骤有先后,相互依存,缺一不可。 3、排列 (1)排列定义,排列数 (2)排列数公式: (3)全排列列: 4.组合 (1)组合的定义,排列与组合的区别; (2)组合数公式: (3)组合数的性质 二、.典例解析 题型1:计数原理 例1.完成下列选择题与填空题 (1)有三个不同的信箱,今有四封不同的信欲投其中,则不同的投法有种。 (2)四名学生争夺三项冠军,获得冠军的可能的种数是( ) (3)有四位学生参加三项不同的竞赛, ①每位学生必须参加一项竞赛,则有不同的参赛方法有 ; ②每项竞赛只许有一位学生参加,则有不同的参赛方法有 ;

③每位学生最多参加一项竞赛 , 每项竞赛只许有一位学生参加 ,则不同的参赛方法有。 例2(1)如图为一电路图,从A到B共有条不同的线路可通电。 例3: 把一个圆分成3块扇形,现在用5种不同的颜色给3块扇形涂色,要求相邻扇形的颜色互不相同,问有多少钟不同的涂法?若分割成4块扇形呢? 例4、某城在中心广场造一个花圃,花圃分为6个部分(如图).现要栽种4种不同颜色的花,每部分栽种一种且相邻部分不能栽种同样颜色的花,不同的栽种方法有 ________ 种.(以数字作答) 例5、四面体的顶点和各棱的中点共10个,在其中取4个不共面的点,问共有多少种不同的取法? 例6、(1)电视台在”欢乐今宵”节目中拿出两个信箱,其中存放着先后两次竞猜中成绩优秀的观众来信,甲信箱中有30封,乙信箱中有20封.现有主持人抽奖确定幸运观众,若先确定一名幸运之星,再从两信箱中各确定一名幸运伙伴,有多少种不同的结果? (2)三边均为整数,且最大边长为11的三角形的个数是

排列组合问题经典题型解析含答案

排列组合问题经典题型解析含答案

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A 的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种D、120种

4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有( ) A 、6种 B 、9种 C 、11种 D 、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是( ) A 、1260种 B 、2025种 C 、2520种 D 、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有( ) A 、44412 8 4 C C C 种 B 、44412 8 4 3C C C 种 C 、44312 8 3 C C A 种 D 、 4441284 33 C C C A 种

排列组合知识点总结+典型例题及答案解析

排列组合知识点总结+典型例题及答案解析 一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -=+---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质: .2 n n n n n m n m n m n m n n m n C C C C C C C C 21011 =+++=+=+--…… ,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-++++ +=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。

排列组合典型例题(带详细答案)

例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数 例2三个女生和五个男生排成一排 (1)如果女生必须全排在一起,可有多少种不同的排法 (2)如果女生必须全分开,可有多少种不同的排法 (3)如果两端都不能排女生,可有多少种不同的排法 (4)如果两端不能都排女生,可有多少种不同的排法 例3 排一张有5个歌唱节目和4个舞蹈节目的演出节目单。 (1)任何两个舞蹈节目不相邻的排法有多少种 (2)歌唱节目与舞蹈节目间隔排列的方法有多少种 例4某一天的课程表要排入政治、语文、数学、物理、体育、美术

共六节课,如果第一节不排体育,最后一节不排数学,那么共有多少种不同的排课程表的方法. 例 5 现有3辆公交车、3位司机和3位售票员,每辆车上需配1位司机和1位售票员.问车辆、司机、售票员搭配方案一共有多少种 例6下是表是高考第一批录取的一份志愿表.如果有4所重点院校,每所院校有3个专业是你较为满意的选择.若表格填满且规定学校没有重复,同一学校的专业也没有重复的话,你将有多少种不同的填表方法 例7 7名同学排队照相. (1)若分成两排照,前排3人,后排4人,有多少种不同的排法 (2)若排成两排照,前排3人,后排4人,但其中甲必须在前排,乙必

须在后排,有多少种不同的排法 (3)若排成一排照,甲、乙、丙三人必须相邻,有多少种不同的排法 (4)若排成一排照,7人中有4名男生,3名女生,女生不能相邻,有多少种不面的排法 例8计算下列各题: (1) 2 15 A ; (2) 66 A ; (3) 1 1 11------?n n m n m n m n A A A ; 例9 f e d c b a ,,,,,六人排一列纵队,限定a 要排在b 的前面(a 与b 可以相邻,也可以不相邻),求共有几种排法. 例10 八个人分两排坐,每排四人,限定甲必须坐在前排,乙、丙必须坐在同一排,共有多少种安排办法 例11 计划在某画廊展出10幅不同的画,其中1幅水彩画、4幅油画、

排列组合问题经典题型#精选.

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.,,,, A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有()A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有() A、 444 1284 C C C 种 B、 444 1284 3C C C 种 C、 443 1283 C C A 种 D、 444 1284 3 3 C C C A种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法种数为() A、480种 B、240种 C、120种 D、96种 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有()A、210种 B、300种 C、464种 D、600种 (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种?

排列组合知识点汇总及典型例题(全)

排列组合知识点汇总及典型例题(全)

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3) 111111 (1)!(1)!(1)!(1)!!(1)! n n n n n n n n n +-+==-=- +++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!!!! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=+++ +=++ +=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意:分类不重复不遗漏。即:每两类的交集为空集, 所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分 类,又要分步。其原则是先分类,后分步。 (43.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相 邻接元素在已排好的元素之间及两端的空隙之间插入。 (5)、顺序一定,除法处理。先排后除或先定后插 解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。即先全排,再除以定序元素的全排列。 解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法; (6)“小团体”排列问题——采用先整体后局部策略 对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。 (7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。 (8).数字问题(组成无重复数字的整数) ① 能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。②能被3整除的数的特征:各位数字之和是3的倍数; ③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。 ⑤能被5整除的数的特征:末位数是0或5。 ⑥能被25整除的数的特征:末两位数是25,50,75。 ⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。 4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2). “含”与“不含” 用间接排除法或分类法: 3.分组问题: 均匀分组:分步取,得组合数相乘,再除以组数的阶乘。即除法处理。 非均匀分组:分步取,得组合数相乘。即组合处理。 混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。 4.分配问题: 定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。

高中排列组合知识点汇总和典型例题[全]

一.基本原理 1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一 .m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从 1.公式:1.()()()()! ! 121m n n m n n n n A m n -= +---=…… 2. 规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =?-+?=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ?=+-?=+?-=+-; (3)111111(1)! (1)! (1)!(1)! !(1)! n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。 1. 公式: ()()()C A A n n n m m n m n m n m n m m m ==--+= -11……!! !! 10 =n C 规定: 组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④ 111 12111212211 r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若1 2 m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路:①直接法; ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决 排列组合应用题时一种常用的解题方法。 (2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。注意: 分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计 数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元 素优先考虑、特殊位置优先考虑; (3).相邻问题:捆邦法: 对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。 (4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空

排列组合题型总结

排列组合题型总结 排列组合问题千变万化,解法灵活,条件隐晦,思维抽象,难以找到解题的突破口。因而在求解排列组合应用题时,除做到:排列组合分清,加乘原理辩明,避免重复遗漏外,还应注意积累排列组合问题得以快速准确求解。 一.直接法、 1. 特殊元素法 例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个 (1)数字1不排在个位和千位 (2)数字1不在个位,数字6不在千位。 分析:(1)个位和千位有5个数字可供选择25A ,其余2位有四个可供选择24A ,由乘法原理: 25A 24A =240 2.特殊位置法 (2)当1在千位时余下三位有35A =60,1不在千位时,千位有14A 种选法,个位有14A 种,余下的有24A , 共有14A 1 4A 24A =192所以总共有192+60=252 二.间接法当直接法求解类别比较大时,应采用间接法。如上例中(2)可用间接法2435462A A A +-=252 例2 有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三维书? 分析:此例正面求解需考虑0与1卡片用与不用,且用此卡片又分使用0与使用1,类别较复杂,因 而可使用间接计算:任取三张卡片可以组成不同的三位数333352A C ??个,其中0在百位的有 2242?C ?22A 个,这是不合题意的。故共可组成不同的三位数333352A C ??-2242?C ?22A =432 (个) 三.插空法 当需排元素中有不能相邻的元素时,宜用插空法。 例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方 法? 分析:原有的8个节目中含有9个空档,插入一个节目后,空档变为10个,故有11019A A ?=100中插 入方法。 四.捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。 例4 4名男生和3名女生共坐一排,男生必须排在一起的坐法有多少种? 分析:先将男生捆绑在一起看成一个大元素与女生全排列有44A 种排法,而男生之间又有44A 种排法,又乘法原理满足条件的排法有:44A ×4 4A =576 练习1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种(3324A C ) 2. 某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校

排列组合典型例题

排列组合典型例题

典型例题一 例1 用0到9这10 个数字.可组成多少个没有重复数字的四位偶数? 分析:这一问题的限制条件是:①没有重复数字;②数字“0”不能排在千位数上;③个位数字只能是0、2、4、6、8、,从限制条件入手,可划分如下: 如果从个位数入手,四位偶数可分为:个位数是“0”的四位偶做,个位数是 2、4、6、8的四位偶数(这是因为零不能放在千位数上).由此解法一与二. 如果从千位数入手.四位偶数可分为:千位数是1、3、5、7、9和千位数是2、4、6、8两类,由此得解法三. 如果四位数划分为四位奇数和四位偶数两类,先求出四位个数的个数,用排除法,得解法四. 解法1:当个位数上排“0”时,千位,百位,十位上可以从余下的九个数字中任选3个来排列,故有3 A个; 9 当个位上在“2、4、6、8”中任选一个来排,

则千位上从余下的八个非零数字中任选一个,百位,十位上再从余下的八个数字中任选两个来排,按乘法原理有2 8181 4 A A A ??(个). ∴ 没有重复数字的四位偶数有 2296 179250428181439=+=??+A A A A 个. 解法2:当个位数上排“0”时,同解一有3 9 A 个;当个位数上排2、4、6、8中之一时,千位,百位,十位上可从余下9个数字中任选3个的排列数中减去千位数是“0”排列数得:) (28391 4 A A A -?个 ∴ 没有重复数字的四位偶数有 2296 1792504)(28391439=+=-?+A A A A 个. 解法3:千位数上从1、3、5、7、9中任选一个,个位数上从0、2、4、6、8中任选一个,百位,十位上从余下的八个数字中任选两个作排列有 2 81 515A A A ??个 干位上从2、4、6、8中任选一个,个位数上从余下的四个偶数中任意选一个(包括0在内),百位,十位从余下的八个数字中任意选两个作排列,有 2 81414A A A ??个 ∴ 没有重复数字的四位偶数有

排列组合专题复习及经典例题详解

排列组合专题复习及经典例题详解 1.学习目标 掌握排列、组合问题的解题策略 2.重点 (1)特殊元素优先安排的策略: (2)合理分类与准确分步的策略; (3)排列、组合混合问题先选后排的策略; (4)正难则反、等价转化的策略; (5)相邻问题捆绑处理的策略; (6)不相邻问题插空处理的策略. 3.难点 综合运用解题策略解决问题. 4.学习过程: (1)知识梳理 m种不完成一件事,有几类办法,在第一类办法中有1.分类计数原理(加法原理):1mm种不同的方法,类型办法中有种不同的方法……在第n同的方法,在第2类办法中有n2N?m?m?...?m 种不同的方法.那么完成这件事共有n12m种不步有个步骤,做第12.分步计数原理(乘法原理):完成一件事,需要分成n1mm种不同的方法;那么完成这步有种不同的方法……,做第同的方法,做第2步有n n2N?m?m?...?m种不同的方法.件事共有n12特别提醒: 分类计数原理与“分类”有关,要注意“类”与“类”之间所具有的独立性和并列性; 分步计数原理与“分步”有关,要注意“步”与“步”之间具有的相依性和连续性,应用这两个原理进行正确地分类、分步,做到不重复、不遗漏. 3.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n m?nm?n 时叫做全排列. 时叫做选排列,排列个不同元素中取出m个元素的一个,4.排列数:从n个不同元素中,取出m(m≤n)个元素的所有排列的个数,叫做从n个不同m P. 个元素的排列数,用符号表示元素中取出m n n!?m)?Nmn(m?)...()(1n?2n?m1)??,n、?(?Pnn5.排列数公式: n(n?m)!1mmm?mPPP??排列数具有的性质:nn1?n特别提醒: 规定0!=1 1 6.组合:从n个不同的元素中,任取m(m≤n)个不同元素,组成一组,叫做从n个不同元素中取m个不同元素的一个组合. 7.组合数:从n个不同元素中取m(m≤n)个不同元素的所有组合的个数,叫做从n个m C. 个不同元素的组合数,用符号表示不同元素中取出m nm Pn(n?1)(n?2)...(n?m?1)n!mn???C.组合数公式:8 nm)!m!(n?m!mP mmn?mmmm?1C?CC?C?C;②组合数的两个性质:①nnnnn?1特别提醒:排列与组合的联系与区别. 联系:都是从n个不同元素中取出m个元素. 区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.

排列组合常见题型及解答

排列组合常见题型 一.可重复的排列求幂法:重复排列问题要区分两类元素:一类可以重复,另一类不能重复,把不能重复的元素看作“客”,能重复的元素看作“店”,则通过“住店法”可顺利解题,在这类问题使用住店处理的策略中,关键是在正确判断哪个是底数,哪个是指数 【例1】(1)有4名学生报名参加数学、物理、化学竞赛,每人限报一科,有多少种不同的报名方法? (2)有4名学生参加争夺数学、物理、化学竞赛冠军,有多少种不同的结果? (3)将3封不同的信投入4个不同的邮筒,则有多少种不同投法? 【解析】:(1)43(2)34(3)34 【例2】把6名实习生分配到7个车间实习共有多少种不同方法? 【解析】:完成此事共分6步,第一步;将第一名实习生分配到车间有7种不同方案, 第二步:将第二名实习生分配到车间也有7种不同方案,依次类推,由分步计数原理知共有67种不同方案. 【例3】 8名同学争夺3项冠军,获得冠军的可能性有()A、38 B、83 C、 3 8 A D、 3 8 C 【解析】:冠军不能重复,但同一个学生可获得多项冠军,把8名学生看作8家“店”,3项冠军看作3个“客”,他们都可能住进任意一家“店”,每个“客”有8种可能,因此共有38种 不同的结果。所以选A 二.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 【例1】A,B,C,D,E五人并排站成一排,如果A,B必须相邻且B在A的右边,那么不同的排

法种数有 【解析】:把A,B 视为一人,且B 固定在A 的右边,则本题相当于4人的全排列,4424A =种 【例2】(2009四川卷理)3位男生和3位女生共6位同学站成一排,若男生甲不站两端,3位女生中有且只有两位女生相邻,则不同排法的种数是( ) A. 360 B. 188 C. 216 D. 96 【解析】: 间接法 6位同学站成一排,3位女生中有且只有两位女生相邻的排法有,22223242C A A A =432,其中男生甲站两端的有1222223232A C A A A =144,符合条件的排法故共有288 三.相离问题插空法 :元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 【例1】七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是 【解析】:除甲乙外,其余5个排列数为55A 种,再用甲乙去插6个空位有26A 种,不同的排 法数是52563600A A = 【例2】 书架上某层有6本书,新买3本插进去,要保持原有6本书的顺序,有 种不同的插法(数字作答) 【解析】: 1 11789A A A =504 【例3】 高三(一)班学要安排毕业晚会的4各音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是 【解析】:不同排法的种数为5256A A =3600 【例4】 某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,有工程丁必须在工程丙完成后立即进行。那么安排这6项工程的不同排法种数是 【解析】:依题,只需将剩余两个工程插在由甲、乙、丙、丁四个工程形成的5个空中,可得有25A =20种不同排法。

高中数学排列组合典型例题精讲

概念形成 1、元素:我们把问题中被取的对象叫做元素 2、排列:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺.... 序.排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.... 。 说明:(1)排列的定义包括两个方面:①取出元素,②按一定的顺序排列(与位置有关) (2)两个排列相同的条件:①元素完全相同,②元素的排列顺序也相同 合作探究二 排列数的定义及公式 3、排列数:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫做从n 个元素中取出 m 元素的排列数,用符号m n A 表示 议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导 探究:从n 个不同元素中取出2个元素的排列数2n A 是多少?3n A 呢?m A n 呢? )1()2)(1(+-?--=m n n n n A m n (,,m n N m n *∈≤) 说明:公式特征:(1)第一个因数是n ,后面每一个因数比它前面一个少1,最后一个 因数是1n m -+,共有m 个因数; (2),,m n N m n *∈≤ 即学即练: 1.计算 (1)410A ; (2)25A ;(3)3355A A ÷ 2.已知101095m A =???,那么m = 3.,k N +∈且40,k ≤则(50)(51)(52)(79)k k k k ----用排列数符号表示为( ) A .5079k k A -- B .2979k A - C .3079k A - D .3050k A - 例1. 计算从c b a ,,这三个元素中,取出3个元素的排列数,并写出所有的排列。 5 、全排列:n 个不同元素全部取出的一个排列,叫做n 个不同元素的全排列。 此时在排列数公式中, m = n 全排列数:(1)(2)21!n n A n n n n =--?=(叫做n 的阶乘). 即学即练:口答(用阶乘表示):(1)334A (2)44A (3))!1(-?n n 排列数公式的另一种形式: )! (!m n n A m n -= 另外,我们规定 0! =1 .

排列组合问题经典题型

排列组合问题经典题型与通用方法 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. 例1.D C B A ,,,五人并排站成一排,如果B A ,必须相邻且B 在A 的右边,则不同的排法有多少种? 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个 元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是多少种? 3.定序问题等机会法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. 例3.A,B,C,D,E 五人并排站成一排,如果B 必须站在A 的右边(B A ,可以不相邻)那么不同的排法有多少种? 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继 续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字 均不相同的填法有多少种? 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同 的选法种数有多少种? (2)12名同学分别到三个不同的路口进行流量的调查,若每个路口4人,则不同的分配方案有多少种? 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种? (2)5本不同的书,全部分给4个学生,每个学生至少一本,不同的分法有多少种? 7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数再相加。 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有多少种? (2)从1,2,3…,100这100个数中,任取两个数,使它们的乘积能被7整除,这两个数的取法(不计顺 序)共有多少种? (3)从1,2,3,…,100这100个数中任取两个数,使其和能被4整除的取法(不计顺序)有多少种? 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式()()()()n A B n A n B n A B ?=+-? 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的 参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。

完整版排列组合题型归纳

排列组合难题二十一种方法 排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。 教学目标 1. 进一步理解和应用分步计数原理和分类计数原理。 2. 掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。提高学生解决问题分析问题的能力 3. 学会应用数学思想和方法解决排列组合问题. 复习巩固 1. 分类计数原理(加法原理) 完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有 m2种不同的方法,…,在第n类办法中有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 2. 分步计数原理(乘法原理) 完成一件事,需要分成n个步骤,做第1步有口种不同的方法,做第2步有m2种不同的方法,…,做第n步有m n种不同的方法,那么完成这件事共有: N mi m2 L m n 种不同的方法. 3. 分类计数原理分步计数原理区别 分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。 分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件. 解决排列组合综合性问题的一般过程如下: 1. 认真审题弄清要做什么事 2. 怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。 3. 确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素. 4. 解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5 可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.

高中数学排列组合经典题型全面总结版

高中数学排列与组合 (一)典型分类讲解 一.特殊元素和特殊位置优先策略 例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 解:由于末位和首位有特殊要求,应该优先安排, 先排末位共有1 3C 然后排首位共有1 4C 最后排其它位置共有 34A 由分步计数原理得1 1 3 434 288C C A = 练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法? 二.相邻元素捆绑策略 例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元 素内部进行自排。由分步计数原理可得共有 522522480A A A =种不同的排法 练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 三.不相邻问题插空策略 例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种? 解:分两步进行第一步排2个相声和3个独唱共有55A 种, 第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种 46 A 不同的方法,由分步计数原理,节目的不同顺序共有54 56A A 种 练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30 四.定序问题倍缩空位插入策略 例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素 之间的全排列数,则共有不同排法种数是: 73 73/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有 47 A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有4 7A 种方法。 思考:可以先让甲乙丙就坐吗? (插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有 方法 练习题:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 5 10C 五.重排问题求幂策略 例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 解:完成此事共分六步:把第一名实习生分配到车间有 7 种分法.把第二名实习生分配到车间也有7种分依此类推,由分步计数原 理共有6 7种不同的排法 练习题: 1. 某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插 法的种数为 42 4 4 3 允许重复的排列问题的特点是以元素为研究对象,元素不受位置的约束,可以逐一安排各个元素的位置,一般地n 不同的元素没有限制地安排在m 个位置上的排列数为n m 种

排列组合题目

排列组合问题经典题型与通用方法 解析版 1.相邻问题捆绑法:题目中规定相邻的几个元素捆绑成一个组,当作一个大元素参与排列. A B C D E五人并排站成一排,如果,A B必须相邻且B在A的右边,则不同的排法有() 例1.,,,, A、60种 B、48种 C、36种 D、24种 2.相离问题插空排:元素相离(即不相邻)问题,可先把无位置要求的几个元素全排列,再把规定的相离的几个元素插入上述几个元素的空位和两端. 例2.七人并排站成一行,如果甲乙两个必须不相邻,那么不同的排法种数是() A、1440种 B、3600种 C、4820种 D、4800种 3.定序问题缩倍法:在排列问题中限制某几个元素必须保持一定的顺序,可用缩小倍数的方法. A B C D E五人并排站成一排,如果B必须站在A的右边(,A B可以不相邻)那么不同的排法有例3.,,,, () A、24种 B、60种 C、90种 D、120种 4.标号排位问题分步法:把元素排到指定位置上,可先把某个元素按规定排入,第二步再排另一个元素,如此继续下去,依次即可完成. 例4.将数字1,2,3,4填入标号为1,2,3,4的四个方格里,每格填一个数,则每个方格的标号与所填数字均不相同的填法有() A、6种 B、9种 C、11种 D、23种 5.有序分配问题逐分法:有序分配问题指把元素分成若干组,可用逐步下量分组法. 例5.(1)有甲乙丙三项任务,甲需2人承担,乙丙各需一人承担,从10人中选出4人承担这三项任务,不同的选法种数是() A、1260种 B、2025种 C、2520种 D、5040种 6.全员分配问题分组法: 例6.(1)4名优秀学生全部保送到3所学校去,每所学校至少去一名,则不同的保送方案有多少种?7.名额分配问题隔板法: 例7:10个三好学生名额分到7个班级,每个班级至少一个名额,有多少种不同分配方案? 8.限制条件的分配问题分类法: 例8.某高校从某系的10名优秀毕业生中选4人分别到西部四城市参加中国西部经济开发建设,其中甲同学不到银川,乙不到西宁,共有多少种不同派遣方案? 9.多元问题分类法:元素多,取出的情况也多种,可按结果要求分成不相容的几类情况分别计数,最后总计. 例9(1)由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有() A、210种 B、300种 C、464种 D、600种 10.交叉问题集合法:某些排列组合问题几部分之间有交集,可用集合中求元素个数公式 ()()()() ?=+-? n A B n A n B n A B 例10.从6名运动员中选出4人参加4×100米接力赛,如果甲不跑第一棒,乙不跑第四棒,共有多少种不同的参赛方案? 11.定位问题优先法:某个或几个元素要排在指定位置,可先排这个或几个元素;再排其它的元素。 例11.现1名老师和4名获奖同学排成一排照相留念,若老师不站两端则有不同的排法有多少种? 12.多排问题单排法:把元素排成几排的问题可归结为一排考虑,再分段处理。 例12.(1)6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是() A、36种 B、120种 C、720种 D、1440种 .13.“至少”“至多”问题用间接排除法或分类法:

相关文档
相关文档 最新文档