文档库 最新最全的文档下载
当前位置:文档库 › 变频器工作原理通俗解释

变频器工作原理通俗解释

变频器工作原理通俗解释
变频器工作原理通俗解释

变频器工作原理通俗解释

变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

[注:再次整流(直流变交流)--->更贴切的叫法是逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议!

1. 电机的旋转速度为什么能够自由地改变?

*1: r/min

电机旋转速度单位:每分钟旋转次数,也可表示为rpm.

例如:2极电机50Hz 3000 [r/min]

4极电机50Hz 1500 [r/min]

$电机的旋转速度同频率成比例

本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。

另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。

因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。

n = 60f/p

n: 同步速度

f: 电源频率

p: 电机极对数

$ 改变频率和电压是最优的电机控制方法

如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。

输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。

例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V

2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样?

*1: 工频电源

由电网提供的动力电源(商用电源)

*2: 起动电流

当电机开始运转时,变频器的输出电流

------变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动------

电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。

通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。

通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。

3. -----当变频器调速到大于50Hz频率时,电机的输出转矩将降低-----

通常的电机是按50Hz电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe)

变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。

当电机以大于50Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。

举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。

因此在额定频率之上的调速称为恒功率调速. (P=Ue*Ie)

4. 变频器50Hz以上的应用情况

大家知道, 对一个特定的电机来说, 其额定电压和额定电流是不变的.

如变频器和电机额定值都是: 15kW/380V/30A, 电机可以工作在50Hz以上

当转速为50Hz时, 变频器的输出电压为380V, 电流为30A. 这时如果增大输出频率到60Hz, 变频器的最大输出电压电流还只能为380V/30A. 很显然输出功率不变. 所以我们称之为恒功率调速.

这时的转矩情况怎样呢?

因为P=wT (w:角速度, T:转矩). 因为P不变, w增加了, 所以转矩会相应减小.

我们还可以再换一个角度来看:

电机的定子电压U = E + I*R (I为电流, R为电子电阻, E为感应电势)

可以看出, U,I不变时, E也不变.

而E = k*f*X, (k:常数, f: 频率, X:磁通), 所以当f由50-->60Hz时, X会相应减小

对于电机来说, T=K*I*X, (K:常数, I:电流, X:磁通), 因此转矩T会跟着磁通X减小而减小.

同时, 小于50Hz时, 由于I*R很小, 所以U/f=E/f不变时, 磁通(X)为常数. 转矩T和电流成正比. 这也就是为什么通常用变频器的过流能力来描述其过载(转矩)能力. 并称为恒转矩调速(额定电流不变-->最大转矩不变)

结论: 当变频器输出频率从50Hz以上增加时, 电机的输出转矩会减小.

5. 其他和输出转矩有关的因素

发热和散热能力决定变频器的输出电流能力,从而影响变频器的输出转矩能力。

载波频率: 一般变频器所标的额定电流都是以最高载波频率, 最高环境温度下能保证持续输出的数值. 降低载波频率, 电机的电流不会受到影响。但元器件的发热会减小。

环境温度:就象不会因为检测到周围温度比较低时就增大变频器保护电流值.

海拔高度: 海拔高度增加, 对散热和绝缘性能都有影响.一般1000m以下可以不考虑. 以上每1000米降容5%就可以了.

6. 矢量控制是怎样改善电机的输出转矩能力的?

*1: 转矩提升

此功能增加变频器的输出电压(主要是低频时),以补偿定子电阻上电压降引起的输出转矩损失,从而改善电机的输出转矩。

$ 改善电机低速输出转矩不足的技术

使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。

对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)。

转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。

"矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。

"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。

变频器基础原理知识

1.变频器基础

1: VVVF 是Variable Voltage and Variable Frequency 的缩写,意为改变电压和改变频率,也就是人们所说的变压变频。

2: CVCF 是Constant Voltage and Constant Frequency 的缩写,意为恒电压、恒频率,也就是人们所说的恒压恒频。

我们使用的电源分为交流电源和直流电源,一般的直流电源大多是由交流电源通过变压器变压,整流滤波后得到的。交流电源在人们使用电源中占总使用电源的95%左右。

无论是用于家庭还是用于工厂,单相交流电源和三相交流电源,其电压和频率均按各国的规定有一定的标准,如我国大陆规定,直接用户单相交流电为220V,三相交流电线电压为380V,频率为50Hz,其它国家的电源电压和频率可能于我国的电压和频率不同,如有单相100V/60Hz,三相200V/60Hz等等,标准的电压和频率的交流供电电源叫工频交流电。

通常,把电压和频率固定不变的工频交流电变换为电压或频率可变的交流电的装置称作“变频器”。

为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC),这个过程叫整流。

把直流电(DC)变换为交流电(AC)的装置,其科学术语为“inverter”(逆变器)。

一般逆变器是把直流电源逆变为一定的固定频率和一定电压的逆变电源。对于逆变为频率可调、电压可调的逆变器我们称为变频器。

变频器输出的波形是模拟正弦波,主要是用在三相异步电动机调速用,又叫变频调速器。

对于主要用在仪器仪表的检测设备中的波形要求较高的可变频率逆变器,要对波形进行整理,可以输出标准的正弦波,叫变频电源。一般变频电源是变频器价格的15--20倍。

由于变频器设备中产生变化的电压或频率的主要装置叫“inverter”,故该产品本身就被命名为“inverter”,即:变频器。

变频器也可用于家电产品。使用变频器的家电产品中,不仅有电机(例如空调等),还有荧光灯等产品。

用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。

汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。

变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。

2. 电机的旋转速度为什么能够自由地改变?

n = 60f/p(1-s) n: 电机的转速f: 电源频率p: 电机磁极对数s:电机的转差率

电机的转速= 60(秒)*频率(Hz)/电机的磁极对数- 电机的转差率

电机旋转速度单位:每分钟旋转次数,rpm/min也可表示为rpm

电机的旋转速度同频率成比例同步电机的转差矩为0,同步电机的转速= 60(秒)*频率(Hz)/电机的磁极对数

异步的转速比同步电机的转速低。

例如:4极三相步电机60Hz时低于1,800 [r/min] 4极三相异步电机50Hz时低于1,500 [r/min]

本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。

感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极对数和频率。

由电机的工作原理决定电机的磁极对数是固定不变的。由于电机的磁极对数1个磁极对数等于2极,电机的极数不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适和改变该值来调整电机的速度。

另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。

因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。

改变频率和电压是最优的电机控制方法

如果仅改变频率,电机将被烧坏。特别是当频率降低时,该问题就非常突出。为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压。

例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从400V改变到约200V。

如果要正确的使用变频器, 必须认真地考虑散热的问题。

变频器的故障率随温度升高而成指数的上升。使用寿命随温度升高而成指数的下降。环境温度升高10度,变频器使用寿命减半。因此,我们要重视散热问题啊!

在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响

通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少. 可以用以下公式估算:

发热量的近似值=变频器容量(KW)×55 [W] 在这里, 如果变频器容量是以恒转矩负载为准的(过流能力150% * 60s) 如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。电抗器安装在变频器侧面或测上方比较好。

这时可以用估算: 变频器容量(KW)×60 [W] 因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 注意:如果有制动电阻的话,因为制动电阻的散热量很大,因此最好安装位置最好和变频器隔离开,如装在柜子上面或旁边等。

那么, 怎样采能降低控制柜内的发热量呢?

当变频器安装在控制机柜中时,要考虑变频器发热值的问题。

根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。

如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。

还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。

变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的!

关于冷却风扇

一般功率稍微大一点的变频器,都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。注意控制柜和变频器上的风扇都是要的,不能谁替代谁。其他关于散热的问题

1、在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,1000m每-5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大,所以也要看具体应用。比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。

2、开关频率:变频器的发热主要来自于IGBT,IGBT的发热有集中在开和关的瞬间。因此开关频率高时自然变频器的发热量就变大了。有的厂家宣称降低开关频率可以扩容,就是这个道理。

矢量控制是怎样使电机具有大的转矩的?

1: 转矩提升

此功能增加变频器的输出电压,以使电机的输出转矩和电压的平方成正比的关系增加,从而改善电机的输出转矩。改善电机低速输出转矩不足的技术

使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。

对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做“转矩提升”。

转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。

“矢量控制”把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。

变频器制动的情况

1: 制动的概念

指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速。

负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。

机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。

对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程. 由制动产生的功率将返回到变频器侧。这些功率可以用电阻发热消耗。

在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动。

这种操作方法被称作“再生制动”,而该方法可应用于变频器制动。

在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做“功率返回再生方法”。在实际中,这种应用需要“能量回馈单元”选件。

2:怎样提高制动能力?

为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。

为了改善制动能力,不能期望靠增加变频器的容量来解决问题。请选用“制动电阻”、“制动单元”或“功率再生变换器”等选件来改善变频器的制动容量。

3. 当电机的旋转速度改变时,其输出转矩会怎样?

变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动时的起动转矩和最大转矩。

我们经常听到下面的说法:“电机在工频电源供电时,电机的起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些”。如果用大的电压和频率起动电机,例如使用工频电网直接供电,就会产生一个大的起动冲击(大的起动电流)。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机产生的转矩要小于工频电网供电的转矩值。所以变频器驱动的电机起动电流要小些。

通常,电机产生的转矩要随频率的减小(速度降低)而减些减小的实际数据在有的变频器手册中会给出说明。

通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。

当变频器调速到大于额定频率20%时,电机的输出转矩将降低

通常的电机是按照额定频率电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te, P<=Pe) 变频器输出频率大于额定频率时(如我国的电机大于50Hz),电机产生的转矩要以和频率成反比的线性关系下降。

当电机以大于额定频率20%速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。

举例,额定频率为50Hz的电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。因此在额定频率之上的调速称为恒功率调速.

变频器工作原理图解

变频器工作原理图解 1 变频器的工作原理 变频器分为 1 交---交型输入是交流,输出也是交流 将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出 将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电 又称为间接变频器。 多数情况都是交直交型的变频器。 2 变频器的组成 由主电路和控制电路组成 主电路由整流器中间直流环节逆变器组成 先看主电路原理图

三相工频交流电经过VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通 短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。 耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。 继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。 接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道, 由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压 高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。 一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。 直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。 例如:某一时刻,V1 V2 V6 受基极控制导通,电流经U相流入电机绕组,经V W 相流入负极。下一时刻同理,只要不断的切换,就把直流电变成了交流电,供电机运转。 为了保护IGBT,在每一个IGBT上都并联了一个续流二极管,还有一些阻容吸收回路。主要的功能是保护IGBT,有了续流二极管的回路,反向电压会从该回路加到直流母线 上,通过放电电阻释放掉。 变频器主电路引出端子

变频器的工作原理及作用之欧阳学文创作

变频器的工作原理 欧阳学文 1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。 变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、

各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。

《变频器原理及应用》模拟试卷1答案

《变频器原理及应用》模拟试卷1答案 一、填空题 1.面板控制,外接模拟量控制,电位器控制,通讯控制。 2.交-交型,交-直-交型,通用型,专用型。 3.段速控制,加减速 4.电力电子器件,工频交流电,频率和电压 5.主电路,控制电路 6. V/f=常数 7.整流电路,逆变电路 8.整流电路、逆变电路 9.恒转矩调速,恒功率调速 10.比例,积分,微分 二、单选题 1. A 2. B 3. C 4. C 5. A 6. B 7. C 8. B 9. B 10.D 11. B 三、多选题 1.A、B、C 2. A、B、C

3.A、B 4.A、B、C、D 5. A、B、C、D 6. A、B、C 四.简答题 1.说明IGBT的结构组成特点。 答:IGBT是一种新型复合器件。输入部分为MOSFET,输出部分为GTR,它综合了MOSFET 和GTR的优点,具有输入阻抗高、工作速度快、通态电压低、阻断电压高、承受电流大的优点。 2.交-直-交变频器的主电路包括哪些组成部分?说明各部分的作用。 答:交-直-交变频器主电路包括三个组成部分:整流电路、中间电路和逆变电路。整流电路的功能是将交流电转换为直流电;中间电路具有滤波电路或制动作用;逆变电路可将直流电转换为交流电。 3. 变频器功能参数的预置过程大致有哪几个步骤? 答:变频器功能参数的预置过程大致有哪几个步骤。 1) 查功能码表,找出需要预置参数的功能码。 2) 在参数设定模式(编程模式)下,读出该功能码中原有的数据。 3) 修改数据,送入新数据。 4.异步电动机变频调速时,在额定频率以下调节频率,必须同时调节加在定子绕组上 的电压,即恒V/f控制,为什么? 答:在额定频率以下调节频率,同时也改变电压,通常是使V/f为常数,是为了使电动机磁通保持一定,在较宽的调速范围内,电动机的转矩、效率、功率因数不下降。 5. 矢量控制有什么优越性? 答:矢量控制系统的优点:1)动态的高速响应;2)低频转矩增大;3)控制灵活。 6. 变频器主电路的电源输入侧连接断路器有什么作用? 答:连接断路器的作用:1)接通和分断负载电路;2)隔离作用;3)保护作用。 7.变频器安装时周围的空间最少为多少? 答:变频器在运行中会发热,为了保证散热良好,必须将变频器安装在垂直方向,切勿倒装、倾斜安装或水平安装。其上下左右与相邻的物品和挡板(墙)必须保持足够的空间,左右5cm以上,上下15cm以上。 8.变频器运行为什么会对电网产生干扰?如何抑制?

变频器的工作原理

变频器工作原理 主电路是给异步电动机提供调压调频电源的电力变换部分,变频器的主电路大体上可分为两类:电压型是将电压源的直流变换为交流的变频器,直流回路的滤波是电容。电流型是将电流源的直流变换为交流的变频器,其直流回路滤波是电感。它由三部分构成,将工频电源变换为直流功率的“整流器”,吸收在变流器和逆变器产生的电压脉动的“平波回路”,以及将直流功率变换为交流功率的“逆变器”。整流器 最近大量使用的是二极管的变流器,它把工频电源变换为直流电源。也可用两组晶体管变流器构成可逆变流器,由于其功率方向可逆,可以进行再生运转。平波回路 在整流器整流后的直流电压中,含有电源6倍频率的脉动电压,此外逆变器产生的脉动电流也使直流电压变动。为了抑制电压波动,采用电感和电容吸收脉动电压(电流)。装置容量小时,如果电源和主电路构成器件有余量,可以省去电感采用简单的平波回路。 逆变器 同整流器相反,逆变器是将直流功率变换为所要求频率的交流功率,以所确定的时间使6个开关器件导通、关断就可以得到3相交流输出。以电压型pwm 逆变器为例示出开关时间和电压波形。 控制电路 是给异步电动机供电(电压、频率可调)的主电路提供控制信号的回路,它有频率、电压的“运算电路”,主电路的“电压、电流检测电路”,电动机的“速度检测电路”,将运算电路的控制信号进行放大的“驱动电路”,以及逆变器和电动机的“保护电路”组成。 (1)运算电路:将外部的速度、转矩等指令同检测电路的电流、电压信号进行比较运算,决定逆变器的输出电压、频率。 (2)电压、电流检测电路:与主回路电位隔离检测电压、电流等。 (3)驱动电路:驱动主电路器件的电路。它与控制电路隔离使主电路器件导通、关断。(4)速度检测电路:以装在异步电动机轴机上的速度检测器(tg、plg 等)的信号为速度信号,送入运算回路,根据指令和运算可使电动机按指令速度运转。 (5)保护电路:检测主电路的电压、电流等,当发生过载或过电压等异常时,为了防止逆变器和异步电动机损坏,使逆变器停止工作或抑制电压、电流值。

变频器结构及工作原理

变频器结构及工作原理 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备。如图1所示,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆变成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。 1. 整流器 它与单相或三相交流电源相连接,产生脉动的直流电压。 2. 中间电路,有以下三种作用: a. 使脉动的直流电压变得稳定或平滑,供逆变器使用。 b. 通过开关电源为各个控制线路供电。 c. 可以配置滤波或制动装置以提高变频器性能。 3. 逆变器 将固定的直流电压变换成可变电压和频率的交流电压。 4. 控制电路 它将信号传送给整流器、中间电路和逆变器,同时它也接收来自这些部分的信号。其主要组成部分是:输出驱动电路、操作控制电路。主要功能是: a. 利用信号来开关逆变器的半导体器件。 b. 提供操作变频器的各种控制信号。 c. 监视变频器的工作状态,提供保护功能。

现场对变频器以及周边控制装置的进行操作的人员,如果对一些常见的故障情况能作出判断和处理,就能大大提高工作效率,并且避免一些不必要的损失。为此,我们总结了一些变频器的基本故障,供大家作参考。以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。 以下检测过程无需打开变频器机壳,仅仅在外部对一些常见现象进行检测和判断。

变频器的远程控制及调速原理.

变频器远程控制及调速原理 -----唐玉龙 一、变频器的远程控制 什么是变频器远程控制器在许多变频器的应用现场,电机与操作室距离较远。如将变频器安装在现场,不便于工人的观察与操作;如安装在操作室内,则动力线拉的距离太远,成本高,且对变频器本身及系统中其他设备造成干扰。针对上述应用情况,我们开发研制了变频器远程控制器产品。变频器远程控制器是一种实现变频器远程操作的智能仪表,通过RS485网络远程控制变频器的启动、停止、加速、减速、正反转,并实时显示变频器的工作频率、转速等运行状态信息。单机通讯距离可达1200米(9600bps),有效减少变频器的干扰。这样就可将变频器安装在电动机附近,通过屏蔽通讯线接到远端操作室内仪表盘上的变频器远程控制器上,在操作室内就能观察和操作变频器的运行状态。另外,变频器远程控制器还可接外置操作按钮,有手动/自动切换及监听等功能,可接入计算机控制系统,便于工程使用。二、变频器远程控制器的种类和功能我们研发的变频器远程控制器根据变频器的不同可分为标准型和加强型;根据通讯方式的不同可分为有线通讯、无线通讯;根据不同的通讯协议也分别有相应的产品。如果没有通讯接口或无法知道其通讯协议的变频器,可在变频器一端接上我们的远端转换器,将模拟信号和开关信号通过485网络传送到远程控制器上。这样对没有通讯口或无法知道通讯协议的变频器也都能使用,真正实现变频器万能远程控制器的功能。 二、交流异步电动机变频调速原理 变频器是利用电力半导体器件的通断作用把电压、频率固定不变的交流电变成电压、频率都可调的交流电源。 现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。

变频器工作原理

1 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 2变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 2.1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性终究没有直流电动机硬,动态转矩能力和静态调速性能都还不尽如人意,且系统性能不高、控制曲线会随负载的变化而变化,转矩响应慢、电机转矩利用率不高,低速时因定子电阻和逆变器死区效应的存在而性能下降,稳定性变差等。因此人们又研究出矢量控制变频调速。 2.2电压空间矢量(SVPWM)控制方式 它是以三相波形整体生成效果为前提,以逼近电机气隙的理想圆形旋转磁场轨迹为目的,一次生成三相调制波形,以内切多边形逼近圆的方式进行控制的。经实践使用后又有所改进,即引入频率补偿,能消除速度控制的误差;通过反馈估算磁链幅值,消除低速时定子电阻的影响;将输出电压、电流闭环,以提高动态的精度和稳定度。但控制电路环节较多,且没有引入转矩的调节,所以系统性能没有得到根本改善。 2.3矢量控制(VC)方式 矢量控制变频调速的做法是将异步电动机在三相坐标系下的定子电流Ia、Ib、Ic、通过三相-二相变换,等效成两相静止坐标系下的交流电流Ia1Ib1,再通过按转子磁场定向旋转变换,等效成同步旋转坐标系下的直流电流Im1、It1(Im1相当于直流电动机的励磁电流;It1相当于与转矩成正比的电枢电流),然后模仿直流电动机的控制方法,求得直流电动机的控制量,经过相应的坐标反变换,实现对异步电动机的控制。其实质是将交流电动机等效为直流电动机,分别对速度,磁场两个分量进行独立控制。通过控制转子磁链,然后分解定子电流而获得转矩和磁场两个分量,经坐标变换,实现正交或解耦控制。矢量控制方法的提出具有划时代的意义。然而在实际应用中,由于转子磁链难以准确观测,系统特性受电动机参数的影响较大,且在等效直流电动机控制过程中所用矢量旋转变换较复杂,使得实际的控制效果难以达到理想分析的结果。

变频器工作原理_0

变频器工作原理 要想做好变频器维修,当然了解变频器基础知识是相当重要的,也是迫不及待的。下面我们就来分享一下变频器维修基础知识。大家看完后,如果有不正确地方,望您指正,如果觉得还行支持一下,给我一些鼓动!变频器维修入门--电路分析图对于变频器修理,仅了解以上基本电路还远远不够的,还须深刻了解以下主要电路。主回路主要由整流电路、限流电路、滤波电路、制动电路、逆变电路和检测取样电路部分组成 通用变频器的整流电路是由三相桥式整流桥组成。它的功能是将工频电源进行整流,经中间直流环节平波后为逆变电路和控制电路提供所需的直流电源。三相交流电源一般需经过吸收电容和压敏电阻网络引入整流桥的输入端。网络的作用,是吸收交流电网的高频谐波信号和浪涌过电压,从而避免由此而损坏变频器。当电源电压为三相380V时,整流器件的最大反向电压一般为1200;-;1600V,最大整流电流为变频器额定电流的两倍。 滤波电路 逆变器的负载属感性负载的异步电动机,无论异步电动机处于电动或发电状态,在直流滤波电路和异步电动机之间,总会有无功功率的交换,这种无功能量要靠直流中间电路的储能元件来缓冲。同时,三相整流桥输出的电压和电流属直流脉冲电压和电流。为了减小直流电压和电流的波动,直流滤波电路起到对整流电路的输出进行滤波的作用。 通用变频器直流滤波电路的大容量铝电解电容,通常是由若干个电容器串联和并联构成电容器组,以得到所需的耐压值和容量。另外,因为电解电容器容量有较大的离散性,这将使它们随的电压不相等。因此,电容器要各并联一个阻值等相的匀压电阻,消除离散性的影响,因而电容的寿命则会严重制约变频器的寿命。 逆变电路 逆变电路的作用是在控制电路的作用下,将直流电路输出的直流电源转换成频率和电压都可以任意调节的交流电源。逆变电路的输出就是变频器的输出,所以逆变电路是变频器的核心电路之一,起着非常重要的作用。 常见的逆变电路结构形式是利用六个功率开关器件(GTR、IGBT、GTO等)组成的

变频器定义及工作原理概述

变频器定义及工作原理概述 变频器是把工频电源(50Hz或60Hz)变换成各种频率的交流电源,以实现电机的变速运行的设备,其中控制电路完成对主电路的控制,整流电路将交流电变换成直流电,直流中间电路对整流电路的输出进行平滑滤波,逆变电路将直流电再逆成交流电。对于如矢量控制变频器这种需要大量运算的变频器来说,有时还需要一个进行转矩计算的CPU以及一些相应的电路。变频调速是通过改变电机定子绕组供电的频率来达到调速的目的。 变频技术是应交流电机无级调速的需要而诞生的。20世纪60年代以后,电力电子器件经历了SCR(晶闸管)、GTO(门极可关断晶闸管)、BJT(双极型功率晶体管)、MOSFET(金属氧化物场效应管)、SIT(静电感应晶体管)、SITH(静电感应晶闸管)、MGT(MOS控制晶体管)、MCT(MOS 控制晶闸管)、IGBT(绝缘栅双极型晶体管)、HVIGBT(耐高压绝缘栅双极型晶闸管)的发展过程,器件的更新促进了电力电子变换技术的不断发展。20世纪70年代开始,脉宽调制变压变频(PWM-VVVF)调速研究引起了人们的高度重视。20世纪80年代,作为变频技术核心的PWM模式优化问题吸引着人们的浓厚兴趣,并得出诸多优化模式,其中以鞍形波PWM模式效果最佳。20世纪80年代后半期开始,美、日、德、英等发达国家的VVVF变频器已投入市场并获得了广泛应用。 变频器的分类方法有多种,按照主电路工作方式分类,可以分为电压型变频器和电流型变频器;按照开关方式分类,可以分为PAM控制变频器、PWM控制变频器和高载频PWM控制变频器;按照工作原理分类,可以分为V/f控制变频器、转差频率控制变频器和矢量控制变频器等;按照用途分类,可以分为通用变频器、高性能专用变频器、高频变频器、单相变频器和三相变频器等。 VVVF:改变电压、改变频率 CVCF:恒电压、恒频率。各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均为400V/50Hz或200V/60Hz(50Hz),等等。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把电源的交流电变换为直流电(DC)。 用于电机控制的变频器,既可以改变电压,又可以改变频率。 变频器的工作原理 我们知道,交流电动机的同步转速表达式位: n=60 f(1-s)/p (1) 式中 n———异步电动机的转速; f———异步电动机的频率; s———电动机转差率; p———电动机极对数。 由式(1)可知,转速n与频率f成正比,只要改变频率f即可改变电动机的转速,当频率f在0~50Hz的范围内变化时,电动机转速调节范围非常宽。变频器就是通过改变电动机电源频率实现速度调节的,是一种理想的高效率、高性能的调速手段。 变频器控制方式 低压通用变频输出电压为380~650V,输出功率为0.75~400kW,工作频率为0~400Hz,它的主电路都采用交—直—交电路。其控制方式经历了以下四代。 1U/f=C的正弦脉宽调制(SPWM)控制方式 其特点是控制电路结构简单、成本较低,机械特性硬度也较好,能够满足一般传动的平滑调速要求,已在产业的各个领域得到广泛应用。但是,这种控制方式在低频时,由于输出电压较低,转矩受定子电阻压降的影响比较显著,使输出最大转矩减小。另外,其机械特性

变频器IGBT模块的工作原理及特性

变频器IGBT模块的工作原理 变频器IGBT 模块的开关作用是通过加正向栅极电压形成沟道,给PNP晶体管提供基极电流,使IGBT导通。反之,加反向门极电压消除沟道,流过反向基极电流,使IGBT关断。IGBT的驱动方法和MOSFET基本相同,只需控制输入极N一沟道MOSFET,所以具有高输入阻抗特性。 当MOSFET的沟道形成后,从P+基极注入到N一层的空穴(少子),对N 一层进行电导调制,减小N一层的电阻,使IGBT在高电压时,也具有低的通态电压。 变频器IGBT模块的特性 静态特性IGBT的静态特性主要有伏安特性、转移特性和开关特性。 IGBT 的伏安特性是指以栅源电压Ugs为参变量时,漏极电流与栅极电压之间的关系曲线。输出漏极电流比受栅源电压Ugs的控制,Ugs越高,Id越大。它与GTR的输出特性相似.也可分为饱和区1、放大区2和击穿特性3部分。在截止状态下的IGBT,正向电压由J2结承担,反向电压由J1结承担。如果无N+ 缓冲区,则正反向阻断电压可以做到同样水平,加入N+缓冲区后,反向关断电压只能达到几十伏水平,因此限制了IGBT的某些应用范围。 IGBT 模块的转移特性是指输出漏极电流Id与栅源电压Ugs之间的关系曲线。它与MOSFET的转移特性相同,当栅源电压小于开启电压Ugs(th)时,IGBT处于关断状态。在IGBT导通后的大部分漏极电流范围内,Id与Ugs呈线性关系。最高栅源电压受最大漏极电流限制,其最佳值一般取为15V 左右。 IGBT 模块的开关特性是指漏极电流与漏源电压之间的关系。IGBT处于导通态时,由于它的PNP晶体管为宽基区晶体管,所以其B值极低。尽管等效电路为达林顿结构,但流过MOSFET的电流成为IGBT总电流的主要部分。此时,通态电压Uds(on)可用下式表示 Uds(on)=Uj1+Udr+IdRoh(2-14) 式中Uj1——JI结的正向电压,其值为0.7~IV; Udr——扩展电阻Rdr上的压降; Roh——沟道电阻。 通态电流Ids可用下式表示:

变频器工作原理简介35页

变频器工作原理简介 (1) 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 1. 电机的旋转速度为什么能够自由地改变?. 结论:电机的旋转速度同频率成比例本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此 类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的 极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为 2 的倍数,例如极数为 2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。n = 60f/p n:同步速度 f:电源频率 p:电机极对数 结论:改变频率和电压是最优的电机控制方法

如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁), 导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从 50Hz 改变到 25Hz,这时变频器的输出电压就需要从 400V 改变到约 200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? .2 1:工频电源:由电网提供的动力电源(商用电源) 2:起动电流:当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动 电机在工频电源供电时起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些。工频直接起动会产生一个大的起动起动电流。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机起动电流和冲击要小些。 通常,电机产生的转矩要随频率的减小(速度降低)而减小。减小的实际数据在有的变频器手册中会给出说明。

变频器工作原理解

变频器工作原理图解 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 1 变频器的工作原理变频器分为 1 交---交型输入是交流,输出也是交流将工频交流电直接转换成频率、电压均可控制的交流,又称直接式变频器 2 交—直---交型输入是交流,变成直流再变成交流输出将工频交流电通过整流变成直流电,然后再把直流电变成频率、电压、均可控的交流电又称为间接变频器。多数情况都是交直交型的变频器。2 变频器的组成由主电路和控制电路组成主电路由整流器中间直流环节逆变器组成先看主电路原理图三相工频交流电经过

VD1 ~ VD6 整流后,正极送入到缓冲电阻RL中,RL的作用是防止电流忽然变大。经过一段时间电流趋于稳定后,晶闸管或继电器的触点会导通短路掉缓冲电阻RL ,这时的直流电压加在了滤波电容CF1、CF2 上,这两个电容可以把脉动的直流电波形变得平滑一些。由于一个电容的耐压有限,所以把两个电容串起来用。耐压就提高了一倍。又因为两个电容的容量不一样的话,分压会不同,所以给两个电容分别并联了一个均压电阻R1、R2 ,这样,CF1 和CF2 上的电压就一样了。继续往下看,HL 是主电路的电源指示灯,串联了一个限流电阻接在了正负电压之间,这样三相电源一加进来,HL就会发光,指示电源送入。接着,直流电压加在了大功率晶体管VB的集电极与发射极之间,VB的导通由控制电路控制,VB上还串联了变频器的制动电阻RB,组成了变频器制动回路。我们知道,由于电极的绕组是感性负载,在启动和停止的瞬间都会产生一个较大的反向电动势,这个反向电压的能量会通过续流二极管VD7~VD12使直流母线上的电压升高,这个电压高到一定程度会击穿逆变管V1~V6 和整流管VD1~VD6。当有反向电压产生时,控制回路控制VB导通,电压就会通过VB在电阻RB释放掉。当电机较大时,还可并联外接电阻。一般情况下“+”端和P1端是由一个短路片短接上的,如果断开,这里可以接外加的支流电抗器,直流电抗器的作用是改善电路的功率因数。直流母线电压加到V1~V6 六个逆变管上,这六个大功率晶体管叫IGBT ,基极由控制电路控制。控制电路控制某三个管子的导通给电机绕组内提供电流,产生磁场使电机运转。例如:某一时刻,V1 V2 V6 受基极控制

变频器的工作原理及作用

变频器的工作原理 1、基本概念 (1)VVVF 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。 (2)CVCF 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。 通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC)。变频器同时改变输出频率与电压,也就是改变了电机运行曲线上的n0,使电机运行曲线平行下移。因此变频器可以使电机以较小的启动电流,获得较大的启动转矩,即变频器可以启动重载负荷。 变频器具有调压、调频、稳压、调速等基本功能,应用了现代的科学技术,价格昂贵但性能良好,内部结构复杂但使用简单,所以不只是用于启动电动机,而是广泛的应用到各个领域,各种各样的功率、各种各样的外形、各种各样的体积、各种各样的用途等都有。随着技术的发展,成本的降低,变频器一定还会得到更广泛的应用。 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。 变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。 2. 电机的旋转速度为什么能够自由地改变? (1) r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机60Hz 1,800 [r/min],4极电机50Hz 1,500 [r/min],电机的旋转速度同频率成比例。 本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p,n: 同步速度,f: 电源频率,p: 电机极数,改变频率和电压是最优的电机控制方法。如果仅改变频率,电机将被烧坏。特别是当频率降低时,

《变频器原理及应用》模拟试卷1

《变频器原理及应用》模拟试卷1 一、填空题(每空1分,共25分) 1.频率控制是变频器的基本控制功能,控制变频器输出频率的方法有、、 和。 2.变频器的分类,按变换环节可分为和,按用途可分为和 。 3.有些设备需要转速分段运行,而且每段转速的上升、下降时间也不同,为了适应这种 控制要求,变频器具有功能和多种时间设置功能。 4. 变频器是通过的通断作用将变换为均可调的一种 电能控制装置。 5. 变频器的组成可分为和。 6. 变频调速过程中,为了保证电动机的磁通恒定,必须保证。 7. 变频器的制动单元一般连接在和之间。 8. 变频器的主电路由、滤波与制动电路和所组成。 9.变频调速时,基频以下调速属于,基频以上属于。 10.变频器的PID功能中,P指,I指,D指。 二、单选题(每题1分,共11分) 1.为了提高电动机的转速控制精度,变频器具有()功能。 A 转矩补偿 B 转差补偿 C 频率增益 D 段速控制 2. 风机类负载属于()负载。 A 恒功率 B 二次方律 C 恒转矩 D 直线律 3.为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频 器的输出电压就必须从400V改变到约()V。 A 400 B 100 C 200 D 250 4.电动机与变频器之间距离远时,电机运行不正常,需采取()措施解决。 A 增加传输导线长度B减少传输导线长度C增加传输导线截面积D减少传输 导线截面积 5.变频器调速系统的调试,大体应遵循的原则是()。

A 先空载、继轻载、后重载 B 先重载、继轻载、后空载 C 先重载、继空载、后 轻载 D 先轻载、继重载、后空载 6.采用一台变频器控制一台电动机进行变频调速,可以不用热继电器,因为变频器的热 保护功能可以起到()保护作用。 A 过热 B 过载 C 过压 D 欠压 7.下面那种原因可能引起欠压跳闸()。 A 电源电压过高 B 雷电干扰 C 同一电网有大电机起动 D 没有配置制动单元 8.变频器在工频下运行,一般采用()进行过载保护。 A 保险丝 B 热继电器 C 交流接触器 D 电压继电器 9. 变频器安装要求() A 水平 B 竖直 C 与水平方向成锐角 D 都可以 10.高压变频器是指工作电压在()KV以上变频器。 A 10 B 5 C 6 D 1 11. 变频器主电路的交流电输出端一般用()表示。 A R、S、T B U、V、W C A、B、C D X、Y、Z 二、多选题(每题2分,共12分) 1.电动机的发热主要与()有关。 A 电机的有效转矩 B 电机的温升 C 负载的工况 D 电机的体积 2. 中央空调采用变频控制的优点有()。 A 节能 B 噪声小 C 起动电流小 D 消除了工频影响 3.变频器按直流环节的储能方式分类为()。 A 电压型变频器 B 电流型变频器 C 交-直-交变频器 D 交-交变频器 4.变频器的控制方式分为()类 A U/f控制 B 矢量控制 C 直接转矩 D 转差频率控制 5.变频器具有()优点,所以应用广泛。 A 节能 B 便于自动控制 C 价格低廉 D 操作方便 6. 高(中)压变频调速系统的基本形式有()种。 A 高-高型 B 高-中型 C 高-低-高型 D 高-低型

变频器工作原理通俗解释

变频器工作原理通俗解释 变频器主要由整流(交流变直流)、滤波、再次整流(直流变交流)、制动单元、驱动单元、检测单元微处理单元等组成的。 [注:再次整流(直流变交流)--->更贴切的叫法是逆变!在这里感谢蔡工给我们编辑们提的意见!也欢迎大家多给我们编辑组提出更多宝贵的意见和建议! 1. 电机的旋转速度为什么能够自由地改变? *1: r/min 电机旋转速度单位:每分钟旋转次数,也可表示为rpm. 例如:2极电机50Hz 3000 [r/min] 4极电机50Hz 1500 [r/min] $电机的旋转速度同频率成比例 本文中所指的电机为感应式交流电机,在工业中所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地确决于电机的极数和频率。由电机的工作原理决定电机的极数是固定不变的。由于该极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以一般不适和通过改变该值来调整电机的速度。 另外,频率能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。 因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。 n = 60f/p n: 同步速度 f: 电源频率 p: 电机极对数 $ 改变频率和电压是最优的电机控制方法 如果仅改变频率而不改变电压,频率降低时会使电机出于过电压(过励磁),导致电机可能被烧坏。因此变频器在改变频率的同时必须要同时改变电压。 输出频率在额定频率以上时,电压却不可以继续增加,最高只能是等于电机的额定电压。 例如:为了使电机的旋转速度减半,把变频器的输出频率从50Hz改变到25Hz,这时变频器的输出电压就需要从400V改变到约200V 2. 当电机的旋转速度(频率)改变时,其输出转矩会怎样? *1: 工频电源 由电网提供的动力电源(商用电源) *2: 起动电流 当电机开始运转时,变频器的输出电流 ------变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动------

(完整版)变频器原理及应用试卷

变频器原理及应用试卷 一.选择题 1.下列选项中,按控制方式分类不属于变频器的是( D )。 A .U/f B .SF C .VC D .通用变频器 2.下列选项中,不属于按用途分类的是( C )。 A .通用变频器 B .专用变频器 C .VC 3.IPM 是指( B )。 A .晶闸管 B .智能功率模块 C .双极型晶体管 D .门极关断晶闸管 4.下列选项中,不是晶闸管过电压产生的主要原因的是( A )。 A .电网电压波动太大 B .关断过电压 C .操作过电压 D .浪涌电压 5.下列选项中不是常用的电力晶体管的是( D )。 A .单管 B .达林顿管 C .GRT 模块 D .IPM 6.下列选项中,不是P-MOSFET 的一般特性的是( D )。 A .转移特性 B .输出特性 C .开关特性 D .欧姆定律 7.集成门极换流晶闸管的英文缩写是( B )。 A .IGBT B .IGCT C .GTR D .GTO 8.电阻性负载的三相桥式整流电路负载电阻L R 上的平均电压O U 为( A )。 A .2.342U B .2U C .2.341U D .1U 9.三相桥式可控整流电路所带负载为电感性时,输出电压平均值d U 为为( A ) A .2.342cos U B .2U C .2.341U D .1U 10.逆变电路中续流二极管VD 的作用是( A )。 A .续流 B .逆变 C .整流 D .以上都不是 11.逆变电路的种类有电压型和( A )。 A .电流型 B .电阻型 C .电抗型 D .以上都不是 12.异步电动机按转子的结构不同分为笼型和( A )。

变频器滤波器工作原理及作用

变频器滤波器工作原理及 作用 Prepared on 21 November 2021

变频器滤波器 变频器滤波器,顾名思义,就是专门针对变频器产生谐波的特点及规律,而专门开发的一款专用型滤波器,是的一种。 概述 变频器滤波器主要是由电感、电容、电阻等组成的无源器件。它是一种低通滤波器的一种,可以让工频信 变频器输入滤波器 号无阻挡的通过,抑制高频电磁干扰(一般来讲,可抑制干扰噪声频率为50/60~1kHz)。 变频器滤波器为双向可逆器件,即能防止电网上的电磁噪声通过电源进入设备,也能防止设备本身的电磁噪声对电网的污染。 变频器滤波器是用来抑制传导干扰的有效工具。 特征 1、变频器滤波器是基于变频器在工作时,对电网及其它数字电子设备产生干扰的频谱分量电磁兼容性特点而专门设计的。 2、安装于电机和变频器及电源与变频器之间。 3、小尺寸,无需风扇,采用的是经过最恶劣环境测试过的高性能的材料和部件。 1、插入损耗 插入损耗是衡量变频器滤波器电性能的重要参数。 插入损耗是不用滤波器时从噪声源传递到负载时的噪声电压与插入滤波器时从噪声源传递到负载时的噪声电压之比。 插入损耗在输入/输出的阻抗均为50Ω的系统下测试,结果通常表示为在所关心频段内的衰减曲线(单位为分贝)。 2、泄漏电流 变频器滤波器的泄漏电流是指在250VAC/50Hz的电压/频率条件下,火线和零线与外壳间流过的电流。 泄漏电流的大小主要取决于变频器滤波器中的共模电容。 从插入损耗的角度来考虑,共模电容越大,电性能越好,此时,漏电流也越大。但从安全方面考虑,泄漏电流又不能过大,否则不符合安全标准要求。尤其是一些医疗保健设备,要求泄漏电流尽可能小。因此,要根据具体设备要求来确定共模电容的容量。 3、耐压

交-直-交变频器的工作原理

交-直-交变频器的工作原理是什么啊? 悬赏分:0 |解决时间:2008-7-7 12:57 |提问者:287365311 最佳答案 引言 宝钢2050热轧厂是1989年投产的,原设计以直流机为主。随着交流变频和交流机的大幅度使用。为了适应新时期用户的对产品产量的更高要求,我们对现场设备进行了改造。将以前的直流传动改造成交流传动,这种改造从卷取区的卷取机改造开始。先后对1#、2#、3#卷取机传动控制系统进行了交流化改造。下面以2#卷取机为例,将卷取机传动系统改造的情况作一介绍。2#卷取机传动系统采用了带公用整流器结构,如图1所示。各电机用的逆变装置分挂在整流器上,包括一台卷筒电机,两台夹送辊电机和三台助卷辊电机。其中:卷筒电机采用同步电机,夹送辊和助卷辊采用异步机,电机由西门子典型的矢量控制的交-直-交变频器系统供电,卷筒励磁由SD进行调节控制。电机带有脉冲编码器,调速性能优良,空载时速度环静态精度为0.01%,速度调节时间小于100ms,电流环调节时间小于10ms。 字串9 图1 系统结构图 2 传动系统结构 2.1 整流/回馈部分 整流单元使用的功率元件为晶闸管,进线的交流电压通过整流向连接逆变器的直流电压母线提供电动状态能量并构成多电机传动系统。整流单元由4000kVA 6kV/650V整流变压器供电,带有自耦变压器和6脉冲整流/回馈单元,产生890V 直流母线电压。卷筒、夹送辊和助卷辊电机的逆变装置就挂在这个直流母线上,没有设直流开关及断路器。曾经考虑使用直流快开作为直流母线短路保护,由于一般情况下,电机或逆变器短路保护在逆变器内部可以实现。而纯粹的直流母线短路现象几乎难以发生,如果配以快开,每年需要维护,而且维护量很大,故没有采取这种短路保护。 以上控制方式称做共用直流母线的多电机传动控制方式,它具有以下显著的特点: (1) 采用共用直流母线和共用制动单元, 可以减少整流器和制动单元的配置,结构简单合理们; (2) 共用直流母线的中间直流电压恒定, 电容并联储能容量大;

变频器滤波器工作原理及作用

变频器滤波器 变频器滤波器,顾名思义,就是专门针对变频器产生谐波的特点及规律,而专门开发的一款专用型滤波器,是LC滤波器的一种。 概述 变频器滤波器主要是由电感、电容、电阻等组成的无源器件。它是一种低通滤波器的一种,可以让工频信 变频器输入滤波器 号无阻挡的通过,抑制高频电磁干扰(一般来讲,可抑制干扰噪声频率为50/60~1kHz)。 变频器滤波器为双向可逆器件,即能防止电网上的电磁噪声通过电源进入设备,也能防止设备本身的电磁噪声对电网的污染。 变频器滤波器是用来抑制传导干扰的有效工具。 特征 1、变频器滤波器是基于变频器在工作时,对电网及其它数字电子设备产生干扰的频谱分量电磁兼容性特点而专门设计的。 2、安装于电机和变频器及电源与变频器之间。 3、小尺寸,无需风扇,采用的是经过最恶劣环境测试过的高性能的材料和部件。 参数 1、插入损耗 插入损耗是衡量变频器滤波器电性能的重要参数。 插入损耗是不用滤波器时从噪声源传递到负载时的噪声电压与插入滤波器时从噪声源传递到负载时的噪声电压之比。

插入损耗在输入/输出的阻抗均为50Ω的系统下测试,结果通常表示为在所关心频段内的衰减曲线(单位为分贝)。 2、泄漏电流 变频器滤波器的泄漏电流是指在250VAC/50Hz的电压/频率条件下,火线和零线与外壳间流过的电流。 泄漏电流的大小主要取决于变频器滤波器中的共模电容。 从插入损耗的角度来考虑,共模电容越大,电性能越好,此时,漏电流也越大。但从安全方面考虑,泄漏电流又不能过大,否则不符合安全标准要求。尤其是一些医疗保健设备,要求泄漏电流尽可能小。因此,要根据具体设备要求来确定共模电容的容量。 3、耐压 为确保变频器滤波器的质量,半成品前全部进行耐压测试。测试标准为: 3.1、火线与外壳(或零线与外壳)之间施加1750VAC高压,时间一分钟,不发生放电现象和咝咝声。 3.2、火线与零线之间施加1500VDC直流高压,时间一分钟,不发生放电现象和咝咝声。 3.3、由于对变频器滤波器做耐压测试,会对内部器件带有一定损伤,用户测试次数不能过多,时间不能过长。否则会降低滤变频器波器的寿命,甚至损坏变频器滤波器。 种类 根据变频器滤波器所适用的场合,可以分为以下几种: 1、LC滤波器 LC滤波器适用于对谐波含量要求不高的场合,好的LC滤波器,可以把畸变率控制在8~10%; 2、谐波滤波器 此种滤波器适用于对谐波要求较高的场合,一般可以把畸变率控制在2~5%; 3、正弦波滤波器 此种滤波器综合了电抗器与LC滤波器的长处,可以把变频器输出端的波形,整合成较像标准的正弦波,同时,也可以解决变频器与负载之间因远距离传输所产生的电压降等问题; 选用

相关文档
相关文档 最新文档