文档库 最新最全的文档下载
当前位置:文档库 › 嘉兴排海2050m超长距离顶管p

嘉兴排海2050m超长距离顶管p

嘉兴排海2050m超长距离顶管p
嘉兴排海2050m超长距离顶管p

嘉兴排海2050m超长距离顶管

摘要嘉兴污水处理排海顶管工程一次顶进2050m,属于超长距离顶管。由于很好解决了超长距离顶进施工中的减阻泥浆、中继间运用、轴线控制等技术难题,仅用了144天就完成了全部顶进施工如管,创造了同类工程的世界记录。

关键词排海工程超长距离顶管技术措施

一、工程概况

排海管道工程是嘉兴市污水处理工程的一个重要组成部分。正常排放管总长2050m,管道内径Φ2000mm,从高位井向大堤外顶进,出洞口管内底标高-20.23m,前747.5m为下坡顶进,坡度-2.5‰,最后302.5m为平坡顶进,终点管内底标高-24.60m。采用"F-B"型钢承口式钢筋砼管,楔形橡胶圈接口,多层胶合板衬垫。在平坡段内设有16根内径Φ380mm的扩散上升管,用垂直顶升工法施工。

二、地质资料

第④层,砂质粉土夹粉砂。灰色,饱和,稍密~中密,中等压缩性土,强度较高。顶板高程-13.70~-11.10m,层厚4.90~6.60m;

第④a层,粉质粘土。饱和,流塑,局部分布,中等偏高压缩性土,强度一般。顶板高程-16.20m,层厚2.00m。

第⑤层,淤泥质粉质粘土~淤泥质粘土。灰色,饱和,流塑,高压缩性土,强度低,渗透系数K<10-6cm/s。顶板高程-19.50m~-13.60m,层厚7.30m~9.40m,浅滩区未钻穿;

第⑥层,粘土-粉质粘土。灰绿~黄色,硬塑~可塑,中等偏低压缩性土,强度较高。顶板高程-23.00~-22.60m,层厚0.60~1.80m。

三、工具管选型

正常排放管在出洞后的150m~200m范围内将遇到④层砂质粉土夹粉砂、④a 层粉质粘土、⑤层淤泥质粉质粘土~淤泥质粘土中进行,随后的顶进主要在⑤层淤泥质粉质粘土~淤泥质粘土中进行。土层变化大,地质状况不理想,由于一次顶进距离2050 m,在国内是绝无仅有的,目前在世界上也是顶程最长的一条顶管,施工难度极大。经多次比选论证,最终决定采用密封式大刀盘泥水加压平衡工具管施工。

混凝土管节堆场

(1)泥水加压平衡工具管工作原理

泥水加压平衡工具管设有可调整推力的浮动式大刀盘进行切削和支承正面土体。推力设定后,刀盘随土压力大小变化前后浮动,始终保持对土体的恒定支撑力,使土体保持稳定,即刀盘的推力与开挖面的土压力保持平衡。机头泥水仓中加入有一定含泥量的泥水,保持一定的压力,一方面对切削面地下水起平衡作用,另一方面又能起到运载切削下来的泥土作用,加入泥水仓中的泥水压力,通过旁通阀来调节。

(2)结构特点

本机采用二段一铰承插式结构,在铰接处设置二道密封装置,并设有4只注浆孔,便于施工时同步注浆,泥浆套厚度20mm。有4只双作用油缸编组进行纠

偏,纠偏角度α=±2o。浮动的大刀盘由4台液压马达驱动,二段壳体之间设有止转装置,可防止壳体相对转动。设有3只土压传感器,显示正面土体压力值,工具管的运转情况、各种仪表值,测量信息、纠偏油缸动作状况均通过电视摄象机反映到操作台屏幕上,操作人员可以根据这些信息进行遥控操作。

(3)适用范围

泥水加压平衡工具管与其他工具管相比,具有平衡效果好,结构紧凑,技术先进,由于出土方式是用水力机械化连续出土,所以顶进速度快,对土质的适应性强。无论是粘性土还是砂性土,均能收到良好的效果。

四、顶进技术措施

1、出洞的技术措施

由于出洞出覆土很厚,且地下水位高,此次出洞特采用了井内外封门。出洞时将封门里的密封槽钢一根根拔出,然后将封门上口及时封闭,拔完槽钢后工具管即可安全出洞。采用这种出洞措施确保了出洞是的安全,并提高了工具管在出洞阶段的稳定性。

2、泥浆减阻技术

顶管掘进施工加注减阻泥浆

对于长距离顶管施工中,减阻泥浆的应用是减小顶进阻力的重要措施。

泥浆润滑减摩剂又称触变泥浆,是由膨润土、CMC(粉末化学浆糊)、纯碱和水按一定比例配方组成。不同的土质,应采用不同的配方,才能满足不同的需要。

触变泥浆配比,根据不同土质和某些特定的需要通过试验确定。本顶管出洞200m范围内为砂性土,含水量高,渗透性强。因此要求该段的浆液粘度要高,失水量要小,并对土层要起一定支承作用。顶管出洞后管节周围能迅速形成泥浆环套。

触变泥浆减摩效果的好坏,除了与上述选用的浆液材料和配比有关以,还与注浆孔的布置、注浆泵的选用、注浆压力及注浆量有关。

由于顶进距离长,一次压浆无法到位,需要接力输送,为此在管道内设置5只泥浆接力站,平均每隔300m设一站,解决了顶进时同步跟踪压浆和沿线补压浆的难点。

顶进施工中,减阻泥浆的用量主要取决于管道周围的空隙的大小及周围土层的特性,由于泥浆的流失及地下水等的作用,泥浆的实际用量要比理论用量大得多,一般可达到理论值的4~5倍,但在施工中还要根据土质情况、顶进状况、地面沉降的要求等做适当的调整。

根据规范,使用减阻泥浆后,管壁的侧向摩阻力为3~5Kpa,经过计算,本工程顶进施工时管壁的侧向摩阻力远小于上述值,泥浆的减阻效果十分明显,为顶进施工的顺利进行创造了有利的条件。

下面是顶力与压浆量的关系曲线图

3、中继间应用

正常排放管全长2050m,原来布置了十四只中继间。在顶进过程管节外壁和周围土体的实际摩阻力比较小,就对中继间的位置做出了调整,调整后,正常排放管共设置九只中继间。

在实际顶进过程中主顶最大顶力没有超过850t,正常顶进中没有使用中继间,只是在停顶等待较长时间后,起顶时使用2#、4#中继间。

4、轴线控制

在实际顶进中,顶进轴线和设计轴线经常发生偏差,因此要采取纠偏措施,减小顶进轴线和设计轴线间的偏差值,使之尽量趋于一致。顶进轴线发生偏差时,通过调节纠偏千斤顶的伸缩量,使偏差值逐渐减小并回至设计轴线位置。在施工过程中,应贯彻"勤测、勤纠、缓纠"的原则,不能剧烈纠偏,以免对管节和顶进施工造成不利影响。

顶进时应及时掌握工具管的走势,顶进时可以通过观察工具管的趋势指导纠偏。

5、水力机械化施工

Φ2000mm顶管正常排放管顶进距离为2050m,采用大刀盘泥水加压平衡工具管施工,因此泥水系统的配置是工程成败的关键之一。

由于本次顶进距离长达2050m,泥水管理显得极为重要。工具管切削下的土体中会有颗粒较大的石块,当其粒径大于排泥管内径的三分之一时,有可能发生管路堵塞。另外,如果泥水管内泥水的流速过慢,泥浆就会沉淀在泥水管内,引起回路不畅,严重时会发生管路堵塞,因此泥水管内的流速必须大于一定速度,防止产生沉淀。

在发生管路堵塞后,可采用特殊点法及二分法进行管路清理。五、超长距离供电及照明

长距离供电为了解决电压降问题,一般采用高压输电,在盾构施工中,都是采用高压输电解决降压问题的。但是顶管施工有其特殊性,其管径小,若采用高压供电安全缺乏保障,因此必须采用380V低压输电。采用低压供电,就必须加大电缆容量,并且设置增压设备,以便在压降过大时起稳压作用。为了防止不可预见情况的发生,还安装了一套自动增压装置,当线路压降过大时,增压装置开启,稳定施工用电电压,保证顶进设备的正常运作。

照明采用安全电压,由管道内电箱中的变压器提供36V电源,每只变压器连接9~10只行灯进行照明,根据顶进长度来决定使用变压器的数量。

六、超长距离顶管通讯、监控

长距离顶进必须保证信息交换渠道的畅通,同时对施工操作人员要进行监护,防止发生安全事故,因此需要设置通讯、监控系统。

通讯采用数字程控交换机,各联络点之间可以通过电话联系,由于管道内空气潮湿,应使用防潮、防爆的矿用电话机,以保证通话质量。

监控采用了两台监视器,分别对工具管操作面和主顶操纵台进行监控。这样地面人员能及时了解施工情况,发生问题可以及时解决。为了解决传输信号长距离输送衰减的问题,将信号通过放大器放大后再送上地面,保证图像的清晰。

七、超长距离通风、气体监测

为了改善管道内的工作环境,施工时对管道进行强制通风,由地面空压机提供的经过滤清、除湿、降温的新鲜空气通过气管送到施工作业面,管道内的浑浊空气则由作业面向工作井自然流通。

实行强制通风后,管道内的环境有很大改善,改善了工作环境,保证了各种机械设备的正常运行。

由于顶进是在海底进行,地层中可能存在远古海洋生物遗体形成的沼气等可燃性气体,在施工中,这些气体可能会从管道的缝隙处渗入管道内,危及施工人员的安全。为此,每次下井时,都由施工人员携带便携式可燃性气体监测仪器进行测试,确保安全才能进行施工,否则必须进行强制通风,待气体浓度恢复

正常后,再进行顶进施工。

八、超长距离顶管施工管理

由于超长距离顶管有较高的技术难度和许多不可预见的不利因素,因此加强施工管理是确保顶管获得成功的重要环节。

1. 砼管节的吊装、对接、就位时应确保密封圈、传力衬垫板和管口的完整,严禁使用不合格的管节。

2. 顶进施工中应随时观察顶进轴线和设计轴线的偏差,做到"勤测勤纠",并随着顶进距离的增长做好管内测站的测量,在工具管出洞后20米更应注意轴线的精度。

3. 土压力的设定和排土量及顶进速度的控制,是超长距离顶管成功的关键。土压力的设定应根据施工地质状况、地下水位高低、管道埋深等因素初步设定,并根据施工实际情况和地表沉降的实测结果随时进行调整。

4. 采用膨润土泥

浆减摩时,对膨润土的产地、质量、泥浆配比要严格控制,泥浆的注入量、注浆压力等技术参数,应根据施工地质状况的不同做相应变化。

5. 顶进时尽量做到全断面出土,严禁在挤压状态下顶进,防止管道周围土体的反弹,破坏直线通道。

6. 做好顶进速度、顶力、土压力、轴线偏差和沉降量变化等原始数据的记录、收集、整理工作,供施工管理人员分析预测施工中可能发生的问题,及时采取相应的技术措施。

九、结束语

此次排海顶管工程一次顶进距离2050m,创造世界纪录,实际顶进时间为144天。在没有采用中继顶接力顶进的情况下,顶力有效地控制在850t以下,轴线的最大偏差在5cm以内,取得了良好的社会效益及经济效益。

根据本项工程的施工经验可以得出,超长距离顶管施工的关键在于注浆减摩、轴线控制及中继顶布置等技术措施,同时对于土压力计算公式需要考虑土拱效应及时间效应。

由于减摩措施十分成功,在总顶力小于8500kN的条件下,未使用中继间接力顶进。管壁实际平均侧面摩阻力小于1kpa,远小于理论值及以往的经验值。2050m长距离钢筋混凝土顶管施工的成功,标志着隧道股份在长距离顶管技术上已达到国际先进水平。

复杂环境下DN3500大管径长距离曲线顶管施工技术

复杂环境下DN3500大管径长距离曲线顶管施工技术 摘要:本文结合虹许、虹梅雨水泵站及总管新建工程实际施工情况,简述 DN3500曲线顶管穿越河道、穿越中环、曲线线性控制等几项关键施工技术,为类似工程施工积累经验。 关键词:大管径;曲线顶管;长距离顶进 1、工程概况 本工程新建沿规划红松路至泵站的雨水排水总管采用顶管施工方法。曲线顶管包括03/HSY→04/HSY顶管段、07/HSY→06/HSY顶管段两段,其中 03/HSY→04/HSY顶管段管底标高为-9.5~-9.9m,覆土厚度为10.08m~1.38m,顶管长度为400m,穿越土层为④淤泥质粘土,穿越野奴泾河。07/HSY→06/HSY顶管穿越上海市中环线,管底标高为-3.87~-5.69m,覆土厚度为5.27m~5.45m,顶管长度为815m,穿越土层为③淤泥质粉质粘土夹粘质粉土④淤泥质粘土。 2、施工设备 本工程曲线顶管采用大刀盘、大扭矩泥水平衡顶管机,泥水平衡顶管机的优点是: (1)适用的土质范围比较广,特别是在地下水压力很高以及变化范围很大的条件下; (2)可有效地保持挖掘面的稳定,对所顶管子周围的土体扰动比较小; (3)与其他类型的顶管比较,泥水顶管施工时的总推力比较小,尤其在粘土层这种表现得更为突出; (4)工作坑内的作业环境较好,作业比较安全,由于它采用泥水管道输送弃土,不存在吊土,搬运等危险的作业; (5)泥水输送弃土为连续作业。 3、顶管施工技术措施 3.1顶管穿河施工 本工程3#→4#顶管施工需穿越野奴泾河道,顶管穿越河道可能存在的风险包括: (1)顶管穿越河道过程中产生的挤压力导致河道防汛墙及防汛大堤路面不均匀沉降或变形,甚至可能引起防汛墙开裂或河水倒灌。 (2)在穿越河床时,存在顶管机头上浮或发生冒顶的风险。 对应措施: (3)加大顶管监测频率,在穿越的重点部位安排专人值班。 (4)穿越河道时严格控制顶管机的推进速度,保持均衡、匀速,减少顶管顶进对前方土体的扰动,从而减少对河床或防汛墙的影响。 (5)正确选取顶管机头正面土压力,及时调整和控制压注触变泥浆的压力和注浆量,严格控制出土量,以达到水土压力平衡,减少河床沉降和隆起。 (6)加强对防汛墙沉降和变形的监测,并根据监测数据合理调整施工参数。 3.2 顶管穿越中环 中环线作为上海市交通大动脉,沉降过大将造成上海市交通的严重压力,带来极大不利影响。因此,施工过程中必须严格把控每一道施工工序,采取相应的技术措施控制沉降在2mm范围内。 (1)采用面板式大刀盘泥水平衡顶管掘进机(DH-3500泥水平衡顶管掘进机),该顶管掘进机对开挖面的扰动最小,使开挖面始终处于稳定状态。

泥水平衡顶管施工工法.doc

泥水平衡顶管穿越施工工法 冯大永倪宏源曾士伟历明马鹏程 1.前言 随着管道建设的发展,管道在穿越高速公路、铁路、建筑物等特殊地段时,传统的人工掏土顶管施工,因易坍塌、效率低、受周边环境制约等缺点越来越不适合于现场施工,泥水平衡顶管施工属于机械化、长距离顶进施工技术,在我国近年来逐步得到推广和应用,泥水平衡顶管施工则切实解决了施工中受地形限制、顶管长度限制、施工安全、环境污染等传统顶管存在的各项问题。本工法对施工技术操作要求较高,主要体现在对顶管设备操作、排泥系统的操作、注浆系统的操作都比较严格。 泥水平衡顶管的主要设备有:泥水平衡顶管机、主顶设备、测量设备、电气控制系统、泥水处理设备、压浆系统等。 2.工法特点 2.1 该工法层次清楚,操作简便,运行可靠,便于掌握,可以对复杂的地下情况作出快速反应。

2.2顶管在地面操作,安全、直观、方便。 2.3适用土质范围广,软土、粘土、砂土、砂砾土、硬土均可适用。 2.2施工精度高,上、下、左、右可纠偏,最大纠偏角度达2.5°,并可作较长距离顶进。 2.3对管体周围的土体扰动较小,地面沉降小,道路交通及构筑物相对安全。 2.4操作坑内施工环境较好,采用泥水输送弃土,没有吊土、搬运土方,施工无安全风险。 2.5施工噪音小,对周围的环境影响小。 3.适用范围 泥水平衡顶管施工工法适用于各种粘土、粉土、砂土和渗透系数较大的砂卵石,也适应强风化岩等恶劣地质条件下的石油管道、室外给水、排水、电力及其它适用于顶管施工的管道工程。 由于泥水平衡顶管顶距长,只要控制好降水措施,就能很好控制地面隆沉、施工安全等特点,并可适用于各类复杂地质条件,因此像穿越重要公路、铁路、建筑物等特殊工程地段、穿越砂层、淤泥质土等特殊地质构造地段应用泥水平衡顶管施工工法,可达到良好的效果。 4. 工艺原理 泥水平衡式顶管机是利用泥水压力来平衡顶进工作面上的水压力和土压力,采用机械掘进技术。工艺原理为:当接通机头刀盘电动机的电源开关时,刀盘就被驱动并以均匀速度对土体进行切削,刀盘可以根据土压自动前后移动,在顶进中起机械支撑开挖面的作用,维持挖掘面的土压。通过刀盘切削,将相当于管子顶入土壤同体积的泥土进入泥水仓,土将相当于管子顶入土壤同体积的泥土进入机头泥水仓内,由供水管向泥水仓内供水,泥土在泥水仓内与泥水混合成泥浆后,再由排泥管道排到泥浆池,泥浆经沉淀或分离后泥水可重复利用,残渣外运;掘进过程通过调节循环水压力用以平衡地下水压力。在切土、排泥时同步采用等压油缸持续顶进套管,同时通过机头内设置的4处纠偏油缸进行纠偏,在顶进过程中,加注触变泥浆填充管道周围的空隙,形成一道泥浆保护套,起到支撑地层,减少地面沉降,减少顶进阻力的作用。

泥水平衡顶管控制汇总教学文案

泥水平衡顶管质量控制 近年来,在开封、郑州等地管道顶管的施工中,相继采用了泥水平衡法顶管施工,解决了传统顶管出现的弊病,下面就泥水平衡顶管施工简要说明,以帮助监理人员更好了解。 一、简介 泥水平衡顶管施工是机械化顶管施工的主要方法之一,属于机械化、长距离顶进施工技术,其特点为:刀盘将切削的土壤送入泥水仓,然后由送水泵将具有一定浓度的泥水送至挖掘面,通过刀盘充分搅拌后由排泥泵经排泥管道将泥水送至地面泥浆池,经沉淀或分离后泥水可重复利用,残渣外运;掘进过程通过刀盘以及顶速平衡正面土压力,调节循环水压力用以平衡地下水压力;采用流体输送切削入泥仓的土体,顶进过程中不间断,施工速度快;无需土质改良或降水处理,施工后地表沉降小。通常泥水平衡顶管的主要设备有:掘进机、主顶设备、测量设备、井内旁通、控制系统等;辅助设备包括:泥水处理设备、注浆设备等。 泥水平衡顶管施工适用于各种粘土、粉土、砂土和渗透系数较大的砂卵石,也适应强风化岩等恶劣地质条件下的室外给水、排水、电力及其它适用于顶管施工的管道工程。 泥水平衡顶管一般适用于管径D400~2400mm的管道施工,由于泥水平衡顶管顶距长、不需降水、能很好控制地面隆沉、施工安全等特点,并可适用于各类复杂地质条件,因此像穿越重要公路、铁路、建

筑物等特殊工程地段、穿越砂层、淤泥质土等特殊地质构造地段应用泥水平衡顶管施工工法,可达到良好的效果。 泥水平衡顶管施工技术是利用泥水压力来平衡土压力和地下水压力的一种顶管施工方法。其基本原理是由送水泵将具有一定浓度的泥水送至挖掘面,再经井内旁通压力调整阀及调整排泥泵转速来调整进水压力大小,使其平衡地下水压及挖掘面土压力,尽量使掘进机刀盘在平衡压力下工作,从而可防止由于挖掘面的失稳,造成地面沉降和隆起。 基本工艺流程

顶管法施工技术

顶管 法施工 1、技术简介 顶管施工就是非开挖施工方法,是一种不开挖或者少开挖的管道埋设施工技术。顶管法施工就是在工作坑内借助于顶进设备产生的顶力,克服管道与周围土壤的摩擦力,将管道按设计的坡度顶入土中,并将土方运走。一节管子完成顶入土层之后,再下第二节管子继续顶进。其原理是借助于主顶油缸及管道间、中继间等推力,把工具管或掘进机从工作坑内穿过土层一直推进到接收坑内吊起。管道紧随工具管或掘进机后,埋设在两坑之间。 非开挖工程技术彻底解决了管道埋设施工中对城市建筑物的破坏和道路交通的堵塞等难题,在稳定土层和环境保护方面凸显其优势。这对交通繁忙、人口密集、地面建筑物众多、地下管线复杂的城市是非常重要的,它将为城市创造一个洁净、舒适和美好的环境。 非开挖技术是近几年才开始频繁使用的一个术语,它涉及的是利用少开挖,即工作井与接收井要开挖,以及不开挖,即管道不开挖技术来进行地下管线的铺设或更换,顶管直径DN800—4500。通过工作井把要埋设的管子顶入土内,一个工作井内的管子可在地下穿行1500米以上,并且还能曲线穿行,以绕开一些地下管线或障碍物。 它的技术要点在于纠正管子在地下延伸的偏差。特别适用于大中型管径的非开挖铺设。具有经济、高效,保护环境的综合功能。这种技术的优点是:不开挖地面;不拆迁,不破坏地面建筑物;不影响交通;不破坏环境;施工不受气候和环境的影响;不影响管道的段差变形;省时、高效、安全,综合造价低。 该技术在我国沿海经济发达地区广泛用于城市地下给排水管道、天燃气石油管道、通讯电缆等各种管道的非开挖铺设。它能穿越公路、铁路、桥梁、高山、河流、海峡和地面任何建筑物。采用该技术施工,能节约一大笔征地拆迁费用、减少对环境污染和道路的堵塞,具有显著的经济效益和社会效益。 2、技术原理 顶管施工是继盾构施工之后而发展起来的一种地下管道施工方法,它不需要开挖面层,并且能够穿越公路、铁道、河川、地面建筑物、地下构筑物以及各种地下管线等。顶管施工借助于主顶油缸及管道间中继间等的推力,把工具管或掘进机从工作井内穿过土层一直推到接收井内吊起。与此同时,也就把紧随工具管或掘进机后的管道埋设在两井之间,以期实现非开挖敷设地下管道的施工方法。 3、现状分析 经过多年的发展,顶管技术在我国已得到大量地实际工程应用,且保持着高速的增长势头,无论在技术上、顶管设备还是施工工艺上取得了很大的进步,在某些方

曲线顶管技术综述

曲线顶管技术综述 1 曲线顶管技术概述 在顶管的设计与施工过程中,由于地质条件的差异性、地面建筑物的环境保护要求以及原有地下构筑物的拥挤等原因,往往迫使工程的路线定为曲线。在此情况下,采用顶管或盾构机械 设施使管节的中心线按照设计的弧线前进的施工技术,即称为曲线顶管技术。曲顶技术在日 本和欧美国家早已开始使用,并有了一些成功经验。日本的曲顶技术开始于1965 年熊本市直径1 200 mm 下水管道的施工,随后又得到不断研究和发展,到20 世纪80 年代,应用已较广泛,代表了该领域当今世界的最先进水平。从国内外曲顶技术的发展现状来看,目前曲顶的管 径以中、大口径为主,曲线类型有平面的、有垂直向的,还有S 形的,基本上能按工程的要求而变换。同时,顶进长度向长距离方向发展,比如:在上海合流污水一期工程中德国Zueberlin 公 司曾将直径 2 500 mm 的钢筋混凝土管曲线一次顶进约 1 500 m 。 2 分类 1.1 顶管施工的分类常见的顶管施工的分类是以顶进管前工具管或顶管掘进机的作业形式来分为手掘式顶管、挤压式顶管、半机械式或机械式顶管。 1.2 顶管施工技术分类目前,在顶管施工中最为流行的有三种平衡理论:气压平衡、泥水平衡和土压平衡理论。 1) 气压平衡顶管施工就是以一定压力的压缩空气来平衡地下水压力、疏干地下水,从而保持挖掘面稳定的一种顶管施工方法。 2) 泥水平衡顶管施工就是采用泥水平衡顶管机进行施工,并利用顶管机泥水仓内的泥水压力来平衡顶管机所处土层中的土压力和地下水压力,同时利用排出的泥水来输送弃土的一种顶管施工工艺。3) 土压平衡顶管工法是利用土压平衡式顶管掘进机进行地下钢筋混凝土管道或其他管道的顶进施工工艺。 3 顶管类型 顶管用管材按照材料可分为:钢筋硅管、钢管、铸铁管和其它塑料管、复合管等等。 1) 钢筋混凝土管: 目前,由于钢筋混凝土管有耐腐蚀性、经济等特点,成为长距离曲线顶管的首选管材。钢筋混凝土管按它的生产工艺可分为离心管、立式震捣管和悬馄管三大类。在钢筋混凝土管中,还有采用玻璃纤维进行加强的管道和用钢板进行加强的管道如钢筒混凝土管。 2) 钢管: 钢管作为顶管材料是仅次于钢筋混凝土之后的使用较为普遍的管材。顶管用钢管可分为大口径与小口径两类,在大口径中用的钢管多采用一定厚度的钢板,先卷成圆筒,然后再焊接成形,最后再做圆。在以上冷作加工过程完了之后,还需根据不同的要求涂上防腐材料。顶管所用钢管的壁厚

泥水平衡顶管施工方案

工作井施工完成后,开始顶管施工,针对施工地区的土质情况,我方计划采用泥水平衡顶管 施工方案。 1、泥水平衡顶管施工工艺 一、泥水平衡式顶管 微型掘进机被主顶油缸向前推进,掘进机头进入止水圈,穿过土层到达接收井,电动机提供 能量,转动切削刀盘,通过切削刀盘进入土层。挖掘的土质,石块等在转动的切削刀盘内被 粉碎,然后进入泥水舱,在那里与泥浆混合,最后通过泥浆系统的排泥管由排泥泵输送至地 面上。在挖掘过程中,采用复杂的泥水平衡装置来维持水土平衡,以至始终处于主动与被动 土压之间,达到消除地面的沉降和隆起的效果。掘进机完全进入土层以后,电缆、泥浆管被 拆除,吊下第一节顶进管,它被推到掘进机的尾套处,与掘进头连接管顶进以后,挖掘终止、液压慢慢收回,另一节管道又吊入井内,套在第一节管道后方,连接在一起,重新顶进,这 个过程不断重复,直到所有管道被顶入土层完毕,完成一条永久性的地下管道。 掘进机在掘进过程中,采用了激光导向控制系统。位于工作后方的激光经纬仪发出激光束, 调整好所需的标高及方向位置后,对准掘进机内的定位光靶上,激光靶的影像被捕捉到机内 摄像机的影像内,并输送到挖掘系统的电脑显示屏内。操作者可以根据需要开启位于掘进机 内置式油缸进行伸缩,为达到纠偏的目的,调整切削部分头部上下左右高度。在整个掘进过 程中,甚至可以获得控制整个管道水平、垂直向5cm内的偏离精度。 当工作井完成以后,经调试完毕的液压系统,顶管掘进机便通过运输至工地,并安装就位至 导轨上,微型掘进设备还包括,操纵室和遥控台、液压动力站、后方主顶、泥水循环装置, 激光定位装置,减摩剂搅拌注入装置,泥水处理装置;其他辅助装置包括起重机,发电机、 卡车、电焊机等。随后,微型掘进装置上。 泥水平衡式顶管突出的优点: (1)适用的土质范围比较广,如在地下水压力很高,以及变化范围很大的条件下,它都适用。 (2)可有效地保持挖掘面的稳定,对所顶管子周围的土体扰动比较小,因而由顶管引起的 地面沉降较小。 (3)与其他类型的顶管比较,泥水顶管施工时的总推力比较小,尤其在粘土层这种表现得 更为突出,所以特别适用于长距离顶管。 (4)工作坑内的作业环境较好,作业比较安全,由于它采用泥水管道,输送弃土,不存在 吊土,搬运等危险的作业。 (5)泥水输送弃土为连续作业,因此进度比较快。 主要设备参数: 本工程使用的主要设备是YX-2000型和YX-1800型泥水平衡顶管机。主要参数如下: 1 尺寸 外径(mm):2420 全长(mm):4300 重量(T):25 2 切削刀盘 电机功率(KW):74 转矩(KN.m):470 转速(r/min):1.5 ɑ=3.32 3 纠偏油缸 数量(个):4 每个推力(KN):1072

长距离曲线顶管的技术处理

长距离曲线顶管的技术处理 摘要:长距离、多曲线顶管是顶管的前沿技术,目前长距离曲线顶管各国尚处于研究发展阶段,曲率半径过小的曲线顶管受施工工艺和技术水平限制,还不能实施。长距离曲线顶管在顶进过程中很容易偏离原有轨道,顶管内部的施工环境较差是影响施工进度的重要原因之一。 关键词:顶管、测量施工、纠偏、通风 顶管施工是顶管铺管技术的一种,随着国外、国内的广泛应用,由于具有不开挖地面,能穿越公路、铁路、河流,甚至能在建筑物底下穿过的特点,当前是管道施工时最安全有效环境保护的施工方法。曲线顶管是顶管工程的前沿技术,它适用于旧城改造中的管线埋设,在穿越河、海、己有地下管线时也常常使用。一曲线顶管可以避免在不可开挖地段设置工作井,减少工程投资。曲线顶管包括平面曲线和竖向曲线以及三维空间曲线。 长距离、多曲线顶管是顶管的前沿技术,目前长距离曲线顶管各国尚处于研究发展阶段,曲率半径过小的曲线顶管受施工工艺和技术水平限制,还不能实施。管道的一次顶拖长度和弯曲半径的大小与土质、管径、顶力有很大的关系。而管道能否按设计路线顶进测量是关键。 一.长距离曲线顶管的施工特点和易出现的问题 长距离、多曲线顶管施工特点: (1)工作井至接收井距离较长,一般在500 m以上,管线由二个以上不同曲率半径的曲线组成。 (2)曲率半径大小由管径、管节长度决定,即管径大的顶管只能采用大曲率半径,在一般情况下,直径2 700以上顶管曲率半径不能小于500 m。 (3)适用于闹市区,车流量大,交通繁忙,且道路不直的路下排水工程。 (4)施工周期较长,速度较慢,适用于工期相对宽余的地下管道铺设工程。 长距离、多曲线顶管施工易出现的问题: 一次顶进距离太长,顶进参数(土压力、顶进速度、出土量)较难控制,易于引起管内渗漏,造成地面异常沉降发生;曲线处,管节接触面间受力不均匀,易压碎管缝处混凝土,或管缝粘连不均匀,产生脱节;曲管轴心较难掌控,纠偏频繁,对地面沉降影响较大;管线长,管内潮湿,光线暗淡,测量容易产生较大误差;中继间设置相对较多,中继间增压油泵在潮湿不通风的环境下工作,电机易发热、油泵主塞头容易损坏。

大直径、长距离顶管毗邻既有线路保护施工技术

大直径、长距离顶管毗邻既有线路保护施工技术 发表时间:2018-06-06T16:58:33.363Z 来源:《基层建设》2018年第10期作者:王忠文[导读] 摘要:大直径顶管与既有高速路并行,由于顶管管线长、直径大,对毗邻的既有交通影响大,为确保顶管施工期间高速交通安全,避免造成经济损失,施工前,在顶管管路和高速路间施做保护结构、施工时做好保护结构变形监测。 广州建筑股份有限公司 510030 摘要:大直径顶管与既有高速路并行,由于顶管管线长、直径大,对毗邻的既有交通影响大,为确保顶管施工期间高速交通安全,避免造成经济损失,施工前,在顶管管路和高速路间施做保护结构、施工时做好保护结构变形监测。 关键词:大直径顶管;既有高速路;保护结构;变形监测 一、引言 在城市中修建排污、截污管道工程,因城区道路纵横,建筑物、管线密布,采用顶管工艺施工是相对经济、适用的方法。顶管线路经常布置在既有道路下、与地面线路、道路、高架、建构筑物等毗邻,顶管的施工势必将对既有线路、建构筑物的安全使用产生一定的影响,甚至危及其结构安全。对重要的既有线路、建构筑物,需要采取专门的保护措施。 本文以白云区石井河截污系统工程毗邻既有线的顶管施工为依托,实践并总结了长距离、大直径顶管毗邻既有高速路保护施工技术,以为同类工程的施工提供参考。 二、工程概况 石井河干流截污渠箱(石井河段)工程在粤溪北路下设有1490m长,直径3.056m的顶管工程,顶管连通新市涌干流截污系统。粤溪北路毗邻北环高速,高速路的高架桥段顶管外缘距离桥梁桩基5.50~12.3m,高速路路基段顶管外缘距离路堤挡墙外缘5.00~9.00m,PH3顶管井的支护结构距离高速路挡墙外缘最近仅0.82m,因此顶管的施工势必影响北环高速的安全运营。 三、工程地质情况 粤溪北路顶管段地质主要为①1杂填土、②1淤泥、②4砾砂、②3粉质粘土。 本段范围内岩土分层及其特征分述如下: 1)第四系全新统人工填土层(Q4ml) 杂填土,地层代号①1 见于场区大部分地段,主要分布于石井河堤岸之上。杂色、褐色、灰褐色,稍湿,稍压实。主要由碎石、砼块、砖块、中粗砂和建筑垃圾等组成,硬质物含量一般为30~80%,顶部有0.00~0.30m砼路面。此层绝大多数地段出露于地表,层顶埋深0.00~3.50m,层厚0.80~7.60m,平均4.10m。 2)第四系全新统海陆交互相沉积层(Q4mc) (1)淤泥,地层代号②1 揭露于场区大部分地段,呈层状、似层状断续分布。灰黑色,饱和,流塑,有机质含量为0.36~5.65%。局部相变为淤泥质粉质粘土。层顶埋深0.00~16.40m,层厚0.50~11.30m,平均2.69m。 (2)粗、砾砂,地层代号②4 见于场区大部分地段,呈层状或似层状分布。深灰色、浅灰色、灰白色,饱和,松散,粒径不均匀,局部含少量淤泥质。该层在部分地段相变为中砂、淤泥质粗、砾砂。层顶埋深0.00~15.60m,层厚0.50~8.80m,平均2.48m。 (3)粉质粘土,地层代号②3 仅见于场区部分地段,呈透镜状或似层状分布。灰色、浅灰色、黄色,可塑,土质较不均匀。层顶埋深1.00~13.80m,层厚0.50~ 6.60m,平均2.28m。 四、对既有路的专项保护措施 针对毗邻的既有高速路的特点,分段实施专项保护措施: 1.高架桥段:在管路与高架间距离顶管外缘1.175m的位置施做Φ500@350×350双排高压旋喷桩; 2.路堤段:在管路与路堤间距离顶管外缘1.00m的位置施做Φ500@350单排高压旋喷桩; 高架桥段保护措施平面布置图路堤段保护措施平面布置图 3.路桥过渡段:在管路与路堤间距离顶管外缘1.50m的位置施做1排12.0m拉森IV钢板桩;

NPD泥水平衡顶管机

NPD 泥水平衡顶管机 型号外径×总长mm 重量 T 切削刀盘纠偏油缸 纠偏 角度 纠偏 泵站 kw 进排浆 管径 mm 驱动电机 kw×set 转矩 T×m 回转数 rpm 推力 T 数量 NPD600 760×3200 3.6 15×1 2.9 5 15 4 2.5o0.55 80 NPD800 980×3400 5 7.5×2 2.9 5 26 4 2.5o0.75 80 NPD1000 1220×3600 6.5 15×29 3.3 42 4 2.5o 1.5 100 NPD1200 1460×40008 15×29 3.3 42 4 2.5o 1.5 100 NPD1350 1640×40009.5 22×215 2.8 60 4 2.5o 2.2 100 NPD1500 1820×400012 22×215 2.8 80 4 2.5o 2.2 100 NPD1650 2000×420016 30×225.5 2.35 80 4 2.5o 2.2 100 NPD1800 2180×420024 30×230 2 60 8 2.5o 2.2 100 NPD2000 2420×420030 22×344 1.5 80 8 2.5o 2.2 150 NPD2200 2660×450035 30×350 1.8 80 8 2.5o 2.2 150 特点: 1、适用土质范围广,软土、粘土、砂土、砂砾土、硬土均可适用。 4、顶进速度快,最快顶进速度每分钟200mm。 2、破碎能力强,破碎粒径大,个数多。5、施工精度高,上、下、左、右纠偏,最大纠偏角度达3.5°。 3、具有独立注水、注浆系统。 6、采用地面集中控制系统,安全、直观、方便。 ★以上参数若有变更,不另行通知,可根据用户要求设计制造。

DN1000mm钢管顶管施工方案

D1000钢管顶管施工方案 1、工程概况 本标段顶管长2108.7 m;其中六环路绿化带内2013m,穿越京开高速95.7m,穿京九铁路、其他铁路、林校路顶管共301m,顶管材质为d1000mm钢管,钢管防腐形式为玻璃钢外防腐、水泥砂浆内防腐。 2、施工部署 2.1施工程序 2.1.1按总体布局本标段顶管施工时间安排在2月底,日平均气温低、顶管工作量大、所耗用的工期最长、施工难度较大,因此顶管工程要先行施工。 2.1.2由于顶管在高速路绿化带内施工,其工作坑和检查井的施工给周边美观带来不利影响,为了及时恢复原貌,因此每施工完一个井(坑)段,及时回填。 2.2施工顺序 2.2.1按照先准备后施工,先地下后地上,先深后浅的施工程序。 2.3施工段的划分 2.3.1根据本工程的特点,顶管工程共分三个施工段: 1)第一段顶管长1000m,桩号为2+800~3+754;顶管工作井共11个,在桩号为3+100、3+200、3+700、3+733井体位置设立工作井,其余没有工作井的直线段按每最大间隔不超过120米设立工作井。 2)第二段顶管长1013m,桩号为3+754~4+700;顶管工作井共12个,在桩号为3+100、3+200、3+700、3+733井体位置设立工作井,其余没有工作井的直线段按每最大间隔不超过120米设立工作井。 3)第三段顶管长301m,桩号为4+280-4+345(京九铁路顶管)、5+256.3-5+279.8、5+310.7-5+332.6、5+414.5-5+464.9(铁路顶管)、6+023-6+120(京开高速)、6+164.7-6+207.9(林校路);顶管工作井共6个,分别设立在桩号4+280、5+256.3、5+310.7、5+414.5、6+023、6+164.7处。 2.4施工进度安排 2.4.1根据工程特点以及工期的要求,拟计划开工时间2010年2月18日, 2010年12月10日竣工,总工期292日历天。 2.5主要施工机械的选择 2.5.1选择原则:为了加快施工进度,提高机械化施工程度,减轻劳动强度,并根据公司自身的条件以及施工经验来选择本工程的施工机械,详见《机械/设备/仪器表》。

泥水平衡顶管施工专项方案

泥水平衡顶管施工专项方案 (一)施工前期准备 ⑴顶管机械设备、管材进场准备及施工人员组织 针对地质特点和工程管材选定与之相适应的顶管掘进设备、顶管施工工艺,对顶管配套设备、设施进行检修及调试,使其保持在良好的待用状态;提前做好管材供应计划,将相应的管材技术参数以书面形式向管材生产厂交底;安排具有丰富顶管施工经验的班组进驻现场施工,施工前做好全面的技术交底和安全交底,确保有关劳动安全及施工技术教育,加强工人的劳动安全意识,提高施工技术水平。 ⑵对顶管沿线地质情况进行核查 为确保顶管成功,需对顶管沿线的地质情况核查,进行补堪,加密钻孔密度,通过补堪资料与原地勘报告相比较,出具更详细、准确的河道内管道穿越地层情况说明和河床覆土情况说明用以指导现场施工和方案编制。 ⑶编制专项方案、组织专项技术交底 施工前,在项目技术负责人的带领下集中有关技术人员仔细审阅图纸与相关资料,结合现场情况,编制详细的顶管专项方案用以指导施工,方案报送专家评审;并组织召开专题技术交底会,参加人员设计顶管施工的所有工种,认真做好技术交底工作。 ⑷测量准备 a.井下高程点的设置: 施工时地面高程点的导入采用悬挂钢卷尺法。 导入标高之前,首先在工作井的适当位置埋设高程点,待稳定后进行高程导入。工作井的同一高程点进行三次独立导入标高,其互差必须在规定值以内(精度指标不大于3mm),然后将其作为顶管施工中高程控制的绝对高程点。工作井内的高程点必须大于2个,并在施工中要定期互相校对。顶进过程中高程测量可依靠工作井内的任一水准点作为后视高程点,校核激光束高程和已顶进管道高程。 b. 中心测量控制 直线顶管施工,首先将管道中心桩用经纬仪(精度2″)引入工作井两侧井壁上或支架上,作为顶管中心的测量基线,然后将其投入工作井内,将激光经纬仪安装在

提高超大直径长距离曲线顶管自动导向系统测量精度(中铁上海工程局市政工程有限公司)

上海市SST2.6标项目部QC 小组 提高超大直径长距离曲线顶管自动导向系统测量精度 勇攀顶管行业高峰 打造市政精品工程 中铁上海工程局市政工程有限公司

上海市南线东段工程SST2.6标,主要工作内容是铺设双排DN4000钢筋混凝土排水管,设计长度3.98km,埋深10.86m。管道外径φ4640mm,全部采用非开挖顶进法施工,为国内首建的直径最大的顶管工程,在顶管施工领域具有里程碑的意义。 本工程为国内首次实施,通过本工程采集工艺参数、研究施工技术和总结施工经验。在克服技术管壁摩阻力大、测量导向困难、穿越建筑及重要设施多等技术难点,保证管道无渗漏的质量要求前提下,完成本项目管道完美贯通。

通过本次QC 活动分析并总结各种施工参数、完善施工工艺、保证施工质量,在保证顺利贯通的前提下,大幅度提高超大直径长距离曲线顶管自动导向系统测量精度。

小组注册小组活动 小组课题成立时间:2012年3月 注册登记号:SHJSZ2011-002 活动时间:2012年3月-11月 活动次数:17次 课题类型:现场型 课题名称:提高超大直径长距离曲线顶管自动导向系统测量精度

性别文化程度职务组内职务组内分工胡斌男大专项目经理组长组织管理孙焕斌男大专项目总工副组长技术负责人薛峰男本科工程部部长组员方案编制 李海波男本科工程部副部 长 组员软件实施 陈文辉男本科技术员组员图表绘制王松男大专测量员组员数据测量赵高平男大专技术员组员设备性能研究王文顺男大专施工员组员现场配合马庆杰男本科技术员组员数据记录分析杨勇远男本科技术员组员模型设计

活动计划 3月4月5月6月7月8月9月10月11月选择课题 现状调查 设定目标 分析原因 要因确认 制定对策 实施对策 效果检查 巩固措施 下步打算

dn钢管顶管施工方案

目录 一、工程概况 (2) 二、工程地质条件 (2) 三、顶管方案 (2) 1.顶管现场平面布置 (2) 2.顶管施工流程图 (4) 3.顶管施工工艺及设备配置 (5) 4.顶管施工方法及技术质量保证措施 (11) 四、施工计划 (18) 1.施工进度计划 (18) 2.施工资源计划 (18) 五、环境监测 (19) 1. 工程情况 (19) 2. 监测内容 (20) 3. 测点布设 (20) 4. 监测频率 (20) 六、安全文明施工保证体系 (20) 1. 安全保证管理体系 (20) 2. 安全保证措施 (21) 3. 重点工序的安全措施 (21) 4. 环境保护 (22) 5. 现场文明施工措施 (22) 附图一:顶管现场平面布置图 附图二:出洞口增设钢板桩示意图 附图三:顶管顶进系统布置图 附图四:顶管顶进施工图

一、工程概况 严桥支线输水管道采用2根DN3600钢管,2根管线平行段中心间距为8m,管道中心线距道路红线2m,管线长度约为27km。管道绝大部分拟采用顶管施工,仅在五号沟泵站和严桥泵站附近有一段管道采用开挖方式。管顶覆土厚度不小于5.4m,对于特殊地段(穿越建筑物或重要道路),视情况适当加大埋设深度。顶管工作井和接收井拟采用沉井、地下连续墙或者SMW工法,根据实际地质地形条件确定,其平面净尺寸分别为约13.0×13.8m和8.0×13.8m,沿顶管方向的长度分别为约13.0m和8m,埋深均约为9.8m。钢管顶进施工采用管径对应的大刀盘土压平衡式顶管机,配备4~6个400t主顶作为主顶设备,现场配备120t履带吊。管道沿线除穿越A20立交和磁浮快速轨道交通高架外,其它一般位于已有道路绿化带内。 二、工程地质条件 根据上海岩土工程勘察设计研究院有限公司提供的青草沙水源地原水工程严桥支线工程岩土工程勘察报告,拟建输水管道沿线场地40.5m深度范围内地基土属第四纪滨海~河口、滨海~浅海、滨海、沼泽、溺谷、河口~湖泽及河口~滨海相沉积物。主要由粘性土、粉性土及砂土组成,一般呈水平层理分布。根据顶管施工段 工程地质剖面图分析,顶管施工主要涉及第② 3层灰色砂质粉土、第③ 1 层灰色淤泥 质粉质粘土、第③ 1夹层灰色粘质粉土、第③ 2 层灰色砂质粉土夹淤泥质粉质粘土、第 ④层灰色淤泥质粘土。第③ 1 层及第④层以淤泥质粘性土为主,呈流塑状态,局部夹 少量薄层粉砂;而第② 3层、第③ 1夹 层及第③ 2 层以粉性土为主,呈松散~稍密状态, 局部夹少量粘性土。 三、顶管方案 1、顶管现场平面布置 1.1 地面布置 在工作井范围内实行全封闭隔离施工并布置以下必要的设施,地面指挥监测中心、办公室、仓库、配电间等。布局要合理,环境整洁、卫生,并有专职人员进行管理。井顶布置一台120t履带吊车负责钢管及顶铁吊运和井内、地面的吊装工作。现场内另设临时堆场,供管节及半成品、周转材料等堆放,顶管现场考虑一定管节

泥水平衡顶管施工工艺

针对本项目的特性技术方案简述 目录 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序

4.3 交通疏解方案 五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

长距离人工顶管施工工法

长距离人工顶管施工工法

目录 1前言 (3) 2工法特点 (3) 3适用范围 (3) 4工艺原理 (3) 5施工工艺流程及操作要点 (4) 5.1施工流程 (4) 5.2施工准备 (4) 5.3工作井及后靠背制作 (5) 5.4导轨及顶管设备安装 (6) 5.5顶进施工 (7) 5.6长距离人工顶管措施 (9) 5.7竣工验收 (12) 6机具设备 (12) 7劳动组织 (13) 8质量要求 (14) 8.1本工法应执行的标准规范 (14) 8.2质量保证措施 (14) 9安全措施 (15) 10环保措施 (16) 11效益分析 (17) 12应用实例 (17)

1前言 胜利油建公司广东天然气管网一期项目部施工的广东天然气管网惠州段位于广东省惠州市惠城区和惠阳区。始于东江大呗,经潼湖军垦区,沥林镇工业园区,终止于惠州市工业园。线路实长约47.9公里,设计压力10MPa,管径为Φ914mm,壁厚分别为 16mm、17.5mm、22mm。区域地貌主要有低山、丘陵、山间盆地、山间峡谷等。其中管线 在沥林镇凤凰岗村穿越凤凰岗山体后沿惠莞高速向镇隆镇方向延伸。原方案采用开挖山体沟下焊接,但考虑到山体地势陡峭,受地形限制,大型设备无法进入,土方量较大,山体开挖后需要支护等因素,并且开挖施工影响居民正常生产生活,由于南方地区,特别是广东境内居民风水意识强烈,业主、监理及项目部联合多次处理工农关系未果,严重影响了我项目部施工进度。根据相关部门提供的资料及经过现场勘探,最后决定采用采用人工顶管方式,即利用两台320吨千斤顶并结合中继间技术及注浆技术,完成284m的山体穿越,顶管用钢筋 混凝土套管DRC1800×2000mm GⅢA JC/T640。 2工法特点 2.1长距离人工顶管施工与机械顶管相比,其显著特点如下: 设备简易,技术难度低,易于推广,施工成本低; 工作井及接收井占用场地小; 容易发现对下障碍物,清楚的做出判断,防止不必要的损失。 2.2与大开挖穿越相比,对周围环境影响小,可有效保护环境,不影响人们生活秩序。 3适用范围 本施工工法适用于能自立的土中,如粘土、亚粘土、强风化岩层,在采取注浆或降水的辅助施工后,可适用于砂性土,砂砾土等。 本施工工法可敷设穿越地面构(建)筑物、山体、公路、铁路等,管径在1.0~2.5m,长度在300m以内的给水管道、排污管道、工业地下管道等。 4工艺原理

3000泥水平衡顶管现场施工方法

¢3000泥水平衡顶管施工方案 工作井施工完成后,开始顶管施工,针对施工地区的土质情况,我方计划采用 泥水平衡顶管施工方案。 1、泥水平衡顶管施工工艺 一、泥水平衡式顶管 微型掘进机被主顶油缸向前推进,掘进机头进入止水圈,穿过土层到达接收井, 直向5cm 并安装就位至导轨上,微型掘进设备还包括,操纵室和遥控台、液压动力站、后方主顶、泥水循环装置,激光定位装置,减摩剂搅拌注入装置,泥水处理装置;其他辅助装置包括起重机,发电机、卡车、电焊机等。随后,微型掘进装置上。 泥水平衡式顶管突出的优点:

(1)适用的土质范围比较广,如在地下水压力很高,以及变化范围很大的条件 下,它都适用。 (2)可有效地保持挖掘面的稳定,对所顶管子周围的土体扰动比较小,因而由 顶管引起的地面沉降较小。 (3)与其他类型的顶管比较,泥水顶管施工时的总推力比较小,尤其在粘土层这种表现得更为突出,所以特别适用于长距离顶管。

③井上,井下建立测量控制网,并经复核报验监理认可。 三、井下准备工作及井内布置 工作井井内布置主要是后靠背、导轨、主顶油缸、油泵动力站、钢制扶梯等。顶管基座为钢结构预制构件,顶管基座位置按管道设计轴线准确进行放样,安装时按照测量放样的基线,吊入井下就位安装固定。基座上的导轨按照顶管设计轴线并按实测洞门中心居中放置,并设置支撑加固,保证基座稳定不变形。 四、技术交底,岗位培训 1 复原状。如压缩回弹量大,会导致大量行程消耗在后座墙压缩变形土,从而大在降低千斤顶的有效冲程,使顶进效率降低。故后座墙必须具有足够的刚度。 (3)、后座墙表面要平直 后座墙表面应平直,并垂直于顶进管道的轴线,以免产生偏心受压,使顶力损 失和发生质量、安全事故。 (4)、材质要均匀

泥水平衡顶管施工专项技术方案设计

坪山河流域水环境综合整治工程- 墩子河综合整治工程 顶管工程安全专项施工方案

XX市金河建设集团XX 2016年3月28日

目录 第一章编制依据及原则 第一节编制依据 (1) 第二节编制原则 (2) 第二章工程概况 第一节工程简介 (2) 第二节环境与地质条件 (3) 第三节顶管工程量 (5) 第四节实施目标 (6) 第三章施工总体部署 第一节临时设施安排及施工准备 (6) 第二节设备、人员、材料安排 (7) 第三节施工准备工作计划 (7) 第四章工程施工方案与工艺 第一节工作井(沉井)施工 (11) 第二节施工工艺流程 (20) 第三节顶力计算、最大顶距确定 (23) 第四节后座墙 (25) 第五节泥水系统、水压控制、注浆量的计算 (27) 第六节操作控制系统 (29) 第七节进出洞和机头吊装措施 (30) 第八节顶管施工过程中应注意的问题 (32) 第九节顶管施工测量及方向控制 (32) 第十节施工用电方案及作业人员安全措施 (34) 第五章建筑物及地下管线保护措施

第一节工程施工中需采取的保护措施 (36) 第二节施工过程中地面变形控制措施 (36) 第六章质量标准与控制 第一节质量标准 (36) 第二节顶管施工质量要求 (36)

第三节质量保证的技术措施 (37) 第七章安全生产与文明施工 第一节安全管理目标 (37) 第二节现场安全管理措施 (37) 第八章雨天施工措施 (40) 第九章应急救援预案 第一节应急预案的方针与原则 (40) 第二节应急预案工作流程图 (40) 第三节明挖深基坑开挖存在的危险因素及预防、应急措施 (41) 附表1 使用设备一览表 附表2 主要机械设备和测量检验设备配备表 附表3 劳动力计划表 附图顶管工程平面图 附图顶管施工进度计划横道图

泥水平衡顶管施工组织设计(仅供参考!)

泥水平衡顶管施工组织设计(仅供参考!)泥水平衡顶管施工组织设计(仅供参考!) 目录 一.工程概况 二.顶管方案 1、机头选型 2、平面布置 3、出土方案 4、顶力计算、中继间及中继间布置 5、出洞方案 6、测量方法 7、通风设置 8、顶管动力、照明配套 9、管接口质量控制 10、防止旋转措施 11、设备保养 12、顶进结束后机头处理 13、浅覆土安全技术 14、注浆减磨 五、安全 六、质量控制 七、进度计划

一、工程概况 本工程为顶管工程。采用Φ800顶管,总长为m,管中心标高-6.20~-27.72m。土质由标高为m的土到m的土。 二、顶管方案 1、机头选型 本工程由于一次顶进距离较长,为确保工程质量万无一失,确保绝对工程安全,我公司根据以住施工经验,决定采用日本ISEKI公司生产的UNCLEMOLE 型TCZ600具有破碎功能的泥水平衡顶管掘进机。 本掘进机的优点是: 特点: A、顶管机、主千斤顶、泥水循环系统和泥水分离装置(DESANDMAN)成套化。 B、带锥形破碎机的条幅刀盘,能破碎小于外径30%,一轴强度196Mpa(2000 kg/cm2)的砾石。 C、该机能适用各种土壤条件,如粘质土、砂土、砂砾混合卵石土和软岩上。 D、使用安装在轨道上的主顶油缸。一次顶进长度超过100m。 E、该机由一人在地面遥控操纵即可。

F、可在控制台上进行电视监测及方向控制,精度高。带有ISEKI 专利的RSG双光靶方向控制系统,有经验的操作人员可以将方向误差控制在10mm之内! 此机型在现今使用较广,我们有着成功施工经验、技术成熟、可靠,对土层扰动少的特点。偏心破碎泥水平衡顶管掘进机是根据含水量较高的沙砾土而专门设计的。因此特别适应本工地基顶管的施工。 2、平面布置、井内布置及管内布置 2.1在工作井范围内实行全封闭隔离施工并布置以下必要的设施,地面指挥监测中心、办公室、仓库、配电间、冷作间等。布局要合理,环境整洁、卫生,并有专职人员进行管理。 2.2现场布置采用8t汽吊,设备进场时,采用16t汽车吊车。 2.3管道顶进时,起吊设备采用跨距为14m的龙门行车(起重能力为30t),行车导轨与顶管中心线应平行铺设,并与管中心左右对称。 2.4井内布置 工作井井内布置主要是后靠背、导轨、主顶油缸、油泵动力站、钢制扶梯等。 3、出土方案 泥水平衡式顶管的出土采用全自动的泥水输送方式,被挖掘的土通过在机舱内的搅拌和泥水形成泥浆,然后由泥浆泵抽出,高速排土。 在沉井上部砌2只沉淀池。沉淀的余土外运需按文明施工要求和

长距离顶管施工中的问题与解决策略分析

长距离顶管施工中的问题与解决策略分析 发表时间:2019-03-01T14:24:13.500Z 来源:《建筑细部》2018年第16期作者:陈福建 [导读] 在长距离顶管施工阶段,由于环境、管径、顶进机械、施工技术等多方面因素的影响,在长距离顶管施工过程中极易出现一些风险故障。 中国水利水电第十一工程局有限公司河南郑州 450001 摘要:在长距离顶管施工阶段,由于环境、管径、顶进机械、施工技术等多方面因素的影响,在长距离顶管施工过程中极易出现一些风险故障。因此,本文以某工程为例,介绍了长距离顶管施工原理,阐述了长距离顶管基础施工方法,分析了长距离顶管施工中常见问题。并提出了几点针对性解决措施,以期为长距离顶管施工效益提升提供有效的借鉴。 关键词:长距离;顶管;工作井 前言:XX清水管道穿越XX江,管道施工采用顶管推进法,为长距离大口径顶管施工。XX顶管顶进工程最高日设计流量为 19*104m3/d,压力流输送管道设计压力为0.58MPa,采用外径为2018mm、1987mm,壁厚为25mm钢管,管道长度为890m。管道中心标准高度为-8.8m~-24.8m。工程东西两端以沉井为主要连接渠道,沉井制作高度为16.9m。其中东侧沉井为顶管接收井,接收井内径为 8.8m,外径为11.9m,井底标准高度为-30.8m,制作高度为32.56m。本文对该工程顶管顶进施工问题及优化措施进行了简单的分析,具体如下: 一、长距离顶管施工原理概述 长距离顶管施工主要是在顶管驱动下,利用土压平衡顶管设备,对土层进行处理。在土压平衡顶管设备应用过程中,工作井内油缸为主要动力设备。其可对顶管设备提供较大的推进力。通过顶管推进期间设备、土层阻力相关作用,可促使土层盘旋运动[1]。随后利用土压平衡顶管设备中大刀片,可将盘旋土层卷出,以达到土体降压、控温的作用。在这个基础上,利用机器将土层由地下传送至地上,可完成整体管道施工工序。 二、长距离顶管施工中的问题及原因 2.1长距离顶管顶力不足 长距离顶管顶力与其顶进长度成正相关。由于管道强度的约束,顶管顶进长度并不能无限制增加。这种情况下,普通长距离顶管施工过程中,就需要在管道尾部施加一定顶力。由于管道强度对顶管顶力施加具有一定影响。再加上土层阻力的限制,在长距离顶管施工过程中,极易出现长距离顶管顶力不足的情况。 2.2长距离顶管顶进方向失控 顶管施工中管轴线多为直线、曲线形式。在实际施工作业中,长距离顶管需沿规定管轴线走向进行顶进作业。由于地下土层环境的复杂性,极易导致推力合力作用点高于或低于后座被动土层压力作用点,进而导致长距离顶管顶进方向失控问题发生。而顶进方向失控问题的出现,不仅会影响管道正常构型,而且会增加顶管顶进压力。甚至影响整体施工过程顺利进行。 2.3进洞口旋喷桩断桩 2017年05月25日,在施工过程中,XX工程进洞口高压旋喷桩施工期间,由于电力短路,导致正在旋喷加固施工的6根钻杆长达9.8m 断裂在加固土体中。断杆底部距离地面为28.6m,与工具头进洞口位置距离较近。在初步处理之后,XX工程高压旋喷桩断桩位置出现了严重的涌水涌砂现象,随后进洞口地层出现了塌方情况。 2.4长距离顶管施工塌方 塌方问题大多发生于地下水位高于标准限度土层,或软土地基位置。塌方问题除进洞口旋喷桩断桩之外,还包括顶管工作坑后座可承受最大推力反作用力过大,顶管顶进力不均匀等因素。塌方问题的出现,不仅会影响长距离顶管顶进方向控制效果,而且会破坏管道受力均衡性,最终危害地层上方建筑物稳定性。 三、长距离顶管基础施工方法 3.1长距离顶管设计方法 长距离顶管设计阶段,主要设计模块为施工单位选择、设备配置、施工风险预控等。 首先,在长距离施工施工单位选择模块,长距离顶管建设方可在设计前期,全面收集国内外相关行业顶管工程实例,分析我国现有施工企业工程经验。结合区域地质勘察方案,汇总不同地层顶工艺技术适应能力。优先选择实力较强的干线岩石顶管施工单位,或者擅长土顶管施工的单位。如中交二航局、天津华水公司等[2]。 其次,设备是长距离顶管施工过程顺利开展的前提。因此,相关建设方可依据施工质量要求,评估相关施工单位内部设备性能。依据XX长距离顶管施工工程地质条件,可选择泥水平衡顶管机作为主要施工设备。常用的泥水平衡顶管机主要为NSD系列、NPD系列、国产DBNP系列等。在泥水平衡顶管机确定之后,依据具体地质条件及顶进水压,需选择合理的刀具布置形式及开口率。应用频率较高的顶管机刀盘主要为挡板式刀盘、岩层切削刀盘、车轮式刀盘等。其中挡板式刀盘切削刀盘前部大多处于闭合状态,对岩土层具有一定筛分作用。适用于粒径较大的石块切削;岩层切削刀盘外部为圆锥性适用于粒径较大的岩层切削;车轮式刀盘前部切削断面多处于敞开状态,适用于土层压力稳定性较高,或者泥水平衡顶管设备。 铲刮式切削、刀盘旋转式切削为刀盘破损主要形式。在实际刀盘切削方式选择过程中,相关人员可综合分析地层土层、强度等因素,选择合理的切削方式。需要注意的是,若长距离顶管顶进地质复杂程度较高,为避免刀盘、刀具磨损对顶管顶进效率影响,需每间隔50-70m,更换一次刀具。 最后,从理论层面进行分析,长距离顶管施工方法具有普适性。但是在实际长距离顶管施工阶段,由于中标价格、工期、地质勘察、设备性能、施工经验等多种因素的影响,在施工设计阶段并不能涵盖全部风险因素。因此,在长距离顶管施工设计阶段,相关人员可预先设置风险识别机制,全面分析长距离顶管施工期间风险因素。并制定具体风险防控措施,以降低不稳定风险因素对长距离顶管施工作业顺

相关文档
相关文档 最新文档