文档库 最新最全的文档下载
当前位置:文档库 › MATLAB仿真实例(计算机仿真研究的步骤)

MATLAB仿真实例(计算机仿真研究的步骤)

MATLAB仿真实例(计算机仿真研究的步骤)
MATLAB仿真实例(计算机仿真研究的步骤)

现代信号处理Matlab仿真——例611

例6.11 利用卡尔曼滤波估计一个未知常数 题目: 设已知一个未知常数x 的噪声观测集合,已知噪声v(n)的均值为零, 方差为 ,v(n)与x 不相关,试用卡尔曼滤波估计该常数 题目分析: 回忆Kalman 递推估计公式 由于已知x 为一常数,即不随时间n 变化,因此可以得到: 状态方程: x(n)=x(n-1) 观测方程: y(n)=x(n)+v(n) 得到A(n)=1,C(n)=1, , 将A(n)=1,代入迭代公式 得到:P(n|n-1)=P(n-1|n-1) 用P(n-1)来表示P(n|n-1)和P(n-1|n-1),这是卡尔曼增益表达式变为 从而 2v σ1??(|1)(1)(1|1)(|1)(1)(1|1)(1)()()(|1)()[()(|1)()()]???(|)(|1)()[()()(|1)](|)[()()](|1)H w H H v x n n A n x n n P n n A n P n n A n Q n K n P n n C n C n P n n C n Q n x n n x n n K n y n C n x n n P n n I K n C n P n n --=----=----+=--+=-+--=--2()v v Q n σ=()0w Q n =(|1)(1)(1|1)(1)()H w P n n A n P n n A n Q n -=----+21 ()(|1)[(|1)]v K n P n n P n n σ-=--+22(1)()[1()](1)(1)v v P n P n K n P n P n σσ-=--=-+

Matlab通信系统仿真实验报告

Matlab通信原理仿真 学号: 2142402 姓名:圣斌

实验一Matlab 基本语法与信号系统分析 一、实验目的: 1、掌握MATLAB的基本绘图方法; 2、实现绘制复指数信号的时域波形。 二、实验设备与软件环境: 1、实验设备:计算机 2、软件环境:MATLAB R2009a 三、实验内容: 1、MATLAB为用户提供了结果可视化功能,只要在命令行窗口输入相应的命令,结果就会用图形直接表示出来。 MATLAB程序如下: x = -pi::pi; y1 = sin(x); y2 = cos(x); %准备绘图数据 figure(1); %打开图形窗口 subplot(2,1,1); %确定第一幅图绘图窗口 plot(x,y1); %以x,y1绘图 title('plot(x,y1)'); %为第一幅图取名为’plot(x,y1)’ grid on; %为第一幅图绘制网格线 subplot(2,1,2) %确定第二幅图绘图窗口 plot(x,y2); %以x,y2绘图 xlabel('time'),ylabel('y') %第二幅图横坐标为’time’,纵坐标为’y’运行结果如下图: 2、上例中的图形使用的是默认的颜色和线型,MATLAB中提供了多种颜色和线型,并且可以绘制出脉冲图、误差条形图等多种形式图: MATLAB程序如下: x=-pi:.1:pi; y1=sin (x); y2=cos (x); figure (1); %subplot (2,1,1); plot (x,y1); title ('plot (x,y1)'); grid on %subplot (2,1,2); plot (x,y2);

开关电源《基于MatlabSimulink的BOOST电路仿真》

基于Matlab/Simulink 的BOOST电路仿真 姓名: 学号: 班级: 时间:2010年12月7日

1引言 BOOST 电路又称为升压型电路, 是一种直流- 直流变换电路, 其电路结构如图1 所示。此电路在开关电源领域内占有非常重要的地位, 长期以来广泛的应用于各种电源设备的设计中。对它工作过程的理解掌握关系到对整个开关电源领域各种电路工作过程的理解, 然而现有的书本上仅仅给出电路在理想情况下稳态工作过程的分析, 而没有提及电路从启动到稳定之间暂态的工作过程, 不利于读者理解电路的整个工作过程和升压原理。采用matlab仿真分析方法, 可直观、详细的描述BOOST 电路由启动到达稳态的工作过程, 并对其中各种现象进行细致深入的分析, 便于我们真正掌握BOO ST 电路的工作特性。 图1BOO ST 电路的结构 2电路的工作状态 BOO ST 电路的工作模式分为电感电流连续工作模式和电感电流断续工作模式。其中电流连续模式的电路工作状态如图2 (a) 和图2 (b) 所示, 电流断续模式的电路工作状态如图2 (a)、(b)、(c) 所示, 两种工作模式的前两个工作状态相同, 电流断续型模式比电流连续型模式多出一个电感电流为零的工作状态。 (a) 开关状态1 (S 闭合) (b) 开关状态2 (S 关断) (c) 开关状态3 (电感电流为零) 图2BOO ST 电路的工作状态

3matlab仿真分析 matlab 是一种功能强大的仿真软件, 它可以进行各种各样的模拟电路和数字电路仿真,并给出波形输出和数据输出, 无论对哪种器件和哪种电路进行仿真, 均可以得到精确的仿真结果。本文应用基于matlab软件对BOO ST 电路仿真, 仿真图如图3 所示,其中IGBT作为开关, 以脉冲发生器脉冲周期T=0.2ms,脉冲宽度为50%的通断来仿真图2 中开关S的通断过程。 图3BOO ST 电路的PSp ice 模型 3.1电路工作原理 在电路中IGBT导通时,电流由E经升压电感L和V形成回路,电感L储能;当IGBT关断时,电感产生的反电动势和直流电源电压方向相同互相叠加,从而在负载侧得到高于电源的电压,二极管的作用是阻断IGBT导通是,电容的放电回路。调节开关器件V的通断周期,可以调整负载侧输出电流和电压的大小。负载侧输出电压的平均值为: (3-1) 式(3-1)中T为开关周期, 为导通时间,为关断时间。

Matlab仿真实例-卫星轨迹

卫星轨迹 一.问题提出 设卫星在空中运行的运动方程为: 其中是k 重力系数(k=401408km3/s)。卫星轨道采用极坐标表示,通过仿真,研究发射速度对卫星轨道的影响。实验将作出卫星在地球表面(r=6400KM ,θ=0)分别以v=8KM/s,v=10KM/s,v=12KM/s 发射时,卫星绕地球运行的轨迹。 二.问题分析 1.卫星运动方程一个二阶微分方程组,应用Matlab 的常微分方程求解命令ode45求解时,首先需要将二阶微分方程组转换成一阶微分方程组。若设,则有: 2.建立极坐标如上图所示,初值分别为:卫星径向初始位置,即地球半径:y(1,1)=6400;卫星初始角度位置:y(2,1)=0;卫星初始径向线速度:y(3,1)=0;卫星初始周向角速度:y(4,1)=v/6400。 3.将上述一阶微分方程及其初值带入常微分方程求解命令ode45求解,可得到一定时间间隔的卫星的径向坐标值y(1)向量;周向角度坐标值y(2)向量;径向线速度y(3)向量;周向角速度y(4)向量。 4.通过以上步骤所求得的是极坐标下的解,若需要在直角坐标系下绘制卫星的运动轨迹,还需要进行坐标变换,将径向坐标值y(1)向量;周向角度坐标值y(2)向量通过以下方程转换为直角坐标下的横纵坐标值X,Y 。 5.卫星发射速度速度的不同将导致卫星的运动轨迹不同,实验将绘制卫星分别以v=8KM/s ,v=10KM/s ,v=12KM/s 的初速度发射的运动轨迹。 三.Matlab 程序及注释 1.主程序 v=input('请输入卫星发射速度单位Km/s :\nv=');%卫星发射速度输入。 axis([-264007000-1000042400]);%定制图形输出坐标范围。 %为了直观表达卫星轨迹,以下语句将绘制三维地球。 [x1,y1,z1]=sphere(15);%绘制单位球。 x1=x1*6400;y1=y1*6400;???????-=+-=dt d dt dr r dt d dt d r r k dt r d θ θθ2)(2 22222θ==)2(,)1(y r y ?????????????**-=**+*-===)1(/)4()3(2)4()4()4()1()1()1()3()4()2() 3()1(y y y dt dy y y y y y k dt dy y dt dy y dt dy ???*=*=)] 2(sin[)1(Y )]2(cos[)1(X y y y y

MATLAB通信建模实验仿真实验报告

实验1:上采样与内插 一、实验目的 1、了解上采样与内插的基本原理和方法。 2、掌握上采样与内插的matlab程序的设计方法。 二、实验原理 上采样提高采样频率。上采样使得周期降低M倍,即新采样周期Tu和原有采样周期Ts的关系是T u=T s/M,根据对应的连续信号x(t),上采样过程从原有采样值x(kT s)生成新采样值x(kT u)=x(kT s/M)。操作的结果是在每两个采样值之间放入M-1个零值样点。 更实用的内插器是线性内插器,线性内插器的脉冲响应定义如下: 上采样值x(kT u)=x(kT s/M)通过与线性内插器的脉冲响应的卷积来完成内插。 三、实验内容 仿真正弦波采样和内插,通过基本采样x(k),用M=6产生上采样x u(k),由M=6线性内插得到样点序列x i(k)。 四、实验程序 % File: c3_upsampex.m M = 6; % upsample factor h = c3_lininterp(M); % imp response of linear interpolator t = 0:10; % time vector tu = 0:60; % upsampled time vector x = sin(2*pi*t/10); % original samples xu = c3_upsamp(x,M); % upsampled sequence subplot(3,1,1) stem(t,x,'k.') ylabel('x') subplot(3,1,2) stem(tu,xu,'k.') ylabel('xu') xi = conv(h,xu); subplot(3,1,3) stem(xi,'k.') ylabel('xi') % End of script file. % File: c3_upsample.m function out=c3_upsamp(in,M)

MATLAB实现通信系统仿真实例

补充内容:模拟调制系统的MATLAB 仿真 1.抽样定理 为了用实验的手段对连续信号分析,需要先对信号进行抽样(时间上的离散化),把连续数据转变为离散数据分析。抽样(时间离散化)是模拟信号数字化的第一步。 Nyquist 抽样定律:要无失真地恢复出抽样前的信号,要求抽样频率要大于等于两倍基带信号带宽。 抽样定理建立了模拟信号和离散信号之间的关系,在Matlab 中对模拟信号的实验仿真都是通过先抽样,转变成离散信号,然后用该离散信号近似替代原来的模拟信号进行分析的。 【例1】用图形表示DSB 调制波形)4cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%%一般选取的抽样频率要远大于基带信号频率,即抽样时间间隔要尽可能短。 ts=1/fs; %%根据抽样时间间隔进行抽样,并计算出信号和包络 t=(0:ts:pi/2)';%抽样时间间隔要足够小,要满足抽样定理。 envelop=cos(2*pi*t);%%DSB 信号包络 y=cos(2*pi*t).*cos(4*pi*t);%已调信号 %画出已调信号包络线 plot(t,envelop,'r:','LineWidth',3); hold on plot(t,-envelop,'r:','LineWidth',3); %画出已调信号波形 plot(t,y,'b','LineWidth',3); axis([0,pi/2,-1,1])% hold off% xlabel('t'); %写出图例 【例2】用图形表示DSB 调制波形)6cos()2cos(t t y ππ= 及其包络线。 clf %%计算抽样时间间隔 fh=1;%%调制信号带宽(Hz) fs=100*fh;%抽样时间间隔要足够小,要满足抽样定理。 ts=1/fs; %%根据抽样时间间隔进行抽样

基于matlab的电路仿真

基于matlab的电路仿真 杨泽辉51130215 %基于matlab的电路仿真 %关键词: RC电路仿真, matlab, GUI设计 % 基于matlab的电路仿真 %功能:产生根据输入波形与电路的选择产生输出波形 close all;clear;clc; %清空 figure('position',[189 89 714 485]); %创建图形窗口,坐标(189,89),宽714,高485;Na=['输入波形[请选择]|输入波形:正弦波|',... '输入波形:方形波|输入波形:脉冲波'];%波形选择名称数组; Ns={'sin','square','pulse'}; %波形选择名称数组; R=2; % default parameters: resistance 电阻值 C=2; % default parameters: capacitance电容值 f=10; % default parameters: frequency 波形频率 TAU=R*C; tff=10; % length of time ts=1/f; % sampling length sys1=tf([1],[1,1]); % systems for integral circuit %传递函数; sys2=tf([1,0],[1,1]); % systems for differential circuit a1=axes('position',[0.1,0.6,0.3,0.3]); %创建坐标轴并获得句柄; po1=uicontrol(gcf,'style','popupmenu',... %在第一个界面的上方创建一个下拉菜单'unit','normalized','position',[0.15,0.9,0.2,0.08],... %位置 'string',Na,'fontsize',12,'callback',[]); %弹出菜单上的字符为数组Na,字体大小为12, set(po1,'callback',['KK=get(po1,''Value'');if KK>1;',... 'st=char(Ns(KK-1));[U,T]=gensig(st,R*C,tff,1/f);',... 'axes(a1);plot(T,U);ylim([min(U)-0.5,max(U)+0.5]);',... 'end;']); %pol触发事件:KK获取激发位置,st为当前触发位置的字符串,即所选择的波形类型; %[U,T],gensing,产生信号,类型为st的值,周期为R*C,持续时间为tff, %采样周期为1/f,U为所产生的信号,T为时间; %创建坐标轴al;以T为x轴,U为y轴画波形,y轴范围。。。 Ma=['电路类型[请选择]|电路类型:积分型|电路类型:微分型']; %窗口2电路类型的选择数组; a2=axes('position',[0.5,0.6,0.3,0.3]);box on; %创建坐标轴2; set(gca,'xtick',[]);set(gca,'ytick',[]); %去掉坐标轴的刻度 po2=uicontrol(gcf,'style','popupmenu',... %在第二个窗口的位置创建一个下拉菜单,同1 'unit','normalized','position',[0.55,0.9,0.2,0.08],... 'string',Ma,'fontsize',12,'callback',[]); set(po2,'callback',['KQ=get(po2,''Value'');axes(a2);',... %po2属性设置,KQ为选择的电路类型,'if KQ==1;cla;elseif KQ==2;',... %1则清除坐标轴,2画积分电路,3画微分电路 'plot(0.14+0.8i+0.02*exp(i*[0:.02:8]),''k'');hold on;',... 'plot(0.14+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.2i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot(0.84+0.8i+0.02*exp(i*[0:.02:8]),''k'');',... 'plot([0.16,0.82],[0.2,0.2],''k'');',... 'plot([0.16,0.3],[0.8,0.8],''k'');',... 'plot([3,4,4,3,3]/10,[76,76,84,84,76]/100,''k'');',... 'plot([0.4,0.82],[0.8,0.8],''k'');',... 'plot([0.6,0.6],[0.8,0.53],''k'');',... 'plot([0.6,0.6],[0.2,0.48],''k'');',... 'plot([0.55,0.65],[0.53,0.53],''k'');',... 'plot([0.55,0.65],[0.48,0.48],''k'');',... 'text(0.33,0.7,''R'');',...

matlab与通信仿真实验指导书(上)

《Matlab与通信仿真》实验指导书(上) 刘毓杨辉徐健和煦黄庆东吉利萍编著 通信与信息工程学院 2011-1

目录 第一章 MALTAB基础知识 (1) 1.1MATLAB基础知识 (1) 1.2MATLAB基本运算 (2) 1.3MATLAB程序设计 (7) 第二章 MATLAB计算结果可视化和确知信号分析 (13) 2.1计算结果可视化 (13) 2.2确知信号分析 (17) 第三章随机信号与数字基带仿真 (23) 3.1基本原理 (23) 3.2蒙特卡罗算法 (30) 第四章模拟调制MATLAB实现 (34) 4.1模拟调制 (34) 4.2信道加性高斯白噪声 (35) 4.3AM调制解调的MATLAB实现 (36) 第五章模拟信号的数字传输 (45) 5.1脉冲编码调制 (45) 5.2低通抽样定理 (45) 5.3均匀量化原理 (46) 5.4非均匀量化 (48) 第六章数字频带传输系统 (52) 6.1数字频带传输原理 (52) 6.2数字频带传输系统的MATLAB实现 (53) 第七章通信系统仿真综合实验 (67) 7.1基本原理 (67) 7.2实验内容 (67)

第一章 MALTAB基础知识 本章目标 ●了解MATLAB 程序设计语言的基本特点,熟悉MATLAB软件运行环境 ●掌握创建、保存、打开m文件及函数的方法 ●掌握变量等有关概念,具备初步的将一般数学问题转化为对应的计算机模型并进行处理的能力 1.1 MATLAB基础知识 1.1.1 MATLAB程序设计语言简介 MATLAB,Matrix Laboratory的缩写,是由MathWorks公司开发的一套用于科学工程计算的可视化高性能语言,具有强大的矩阵运算能力。与大家常用的Fortran和C等高级语言相比,MATLAB的语法规则更简单,更贴近人的思维方方式,被称为“草稿纸式的语言”。MATLAB软件主要由主包、仿真系统(simulink)和工具箱(toolbox)三大部分组成。 1.1.2 MATLAB界面及帮助 MATLAB基本界面如图1-1所示,命令窗口包含标题栏、菜单栏、工具栏、命令行区、状态栏、垂直和水平波动条等区域。 图1-1 MATLAB基本界面 (1)菜单栏

MATLAB仿真实验报告

MATLA仿真实验报告 学院:计算机与信息学院 课程:—随机信号分析 姓名: 学号: 班级: 指导老师: 实验一

题目:编写一个产生均值为1,方差为4的高斯随机分布函数程序, 求最大值,最小值,均值和方差,并于理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示 G仁random( 'Normal' ,0,4,1,1024); y=max(G1) x=mi n(G1) m=mea n(G1) d=var(G1) plot(G1);

实验二 题目:编写一个产生协方差函数为CC)=4e":的平稳高斯过程的程序,产生样本函数。估计所产生样本的时间自相关函数和功率谱密度,并求统计自相关函数和功率谱密度,最后将结果与理论值比较。 解:具体的文件如下,相应的绘图结果如下图所示。 N=10000; Ts=0.001; sigma=2; beta=2; a=exp(-beta*Ts); b=sigma*sqrt(1-a*a); w=normrnd(0,1,[1,N]); x=zeros(1,N); x(1)=sigma*w(1); for i=2:N x(i)=a*x(i-1)+b*w(i); end %polt(x); Rxx=xcorr(x0)/N; m=[-N+1:N-1]; Rxx0=(sigma A2)*exp(-beta*abs(m*Ts)); y=filter(b,a,x) plot(m*Ts,RxxO, 'b.' ,m*Ts,Rxx, 'r');

periodogram(y,[],N,1/Ts); 文件旧硯化)插入(1〕 ZMCD 克闻〔D ]窗口曲) Frequency (Hz) 50 100 150 200 250 300 350 400 450 500 NH---.HP)&UO 二 balj/ 」- □歹

北邮dsp软件matlab仿真实验报告

题目: 数字信号处理MATLAB仿真实验 姓名 学院 专业 班级 学号 班内序号

实验一:数字信号的 FFT 分析 1、实验内容及要求 (1) 离散信号的频谱分析: 设信号 此信号的0.3pi 和 0.302pi 两根谱线相距很近,谱线 0.45pi 的幅度很小,请选择合适的序列长度 N 和窗函数,用 DFT 分析其频谱,要求得到清楚的三根谱线。 (2) DTMF 信号频谱分析 用计算机声卡采用一段通信系统中电话双音多频(DTMF )拨号数字 0~9的数据,采用快速傅立叶变换(FFT )分析这10个号码DTMF 拨号时的频谱。 2、实验目的 通过本次实验,应该掌握: (a) 用傅立叶变换进行信号分析时基本参数的选择。 (b) 经过离散时间傅立叶变换(DTFT )和有限长度离散傅立叶变换(DFT ) 后信号频谱上的区别,前者 DTFT 时间域是离散信号,频率域还是连续的,而 DFT 在两个域中都是离散的。 (c) 离散傅立叶变换的基本原理、特性,以及经典的快速算法(基2时间抽选法),体会快速算法的效率。 (d) 获得一个高密度频谱和高分辨率频谱的概念和方法,建立频率分辨率和时间分辨率的概念,为将来进一步进行时频分析(例如小波)的学习和研究打下基础。 (e) 建立 DFT 从整体上可看成是由窄带相邻滤波器组成的滤波器组的概念,此概念的一个典型应用是数字音频压缩中的分析滤波器,例如 DVD AC3 和MPEG Audio 。 3、程序代码 (1) N=5000; n=1:1:N; x=0.001*cos(0.45*pi*n)+sin(0.3*pi*n)-cos(0.302*pi*n-pi/4); y=fft(x,N); magy=abs(y(1:1:N/2+1)); k=0:1:N/2; w=2*pi/N*k; stem(w/pi,magy) axis([0.25,0.5,0,50]) (2) column=[1209,1336,1477,1633]; line=[697,770,852,941]; fs=10000; N=1024; 00010450303024().*cos(.)sin(.)cos(.)x n n n n ππππ=+--

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

《matlab与通信仿真》实验指导书-(通信级)word版本

电子信息学院 《MATLAB与通信仿真》 实验指导书 刘紫燕编写 适用专业:通信工程 贵州大学

二O一四年二月

前言 本课程是通信工程专业的选修课程。课程内容包含MATLAB的基本操作、MATLAB程序设计、函数文件、MATLAB的图形和数据处理、SIMULNK的基本应用及其在通信工程中的应用等。 通过本课程的学习,掌握MATLAB软件使用和编程方法,验证和深化书本知识,从而加强基础知识,掌握基本技能,提高MATLAB软件的编程能力,并用MATLAB软件解决通信工程专业中的实际问题,同时,针对通信工程专业的特点,要求学生掌握使用MATLAB来研究和开发与本专业相关的系统的方法。本课程设置5个实验,均为设计性实验。建议实验学时为12学时。 实验一是MATLAB软件的基本操作;实验二是MATLAB程序设计;实验三是MATLAB的图形绘制;实验四是MATLAB的数据处理;实验五是MATLAB/Simulink在电路中的仿真设计。 每个实验2个小时左右,为了使学生更好的掌握实验内容,学生务必要做到以下几点: (1)实验前认真预习实验。明确实验目的,熟悉实验内容,理论分析实验结果, 编写相应的程序代码,并撰写出预习报告。 (2)实验过程中积极思考,深入分析命令、程序的执行过程和执行结果,对比理 论分析结果,分析评判实验结果,并把实验中出现的问题及解决方法记录下来。 (3)实验完成后,总结本次实验有哪些收获,还存在什么问题,撰写并提交最终 的实验报告。 本指导书实验项目和要求明确,学生容易着手实验并得出实验结果。 本实验指导书适用于通信工程专业。

目录 实验一MATLAB的基本操作 (1) 实验二MATLAB程序设计 (9) 实验三MATLAB的图形绘制 (11) 实验四MATLAB的数据处理 (13) 实验五MATLAB/Simulink在电路中的仿真设计 (15) 实验报告的基本内容及要求 (20) 贵州大学实验报告 (21)

matlab通信仿真课程设计样本

《matlab通信仿真设计》课程设计指导书 11月

课程设计题目1: 调幅广播系统的仿真设计 模拟幅度调制是无线电最早期的远距离传输技术。在幅度调制中, 以声音信号控制高频率正弦信号的幅度, 并将幅度变化的高频率正弦信号放大后经过天线发射出去, 成为电磁波辐射。 波动的电信号要能够有效地从天线发送出去, 或者有效地从天线将信号接收回来, 需要天线的等效长度至少达到波长的1/4。声音转换为电信号后其波长约在15~1500km之间, 实际中不可能制造出这样长度和范围的天线进行有效信号收发。因此需要将声音这样的低频信号从低频率段搬移到较高频率段上去, 以便经过较短的天线发射出去。 人耳可闻的声音信号经过话筒转化为波动的电信号, 其频率范围为20~20KHz。大量实验发现, 人耳对语音的频率敏感区域约为300~3400Hz, 为了节约频率带宽资源, 国际标准中将电话通信的传输频带规定为300~3400Hz。调幅广播除了传输声音以外, 还要播送音乐节目, 这就需要更宽的频带。一般而言, 调幅广播的传输频率范围约为100~6000Hz。 任务一: 调幅广播系统的仿真。 采用接收滤波器Analog Filter Design模块, 在同一示波器上观察调幅信号在未加入噪声和加入噪声后经过滤波器后的波形。采用另外两个相同的接收滤波器模块, 分别对纯信号和纯噪声滤波, 利用统计模块计算输出信号功率和噪声功率, 继而计算输出信噪比, 用Disply显示结果。 实例1: 对中波调幅广播传输系统进行仿真, 模型参数指标如下。

1.基带信号: 音频, 最大幅度为1。基带测试信号频率在100~6000Hz 内可调。 2.载波: 给定幅度的正弦波, 为简单起见, 初相位设为0, 频率为550~1605Hz 内可调。 3.接收机选频放大滤波器带宽为12KHz, 中心频率为1000kHz 。 4.在信道中加入噪声。当调制度为0.3时, 设计接收机选频滤波器输出信噪比为20dB, 要求计算信道中应该加入噪声的方差, 并能够测量接收机选频滤波器实际输出信噪比。 仿真参数设计: 系统工作最高频率为调幅载波频率1605KHz, 设计仿真采样率为最高工作频率的10倍, 因此取仿真步长为 8max 1 6.2310(1-1)10step t s f -==? 相应的仿真带宽为仿真采样率的一半, 即 18025.7(1-2)2step W KHz t == 设基带测试正弦信号为m(t)=Acos2πFt, 载波为c(t)=cos2πf c t, 则调制度为m a 的调制输出信号s(t)为 ()(1cos 2)cos 2(1-3)a c s t m Ft f t ππ=+ 容易求出, s(t)的平均功率为 21(1-4)24a m P =+ 设信道无衰减, 其中加入的白噪声功率谱密度为N 0/2, 那么仿真带宽(-W, W)内噪声样值的方差为 2002(1-5)2N W N W σ=?=

Matlab与通信仿真课程设计报告

《MATLAB与通信仿真》课程设计指导老师: 张水英、汪泓 班级:07通信(1)班 学号:E07680104 姓名:林哲妮

目录 目的和要求 (1) 实验环境 (1) 具体内容及要求 (1) 实验内容 题目一 (4) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目二 (8) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目三 (17) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 题目四 (33) 题目内容 流程图 程序代码 仿真框图 各个参数设置 结果运行 结果分析 心得与体会 (52)

目的和要求 通过课程设计,巩固本学期相关课程MATLAB与通信仿真所学知识的理解,增强动手能力和通信系统仿真的技能。在强调基本原理的同时,更突出设计过程的锻炼。强化学生的实践创新能力和独立进行科研工作的能力。 要求学生在熟练掌握MATLAB和simulink仿真使用的基础上,学会通信仿真系统的基本设计与调试。并结合通信原理的知识,对通信仿真系统进行性能分析。 实验环境 PC机、Matlab/Simulink 具体内容及要求 基于MATLAB编程语言和SIMULINK通信模块库,研究如下问题: (1)研究BFSK在加性高斯白噪声信道下(无突发干扰)的误码率性能与信噪比之间的关系; (2)研究BFSK在加性高斯白噪声信道下(有突发干扰)的误码率性能与信噪比之间的关系; 分析突发干扰的持续时间对误码率性能的影响。 (3)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(无突发干扰) 的误码率性能与信噪比之间的关系;分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。 (4)研究BFSK+信道编码(取BCH码和汉明码)在加性高斯白噪声信道下(有突发干扰) 的误码率性能与信噪比之间的关系;分析突发干扰的持续时间对误码率性能的影响。分析不同码率对误码率性能的影响。比较不同信道编码方式的编码增益性能。

MATLAB电路仿真实例

题14.14 图(a)所示电路,已知 V )2cos(15S t u =二端口网络阻抗参数矩阵 Ω?? ????=46j 6j 10Z 求ab 端戴维南等效电路并计算电压o u 。 u -+o u 图题14.14 (一)手动求解: 将网络N 用T 型电路等效,如图(b)所示 S U +-o U 等效阻抗 Ω=-+-?+ -=4.6j615j6j6)15(6j 6j 4i Z 开路电压 V 2j302 15j6j6105j6OC =?∠?+-+=U V 1482 18.3j46.42j3j4j4Z j4OC o ?∠=+?=?+=U U i

所以 )1482cos(18.3o ?+=t u V (二)Matlab 仿真: ⒈分析:本次仿真需输入各阻抗Zl 、Z1、Z2、Z3、Z4以及激励源Us 的参数值,仿真结果需输出开路电压Uoc 、等效阻抗Zi 以及电感两端电压U0的幅值和相位信息,并绘制Uoc ,U0的值随时间变化的波形曲线。其中各元件与原图的对应关系如下图所示: ⒉编辑M 文件的源程序如下: clear %清空自定义变量 z1=4-6j;z2=6j;z3=10-6j;z4=5;us=15*exp(j*0);zl=4j;%输入各元件参数 zi=z1+(z2*(z3+z4)/(z2+z3+z4));%等效阻抗zi 的计算表达式uoc=us*z2/(z2+z3+z4);%开路电压uoc 的计算表达式u0=zl/(zi+zl)*uoc;%电感两端电压uo 的计算表达式disp('The magnitude of zi is'); %在屏幕上显示“The magnitude of zi is ”disp(abs(zi)) %显示等效阻抗zi 的模disp('The phase of zi is'); %在屏幕上显示“The phase of zi is ”disp(angle(zi)*180/pi)%显示等效阻抗zi 的辐角 disp('The magnitude of uoc is'); %在屏幕上显示“The magnitude of uoc is ” disp(abs(uoc))%显示开路电压uoc 的模

MATLAB与系统仿真实验手册

MATLAB与控制系统仿真实验指导书 河北大学电子信息工程学院 2006年9月

目录 实验一MATLAB基本操作与基本运算 (1) 实验二M文件及数值积分仿真方法设计 (3) 实验三MATLAB 的图形绘制 (4) 实验四函数文件设计和控制系统模型的描述 (6) 实验五控制系统的分析与设计 (7) 实验六连续系统离散化仿真方法设计 (8) 实验七SIMULINK 仿真 (9) 实验八SIMULINK 应用进阶 (10) 附录MATLAB常用函数 (12)

实验一MATLAB基本操作与基本运算 一、实验目的及要求: 1.熟悉MATLAB6.5的开发环境; 2.掌握MATLAB6.5的一些常用命令; 3.掌握矩阵、变量、表达式的输入方法及各种基本运算。 二、实验内容: 1.熟悉MATLAB6的开发环境: ①MATLAB的各种窗口: 命令窗口、命令历史窗口、启动平台窗口、工作空间窗口、当前路径窗口。 图1 MA TLAB界面窗口 ②路径的设置: 建立自己的文件夹,加入到MA TLAB路径中,并保存。 设置当前路径,以方便文件管理。 ③改变命令窗口数据的显示格式 >> format short >> format long

然后键入特殊变量:pi (圆周率),比较显示结果。 2.掌握MATLAB 常用命令 >> who %列出工作空间中变量 >> whos %列出工作空间中变量,同时包括变量详细信息 >>save test %将工作空间中变量存储到test.mat 文件中 >>load test %从test.mat 文件中读取变量到工作空间中 >>clear %清除工作空间中变量 >>help 函数名 %对所选函数的功能、调用格式及相关函数给出说明 >>lookfor %查找具有某种功能的函数但却不知道该函数的准确名称 如: lookfor Lyapunov 可列出与Lyapunov 有关的所有函数。 3. 在MATLAB 的命令窗口计算: 1) )2sin(π 2) 5.4)4.05589(÷?+ 4. 设计M 文件计算: 已知 求出: 1) a+b a-b a+b*5 a-b+I (单位阵) 2) a*b a.*b a/b 3) a^2 a.^2 注意:点运算 . 的功能,比较结果。 5. 设计M 文件计算: x=0:0.1:10 当sum>1000时停止运算,并显示求和结果及计算次数。 三、实验报告要求: 1)体会1、2的用法; 2)对3、4、5写出程序及上机的结果。 ?? ??? ?????=987654321a ?? ?? ? ?????=300120101b ) 2(100 2 i i i x x sum -=∑=

通信原理MATLAB仿真

小学期报告 实习题目通信原理Matlab仿真专业通信与信息工程 班级 学号 学生姓名 实习成绩 指导教师 2010年

通信原理Matlab仿真 目录 一、实验目的------------------------------------------------------------------------------------------------2 二、实验题目------------------------------------------------------------------------------------------------2 三、正弦信号波形及频谱仿真------------------------------------------------------------------------2 (一)通信原理知识--------------------------------------------------------------------------------------2 (二)仿真原理及思路--------------------------------------------------------------------------------------2 (三)程序流程图------------------------------------------------------------------------------------------- 3 (四)仿真程序及运行结果------------------------------------------------------------------------------3 (五)实验结果分析---------------------------------------------------------------------------------------5 四、单极性归零波形及其功率谱密度仿真--------------------------------------------------------5 (一)通信原理知识--------------------------------------------------------------------------------------6 (二)仿真原理及思路------------------------------------------------------------------------------ -------6 (三)程序流程图-------------------------------------------------------------------------------------------6 (四)仿真程序及运行结果--------------------------------------------------------------------------------6 (五)实验结果分析-------------------------------------------------------------------------------- -------6 五、升余弦滚降波形的眼图及功率谱密度仿真-------------------------------------------------8 (一)通信原理知识--------------------------------------------------------------------------------------8 (二)仿真原理及思路------------------------------------------------------------------------------ -------9 (三)程序流程图------------------------------------------------------------------------------- -----------9 (四)仿真程序及运行结果------------------------------------------------------------------------------10 (五)实验结果分析---------------------------------------------------------------------------------------11 六、PCM编码及解码仿真-----------------------------------------------------------------------------12 (一)通信原理知识---------------------------------------------------------------------------------- ---12 (二)仿真原理及思路------------------------------------------------------------------------------ ------ 13 (三)程序流程图------------------------------------------------------------------------------- -----------14 (四)仿真程序及运行结果------------------------------------------------------------------------------15 (五)实验结果分析---------------------------------------------------------------------------------------18 七、实验心得---------------------------------------------------------------------------- -------------------18

相关文档