文档库 最新最全的文档下载
当前位置:文档库 › 第三章牛顿第二定律及应用(zhu)简单连接体问题动力学中的图象问题动力学中的传送带问题导学案14

第三章牛顿第二定律及应用(zhu)简单连接体问题动力学中的图象问题动力学中的传送带问题导学案14

第三章牛顿第二定律及应用(zhu)简单连接体问题动力学中的图象问题动力学中的传送带问题导学案14
第三章牛顿第二定律及应用(zhu)简单连接体问题动力学中的图象问题动力学中的传送带问题导学案14

学案14 牛顿第二定律及应用(三)

简单连接体问题动力学中的图象问题

动力学中的传送带问题

二、思想方法题组

4.A、B两物体叠放在一起,放在光滑水平面上,如图3甲所示,它们从静止开始受到一个变力F的作用,该力与时间关系如图乙所示,A、B始终相对静止.则( )

图3

A.在t0时刻A、B两物体间静摩擦力最大

B.在t0时刻A、B两物体的速度最大

C.在2t0时刻A、B两物体的速度最大

D.在2t0时刻A、B两物体的位移最大

图4

5.质量为m的物体放在A地的水平面上,用竖直向上的力F拉物体,物体的加速度a 与拉力F的关系如图4中直线①所示,用质量为m′的另一物体在B地做类似实验,测得a-F关系如图中直线②所示,设两地的重力加速度分别为g和g′,则( ) A.m′>m,g′=g B.m′

C.m′=m,g′>g D.m′=m,g′>g

一、整体法和隔离法的选取

1.隔离法的选取原则:若连接体内各物体的加速度不相同,且需要求物体之间的作用力,就需要把物体从系统中隔离出来,将系统的内力转化为隔离体的外力,分析物体的受力情况和运动情况,并分别应用牛顿第二定律列方程求解.隔离法是受力分析的基础,应重点掌握.

2.整体法的选取原则:若连接体内各物体具有相同的加速度(主要指大小),且不需要求物体之间的作用力,就可以把它们看成一个整体(当成一个质点)来分析整体受到的外力,应用牛顿第二定律求出加速度(或其他未知量).

3.整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”.

图5

【例1】 (2009·安徽高考)在2008年北京残奥会开幕式上,运动员手拉绳索向上攀登,最终点燃了主火炬,体现了残疾运动员坚韧不拔的意志和自强不息的精神.为了探求上升过程中运动员与绳索和吊椅间的作用,可将过程简化如下:一根不可伸缩的轻绳跨过轻质的定滑轮,一端挂一吊椅,另一端被坐在吊椅上的运动员拉住,如图5所示.设运动员的质量为65 kg ,吊椅的质量为15 kg ,不计定滑轮与绳子间的摩擦,重力加速

度取g =10 m /s 2.当运动员与吊椅一起以加速度a =1 m /s 2

上升时,试求: (1)运动员竖直向下拉绳的力; (2)运动员对吊椅的压力.

[规范思维]

图6

[针对训练1] (2011·合肥一中月考)如图6所示,水平地面上有两块完全相同的木块A 、B ,水平推力F 作用在A 上,用F AB 代表A 、B 间的相互作用力,下列说法中错误的是( )

A .若地面是光滑的,则F A

B =F

B .若地面是光滑的,则F AB =F

2

C .若地面是粗糙的,且A 、B 被推动,则F AB =F

2

D .若地面是粗糙的,且A 、B 未被推动,F AB 可能为F

3

二、动力学中的图象问题

图象问题是近年高考命题的热点,动力学问题的图象在高考中也频频出现,常见的有v -t 图象、a -t 图象、F -t 图象、F -a 图象. 【例2】 (2009·全国Ⅱ·15)

图7

两物体甲和乙在同一直线上运动,它们在0~0.4 s 时间内的v -t 图象如图7所示.若仅在两物体之间存在相互作用,则物体甲与乙的质量之比和图中时间t 1分别为( ) A .1

3和0.30 s B .3和0.30 s C .1

3

和0.28 s D .3和0.28 s [规范思维]

图8

【例3】 (2010·福建理综·16)质量为2 kg 的物体静止在足够大的水平地面上,物体与地面间的动摩擦因数为0.2,最大静摩擦力与滑动摩擦力大小视为相等.从t =0时刻开始,物体受到方向不变、大小呈周期性变化的水平拉力F 的作用,F 随时间t 的变化规律如图8所示.重力加速度g 取10 m /s 2,则物体在t =0至t =12 s 这段时间的位移大小为( )

A .18 m

B .54 m

C .72 m

D .198 m [规范思维]

【例4】 (2009·上海单科·22)如图19(a )所示,质量m =1 kg 的物体沿倾角θ=37°的固定粗糙斜面由静止开始向下运动,风对物体的作用力沿水平方向向右,其大小与风速v 成正比,比例系数用k 表示,物体加速度a 与风速v 的关系如图(b )所示,求:

图9

(1)物体与斜面间的动摩擦因数μ; (2)比例系数k.

(sin 37°=0.6,cos 37°=0.8,g 取10 m /s 2

)

[规范思维]

【例5】(2011·上海十二校联考)如图10(a)所示,用一水平外力F推着一个静止在倾角为θ的光滑斜面上的物体,逐渐增大F,物体做变加速运动,其加速度a随外力F 变化的图象如图(b)所示,若重力加速度g取10 m/s2.根据图(b)中所提供的信息计算不出( )

图10

A.物体的质量

B.斜面的倾角

C.物体能静止在斜面上所施加的最小外力

D.加速度为6 m/s2时物体的速度

[规范思维]

三、动力学中的传送带问题

【例6】如图11所示,传送带与水平面间的倾角

图11

为θ=37°,传送带以10 m/s的速率运行,在传送带上端A处无初速度地放上质量为0.5 kg的物体,它与传送带间的动摩擦因数为0.5,若传送带A到B的长度为16 m,则物体从A运动到B的时间为多少?(取g=10 m/s2)

[规范思维]

图12

[针对训练2] (2010·高考状元纠错)如图12所示,质量为m 的物体用细绳拴住放在水平粗糙传送带上,物体距传送带左端距离为L ,稳定时绳与水平方向的夹角为θ,当传送带分别以v 1、v 2的速度做逆时针转动时(v 1F 2

C .t 1>t 2

D .t 1可能等于t 2

【基础演练】

1.(2011·芜湖市模拟)如图13所示,

图13

放在粗糙水平面上的物块A 、B 用轻质弹簧秤相连,两物块与水平面间的动摩擦因数均为μ.今对物块A 施加一水平向左的恒力F ,使A 、B 一起向左匀加速运动,设A 、B 的质量分别为m 、M ,则弹簧秤的示数为( ) A .MF M +m B .MF m C .F -μM +m g m M D .F -μM +m g m +M

M

2.(天津高考题)一个静止的质点,在0~4 s 时间内受到力F 的作用,力的方向始终在同一直线上,力F 随时间t 的变化如图14所示,则质点在( )

图14

A .第2 s 末速度改变方向

B .第2 s 末位移改变方向

C .第4 s 末回到原出发点

D .第4 s 末运动速度为零

图15

3.(2010·山东理综·16)如图15所示,物体沿斜面由静止滑下,在水平面上滑行一段距离后停止,物体与斜面和水平面间的动摩擦因数相同,斜面与水平面平滑连接.下图中v 、a 、f 和s 分别表示物体速度大小、加速度大小、摩擦力大小和路程.下列图象中正确的是( )

图16

4.(2011·临沂模拟)如图16所示,弹簧测力计外壳质量为m 0,弹簧及挂钩的质量忽略不计,挂钩吊着一质量为m 的重物,现用一方向竖直向上的外力F 拉着弹簧测力计,使其向上做匀加速直线运动,则弹簧测力计的读数为( )

A .mg

B .m

m 0+m

mg

C .m 0m 0+m F

D .m m 0+m F 5.(2010·威海模拟)质量为1.0 kg 的物体静止在水平面上,物体与水平面之间的动摩擦因数为0.30.对物体施加一个大小变化、方向不变的水平拉力F ,作用了3t 0的时间.为使物体在3t 0时间内发生的位移最大,力F 随时间的变化情况应该为下图中的( )

6.

图17

如图17所示,在光滑的水平面上放着紧靠在一起的A 、B 两物体,B 的质量是A 的2倍,B 受到向右的恒力F B =2 N ,A 受到的水平力F A =(9-2t) N (t 的单位是s ).从t =0开始计时,则下列说法错误的是( )

A .A 物体在3 s 末时刻的加速度是初始时刻的5

11

B .t>4 s 后,B 物体做匀加速直线运动

C .t =4.5 s 时,A 物体的速度为零

D .t>4.5 s 后,A 、B 的加速度方向相反

图18

7.(2011·杭州期中检测)如图18所示,两个质量分别为m 1=2 kg 、m 2=3 kg 的物体置于光滑的水平面上,中间用轻质弹簧秤连接.两个大小分别为F 1=30 N 、F 2=20 N 的水平拉力分别作用在m 1、m 2上,则( ) A .弹簧秤的示数是25 N B .弹簧秤的示数是50 N

C .在突然撤去F 2的瞬间,m 1的加速度大小为5 m /s 2

D .在突然撤去F 1的瞬间,m 1的加速度大小为13 m /s 2 【能力提升】

8.如图19所示,

图19

光滑水平面上放置质量分别为m 和2m 的四个木块,其中两个质量为m 的木块间用一不可伸长的轻绳相连,木块间的最大静摩擦力是μmg.现用水平拉力F 拉其中一个质量为2m 的木块,使四个木块以同一加速度运动,则轻绳对m 的最大拉力为( ) A .3μmg 5 B .3μmg 4 C .3μmg 2 .3μmg

图20

9.(2011·天星调研)传送带是一种常用的运输工具,被广泛应用于矿山、码头、货场、车站、机场等.如图20所示为火车站使用的传送带示意图.绷紧的传送带水平部分长度L =5 m ,并以v 0=2 m /s 的速度匀速向右运动.现将一个可视为质点的旅行包无初速度地轻放在传送带的左端,已知旅行包与传送带之间的动摩擦因数μ=0.2,g 取10 m /s 2.

(1)求旅行包经过多长时间到达传送带的右端;

(2)若要旅行包从左端运动到右端所用时间最短,则传送带速度的大小应满足什么条件?最短时间是多少?

10.如图21所示,

图21

在倾角为θ=30°的固定斜面上,跨过定滑轮的轻绳一端系在小车的前端,另一端被坐在小车上的人拉住.已知人的质量为60 kg ,小车的质量为10 kg ,绳及滑轮的质量、滑轮与绳间的摩擦均不计,斜面对小车的摩擦阻力为人和小车总重力的0.1倍,取重力

加速度g =10 m /s 2

,当人以280 N 的力拉绳时,试求(斜面足够长): (1)人与车一起运动的加速度大小; (2)人所受摩擦力的大小和方向;

(3)某时刻人和车沿斜面向上的速度为 3 m /s ,此时人松手,则人和车一起滑到最高点所用时间为多少?

学案14 牛顿第二定律及应用(三) 简单连接体问题

动力学中的图象问题 动力学中的传送带问题

【课前双基回扣】 1.C 2.C 3.D

[由于警卫人员在半球形屋顶上向上缓慢爬行,他爬行到的任一位置时都看作处于平衡状态.在图所示位置,对该警卫人员进行受力分析,其受力图如右图所示.将重力沿半径方向和球的切线方向分解后列出沿半径方向和球的切线方向的平衡方程 F N =mg cos θ,F f =mg sin θ

他在向上爬的过程中,θ变小,cos θ变大,屋顶对他的支持力变大;sin θ变小,屋顶对他的摩擦力变小.所以正确选项为D.]

4.BD [对A 、B 整体 F =(m A +m B )a 隔离物体A F f =m A a 由F -t 可知:t =0和t =2t 0时刻,F 最大,故F f 最大,A 错.又由于A 、B 整体先加速后减速,2t 0时刻停止运动,所以t 0时刻速度最大,2t 0时刻位移最大,B 、D 正确.]

5.B [在A 地,由牛顿第二定律有F -mg =ma ,得a =F m -g =1

m

F -g .同理,在B 地:a ′

1m ′F -g ′.这是一个a 关于F 的函数,1m (或1

m ′

)表示斜率,-g (或-g ′)表示截距.由图线可知1m <1

m ′

,g =g ′;故m >m ′,g =g ′,B 项正确.]

思维提升

1.选取整体法或隔离法的原则是:若系统整体具有相同加速度,且不要求求物体间的相互作用力,一般取整体为研究对象;若要求物体间相互作用力,则需把物体从系统中隔离出来,用隔离法,且选择受力较少的隔离体为研究对象.

2.利用图象分析物理问题时,往往根据物理定理或定律写出横轴物理量关于纵轴物理量的函数关系,借助函数的截距和斜率的物理意义解决问题. 【核心考点突破】

例1 (1)440 N ,方向竖直向下 (2)275 N ,方向竖直向下

解析 (1)设运动员和吊椅的质量分别为M 和m ,绳拉运动员的力为F .以运动员和吊椅整体为研究对象,受到重力的大小为(M +m )g ,向上的拉力为2F ,根据牛顿第二定律 2F -(M +m )g =(M +m )a 解得F =440 N

根据牛顿第三定律,运动员拉绳的力大小为440 N ,方向竖直向下.

(2)以运动员为研究对象,运动员受到三个力的作用,重力大小Mg ,绳的拉力F ,吊椅对运动员的支持力F N .根据牛顿第二定律F +F N -Mg =Ma 解得F N =275 N 根据牛顿第三定律,运动员对吊椅压力大小为275 N ,方向竖直向下. [规范思维] 本题中由于运动员和吊椅整体具有共同的加速度,已知加速度,故先以整体为研究对象,求绳拉人的力;运动员对座椅的压力是内力,需隔离求解.

例2 B [根据v -t 图象可知,甲做匀加速运动,乙做匀减速运动.由a 乙=40.40

m/s

2

=10 m/s 2

,又a 乙=10.40 s -t 1得,t 1=0.30 s ,根据a =Δv Δt

得3a 甲=a 乙.根据牛顿第

二定律有F m 甲=13·F

m 乙

,则m 甲∶m 乙=3.故B 项正确.]

[规范思维] 对此类问题要注意从图象提炼出物理情景,把图象语言翻译成物理过程,了解物体对应的运动情况和受力情况,灵活运用牛顿第二定律解题,联系图象(运动情况)和力的桥梁仍是a . 例3 B

[物体与地面间最大静摩擦力F max =μmg =0.2×2×10 N=4 N .由题给F -t 图象知0~3 s 内,F =4 N ,说明物体在这段时间内保持静止不动.3~6 s 内,F =8 N ,说明物体

做匀加速运动,加速度a =F -F max m

=2 m/s 2

.6 s 末物体的速度v =at =2×3 m/s=6 m/s ,

在6~9 s 内物体以6 m/s 的速度做匀速运动.9~12 s 内又以2 m/s 2

的加速度做匀加速

运动,作v -t 图象如图.故0~12 s 内的位移x =(1

2

×3×6)×2 m+6×6 m=54 m .故

B 项正确.]

[规范思维] 解本题关键是从F -t 图象中提炼出信息,明确各个时间段的受力情况和运动情况,然后根据牛顿第二定律和运动学公式列方程. 例4 (1)0.25 (2)0.84 kg/s

解析 (1)由图象知v =0,a 0=4 m/s 2

开始时根据牛顿第二定律得 mg sin θ-μmg cos θ=ma 0

μ=g sin θ-a 0g cos θ=6-48

=0.25

(2)由图象知v =5 m/s ,a =0 由牛顿第二定律知 mg sin θ-μF N -kv cos θ=0 F N =mg cos θ+kv sin θ

mg (sin θ-μcos θ)-kv (μsin θ+cos θ)=0 k =mg sin θ-μcos θv μsin θ+cos θ=6-0.25×850.25×0.6+0.8 kg/s =0.84 kg/s

[规范思维] 解本题需从a -v 图象中寻求信息,结合物体的受力情况,根据牛顿第二定律正确列出方程式.此外注意物体受多个力的作用,在进行力的运算时应用了正交分解法.

例5 ABC [分析物体受力,由牛顿第二定律得:F cos θ-mg sin θ=ma ,由F =0时,

a =-6 m/s 2

,得θ=37°.由a =cos θm F -g sin θ和a -F 图线知:图象斜率6-230-20

cos 37°

m

,得:

m =2 kg ,物体静止时的最小外力F min cos θ=mg sin θ,F min =mg tan θ=15 N ,无法

求出物体加速度为6 m/s 2

时的速度,因物体的加速度是变化的,对应时间也未知,故A 、B 、C 正确,D 错误.]

[规范思维] 解此类a -F 图象问题,首先应写出a 随F 变化的关系式,然后通过斜率、截距的意义寻找解题的突破口.

例6 当皮带向下运行时,总时间t =2 s ,当皮带向上运行时,总时间t ′=4 s. 解析 首先判断μ与tan θ的大小关系,μ=0.5,tan θ=0.75,所以物体一定沿传送带对地下滑.其次传送带运行速度方向未知,而传送带运行速度方向影响物体所受摩擦力的方向,所以应分别讨论.

(1)当传送带以10 m/s 的速度向下运行时,开始物体所受滑动摩擦力方向沿传送带向下(受力分析如图中甲所示). 该阶段物体对地加速度

a 1=mg sin θ+μmg cos θm

=10 m/s 2

方向沿传送带向下

物体达到与传送带相同的速度所需时间t 1=v

a 1

=1 s

在t 1内物体沿传送带对地位移x 1=12

a 1t 2

1=5 m

从t 1开始物体所受滑动摩擦力沿传送带向上(如图中乙所示),物体对地加速度

a 2=mg sin θ-μmg cos θm

=2 m/s 2

,方向沿传送带向下

物体以2 m/s 2

加速度运行剩下的11 m 位移所需时间t 2,则x 2=vt 2+12

a 2t 22,代入数据解

得t 2=1 s(t 2′=-11 s 舍去) 所需总时间t =t 1+t 2=2 s (2)当传送带以10 m/s 速度向上运行时,物体所受滑动摩擦力方向沿传送带向上且不变,

设加速度大小为a 3,则a 3=mg sin θ-μmg cos θm

=2 m/s 2

物体从A 运动到B 所需时间t ′,则x =12a 3t ′2

;t ′=2x a 3=2×162

s =4 s.

[规范思维] (1)按传送带的使用方式可将其分为水平和倾斜两种. (2)解题中应注意以下几点:

①首先判定摩擦力突变点,给运动分段.物体所受摩擦力,其大小和方向的突变,都发生在物体的速度与传送带速度相等的时刻.v 物与v 传相同的时刻是运动分段的关键点,也是解题的突破口.

②在倾斜传送带上往往需比较mg sin θ与F f 的大小与方向. ③考虑传送带长度——判定临界之前是否滑出;物体与传送带共速以后物体是否一定与传送带保持相对静止做匀速运动. [针对训练] 1.A 2.BD 【课时效果检测】

1.A 2.D 3.C 4.D 5.B 6.ABD 7.D 8.B 9.(1)3 s (2)大于或等于2 5 m/s 5 s

解析 (1)旅行包无初速度地轻放在传送带的左端后,旅行包相对于传送带向左滑动,旅行包在滑动摩擦力的作用下向右做匀加速运动,由牛顿第二定律得旅行包的加速度a

=F /m =μmg /m =μg =2 m/s 2

当旅行包的速度增大到等于传送带速度时,二者相对静止,匀加速运动时间t 1=v 0/a =1 s

匀加速运动位移x =12

at 2

1=1 m

此后旅行包匀速运动,匀速运动时间t 2=L -x

v 0

=2 s

旅行包从左端运动到右端所用时间t =t 1+t 2=3 s.

(2)要使旅行包在传送带上运行时间最短,必须使旅行包在传送带上一直加速由v 2

=2aL 得v =2aL =2 5 m/s

即传送带速度必须大于或等于2 5 m/s

由L =12at 2得旅行包在传送带上运动的最短时间t =2L a

= 5 s.

10.(1)2 m/s 2

(2)140 N 方向沿斜面向上 (3)0.5 s

解析 (1)以人和小车为整体,沿斜面应用牛顿第二定律得:2F -(M +m )g sin θ-k (M +m )g =(M +m )a

将F =280 N ,M =60 kg ,m =10 kg k =0.1代入上式得a =2 m/s 2

(2)设人受到小车的摩擦力大小为F f 人,方向沿斜面向下,对人应用牛顿第二定律得: F -Mg sin θ-F f 人=Ma ,可得 F f 人=-140 N

因此,人受到的摩擦力大小为140 N ,方向沿斜面向上

(3)人松手后,设人和车一起上滑的加速度大小为a 1,方向沿斜面向下,由牛顿第二定律得:

(M +m )g sin θ+k (M +m )g =(M +m )a 1

则a 1=6 m/s 2

,由v =a 1t 1 可得t 1=v a 1

=0.5 s

易错点评

绳或弹簧秤竖直向上拉物体时,拉力不一定等于重力.拉力与重力的大小比较决定于物体的运动状态.

动力学图象问题

0 t 1 t 2 t 3 F t t 4 F 0 a A ′ O F 甲 a F O 乙 丙 李林中学高一年级物理导学案 班级 姓名 使用时间 第 周 课 题 主 备 审 核 使用教师 编号 编写时间 动力学图象问题 王 雄 例题1.静止在光滑水平面上的物体受到一个水平拉力的作用,该力随时间变化的关系如图所示,则 ( ) A .物体将做往复运动 B .2 s 内的位移为零 C .2 s 末物体的速度最大 D .3 s 内,拉力做的功为零 针对练习 1.一电子在如图所示按正弦规律变化的外力作用下由静止释放,则物体将:( ) A 、作往复性运动 B 、t 1时刻动能最大 C 、一直朝某一方向运动 D 、t 1时刻加速度为负的最大。 例题2.地面上有一个质量为M 的重物,用力F 向上提它,力F 的变化将引起物体加速度的变化.已知物体的加速度a 随力F 变化的函数图像如图所示,则( ) A .当F 小于F 0时,物体的重力Mg 大于作用力F B .当F =F 0时,作用力F 与重力Mg 大小相等 C .物体向上运动的加速度与作用力F 成正比 D .a ′的绝对值等于该地的重力加速度g 的大小 针对联系2.物体A 、B 、C 均静止在同一水平面上,它们的质量分别为m A 、m B 、m C ,与水平 面的动摩擦因力F 的关系图线如图4所对应的直线甲、乙、丙所示,甲、乙直线平行,则以下说法正确的是( ) ①μ A <μB m A =m B ②μ B >μC m B >m C ③μ B =μC m B >m C ④μ A <μC m A <m C A .①② B .②④ C .③④ D .①④

高中物理连接体动力学完美训练版(四大连接体)

高中物理连接体动力学完美训练版(四大连接 体) -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高中物理连接体动力学完美训练版 查看答案方法:在word 中按Ctrl + Shift + 8 四大连接体、内力口诀 接触体 1. (2015·课标卷Ⅱ,20)【多选】在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和 Q 间的拉力大小为F ;当机车在西边拉着车厢以大小为23a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为( ) A .8 B .10 C.15 D .18 2. 如图所示,质量为M 的圆槽内有质量为m 的光滑小球,在水平恒力F 作用下两者保持相对静止,地面光滑.则( ) A .小球对圆槽的压力为MF M +m B .小球对圆槽的压力为mF M +m C .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置升高 D .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置降低 3. 如图所示,两相互接触的物块放在光滑的水平面上,质量分别为m 1和m 2,且m 1

高中物理:动力学中的图像问题

高中物理:动力学中的图像问题 1.常见的图像形式 在动力学与运动学问题中,常见、常用的图像是位移图像(x -t 图像)、速度图像(v -t 图像)和力的图像(F -t 图像)等,这些图像反映的是物体的运动规律、受力规律,而绝非代表物体的运动轨迹. 2.图像问题的分析方法 遇到带有物理图像的问题时,要认真分析图像,先从它的物理意义、点、线段、斜率、截距、交点、拐点、面积等方面了解图像给出的信息,再利用牛顿运动定律及运动学公式解题. [典例2] 如图,质量为M 的长木板,静止放在粗糙的水平地面上,有一个质量为m 、可视为质点的物块,以某一水平初速度从左端冲上木板.从物块冲上木板到物块和木板都静止的过程中,物块和木板的v -t 图像分别如图中的折线所示,根据v -t 图像(g 取10 m/s 2),求: (1)m 与M 间动摩擦因数μ1及M 与地面间动摩擦因数μ2. (2)m 与M 的质量之比. (3)从物块冲上木板到物块和木板都静止的过程中,物块m 、长木板M 各自对地的位移. [解析] (1)由图可知,线段ac 为m 减速时的速度—时间图像,m 的加速度为 a 1=Δv 1Δt 1=4-104 m /s 2=-1.5 m/s 2 对m ,由牛顿第二定律可得:-μ1mg =ma 1,所以μ1=a 1-g =0.15 由图可知,线段cd 为二者一起减速运动时的速度—时间图像,其加速度为 a 3=Δv 3Δt 3=0-48 m /s 2=-0.5 m/s 2 对m 和M 组成的整体,由牛顿第二定律可得: -μ2(m +M )g =(m +M )a 3 所以μ2=a 3-g =0.05. (2)由图像可得,线段bc 为M 加速运动时的速度—时间图像,M 的加速度为a 2=Δv 2Δt 2 =4-04 m /s 2=1 m/s 2

力学中的连接体问题

力学中的连接体问题 1.如图所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体1,与物体1相连接的绳与竖直方向成θ角. 求: (1)车厢的加速度a; (2)绳的拉力T; (3)物体2受到的支持力F N; (4)物体2受到的摩擦力F f. 2.如图所示,在光滑水平面上,有两个相互接触的物体,若M>m,第一次用水平力F由左向右推M,两物体间的作用力为N1,第二次用同样大小的水平力F由右向左推m, 两物体间的作用力为N2,则() A.N1>N2 B.N1=N2 C.N1<N2 D.无法确定 3.如图所示,用相同材料做成的质量分别为m1、m2的两个物体中间用一轻弹簧连接.在下列四种情况下,相同的拉力F均作用在m1上,使m1、m2作加速运动:①拉力水平,m1、m2在光滑的水平面上加速运动;②拉力水平,m1、m2在粗糙的水平面上加速运动;③拉力平行于倾角为θ的斜面,m1、m2沿光滑的斜面向上加速运动;④拉力平行于倾角为θ的斜面,m1、m2沿粗糙的斜面向上加速运动.以△l1、△l2、△l3、△l4依次表示弹簧在四种情况下的伸长量,则有() A.△l2>△l1 B.△l4>△l3 C.△l1>△l3 D.△l2=△l4 4.粗糙水平面上放置质量分别为m和2m的四个木块,其中两个质量为m的木块间用一不可伸长的轻绳相连.木块间的动摩擦因数均为μ,木块与水平面间的动摩擦因数相同,可认为最大静摩擦力等于滑动摩擦力.现用水平拉力F拉其中一个质量为2m的木块,使四个木块一起匀速前进.则需要满足的条件是( ) μ A.木块与水平面间的动摩擦因数最大为 3 2μ B.木块与水平面间的动摩擦因数最大为 3 C.水平拉力F最大为2μmg D.水平拉力F最大为6μmg

《动力学中的连接体模型》进阶练习(一)

《动力学中的连接体模型》进阶练习(一) 一、单选题 1.如图所示,光滑水平面上放置质量分别为m和2m的四 个木块,其中两个质量为m的木块间用一不可伸长的轻绳 相连,木块间的最大静摩擦力是μmg.现用水平拉力F拉其中一个质量为2m的木块,使四个木块以同一加速度运动,则轻绳对m的最大拉力为() A. B. C. D.3μmg 2.物体A放在物体B上,物体B放在光滑的水平面上,已知m A=6kg, m B=2kg,A、B间动摩擦因数μ=0.2,如图所示,现用一水平向右的 拉力F作用于物体A上,则下列说法中正确的是(g=10m/s2)() A.当拉力F<12N时,A静止不动 B.当拉力F=16N时,A对B的摩擦力等于4N C.当拉力F>16N时,A一定相对B滑动 D.无论拉力F多大,A相对B始终静止 3.如图所示,三个质量不等的木块M、N、Q间用两根水平 细线a、b相连,放在光滑水平面上.用水平向右的恒力 F向右拉Q,使它们共同向右运动.这时细线a、b上的拉力大小分别为T a、T b.若在第2个木块N上再放一个小木块P,仍用水平向右的恒力F拉Q,使四个木块共同向右运动(P、N间无相对滑动),这时细线a、b上的拉力大小分别为T a′、T b′.下列说法中正确的是() A.T a<T a′,T b>T b′ B.T a>T a′,T b<T b′ C.T a<T a′,T b<T b′ D.T a>T a′,T b>T b′ 二、多选题 4.如图所示,顶端装有定滑轮的斜面体放在粗糙水平面上, A、B两物体通过细绳相连,并处于静止状态(不计绳的 质量和绳与滑轮间的摩擦).现用水平向右的力F作用于 物体B上,将物体B缓慢拉高一定的距离,此过程中斜面体与物体A仍然保持静止.在此过程中() A.水平力F一定变大 B.斜面体所受地面的支持力一定变大

高一物理第四章专题强化动力学连接体问题和临界问题-------教师版

专题强化动力学连接体问题和临界问题--教师版 [学科素养与目标要求 ] 科学思维: 1.会用整体法和隔离法分析动力学的连接体问题.2.掌握动力学临界问题的分析方 法,会分析几种典型临界问题的临界条件. 一、动力学的连接体问题 1.连接体:两个或两个以上相互作用的物体组成的具有相同加速度的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,在求解连接体问题时常用的方法为整体法与隔离法. 2.整体法:把整个连接体系统看做一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力. 3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形. 4.整体法与隔离法的选用求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法.求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.无论运用整体法还是隔离法,解题的关键还是在于对研究对象进行正确的受力分析. 例 1 如图 1所示,物体 A、B用不可伸长的轻绳连接,在竖直向上的恒力 F 作用下一 起向 上做匀加速运动,已知 m A=10 kg,m B=20 kg,F=600 N ,求此时轻绳对物体 B的拉力大小(g 取 10 m/s2).

图1 答案 400 N 解析对 A、B 整体受力分析和单独对 B 受力分析,分别如图甲、乙所示:

高考物理动力学的图像问题专题训练

专题1.7 动力学的图像问题 【专题诠释】 1.“两大类型” (1)已知物体在某一过程中所受的合力(或某个力)随时间的变化图线,要求分析物体的运动情况. (2)已知物体在某一过程中速度、加速度随时间的变化图线.要求分析物体的受力情况. 2.“一个桥梁”:加速度是联系v -t 图象与F -t 图象的桥梁. 3.解决图象问题的方法和关键 (1)分清图象的类别:分清横、纵坐标所代表的物理量,明确其物理意义,掌握物理图象所反映的物理过程,会分析临界点. (2)注意图象中的一些特殊点所表示的物理意义:图线与横、纵坐标的交点,图线的转折点,两图线的交点等表示的物理意义. (3)明确能从图象中获得哪些信息:把图象与物体的运动情况相结合,再结合斜率、特殊点、面积等的物理意义,确定从图象中得出的有用信息.这些信息往往是解题的突破口或关键点. (4)动力学中常见的图象:v -t 图象、x -t 图象、F -t 图象、F -a 图象等. 【高考引领】 【2019·全国卷Ⅲ】如图a ,物块和木板叠放在实验台上,物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t =0时,木板开始受到水平外力F 的作用,在t =4 s 时撤去外力。细绳对物块的拉力f 随时间t 变化的关系如图b 所示,木板的速度v 与时间t 的关系如图c 所示。木板与实验台之间的摩擦可以忽略。重力加速度取10 m/s 2 。由题给数据可以得出( ) A .木板的质量为1 kg B .2~4 s 内,力F 的大小为0.4 N C .0~2 s 内,力F 的大小保持不变 D .物块与木板之间的动摩擦因数为0.2 【答案】 AB 【解析】 木板和实验台间的摩擦忽略不计,由题图b 知,2 s 后木板滑动,物块和木板间的滑动摩擦力大小F 摩=0.2 N 。由题图c 知,2~4 s 内,木板的加速度大小a 1=0.42 m/s 2=0.2 m/s 2 ,撤去外力F 后的加速

专题突破电磁感应中的动力学问题课后练习上课讲义

专题突破电磁感应中的动力学问题 (答题时间:30分钟) 1. 如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab、cd与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab、cd的质量之比为2∶1。用一沿导轨方向的恒力F水平向右拉金属棒cd,经过足够长时间以后() A. 金属棒ab、cd都做匀速运动 B. 金属棒ab上的电流方向是由b向a C. 金属棒cd所受安培力的大小等于2F/3 D. 两金属棒间距离保持不变 2. 如图(a)所示为磁悬浮列车模型,质量M=1 kg的绝缘板底座静止在动摩擦因数μ1=0.1的粗糙水平地面上。位于磁场中的正方形金属框ABCD为动力源,其质量m=1 kg, 边长为1 m,电阻为1 16Ω,与绝缘板间的动摩擦因数μ2=0.4。OO′为AD、BC的中线。在金属框内有可随金属框同步移动的磁场,OO′CD区域内磁场如图(b)所示,CD恰在磁场边缘以外;OO′BA区域内磁场如图(c)所示,AB恰在磁场边缘以内(g=10 m/s2)。若绝缘板足够长且认为绝缘板与地面间最大静摩擦力等于滑动摩擦力,则金属框从静止释放后()

A. 若金属框固定在绝缘板上,金属框的加速度为3 m/s2 B. 若金属框固定在绝缘板上,金属框的加速度为7 m/s2 C. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板仍静止 D. 若金属框不固定,金属框的加速度为4 m/s2,绝缘板的加速度为2 m/s2 3. 如图所示,两根光滑的平行金属导轨竖直放置在匀强磁场中,磁场和导轨平面垂直,金属杆ab与导轨接触良好可沿导轨滑动,开始时电键S断开,当ab杆由静止下滑一段时间后闭合S,则从S闭合开始计时,ab杆的速度v与时间t的关系图象可能正确的是() 4. 如图甲所示,垂直纸面向里的有界匀强磁场磁感应强度B=1.0 T,质量为m=0.04 kg、高h=0.05 m、总电阻R=5 Ω、n=100匝的矩形线圈竖直固定在质量为M=0.08kg的小车上,小车与线圈的水平长度l相同。当线圈和小车一起沿光滑水平面运动,并以初速度v1=10 m/s进入磁场,线圈平面和磁场方向始终垂直。若小车运动的速度v随车的位移x变化的v-x图象如图乙所示,则根据以上信息可知()

高一物理 动力学中的图象问题、临界问题牛顿运动定律的适用范围 典型例题解析

高一物理动力学中的图象问题、临界问题牛顿运动定律的 适用范围典型例题解析 【例1】如图25-1所示,木块A、B静止叠放在光滑水平面上,A的质量为m,B的质量为2m.现施水平力F拉B,A、B刚好不发生相对滑动,一起沿水平面运动.若改用水平力F′拉A,使A、B也保持相对静止,一起沿水平面运动,则F′不得超过 [ ] A.2F B.F/2 C.3F D.F/3 解析:水平力F拉B时,A、B刚好不发生相对滑动,这实际上是将要滑动,但尚未滑动的一种临界状态,从而可知此时的A、B间的摩擦力即为最大静摩擦力.先用整体法考虑,对A、B整体:F=(m+2m)a: 再将A隔离可得A、B间最大静摩擦力:f m=ma=F/3; 若将F′作用在A上,隔离B可得:B能与A一起运动,而A、B不发生相对滑动的最大加速度:a′=f m/2m;再用整体法考虑,对A、B整体:F′=(m+2m)a′=F/2因而正确选项为B. 点拨:“刚好不发生相对滑动”是摩擦力发生突变(由静摩擦力突变为滑动摩擦力)的临界状态.由此求得的最大静摩擦力正是求解此题的突破口. 【例2】在光滑的水平面上,一个质量为0.2kg的物体在1.0N的水平力作用下由静止开始做匀加速直线运动,2.0s后将此力换为方向相反、大小仍为1.0N的力,再过2.0s将力的方向再换过来……,这样,物体受到的力的大小虽然不变,方向却每过2.0s变换一次,求经过半分钟物体的位移及半分钟末的速度分别为多大? 解析:在最初2s内物体的加速度为a=F/m=1/0.2m/s2=5m/s2,物体做初速度为零的匀加速直线运动,这2s内的位移为s=at2/2=1/2×5×22m=10m 2s末物体的速度为v=at=5×2m/s=10m/s 2s末力的方向改变了,但大小没变,加速度大小仍是5m/s2,但方向也改变了,物体做匀减速直线运动.到4s末,物体的速度为v t=v0-at=10m/s-5×2m/s=0 故在第二个内的位移为==+·= 2s s vt(v v)/2t10m 20t 所以,物体在前4s内的位移为s1+s2=20m.

动力学的图象问题和连接体问题

重难强化训练(三) 动力学的图象问题和 连接体问题 (45分钟100分) 一、选择题(本题共10小题,每小题6分,共60分.1~6题为单选,7~10题为多选) 1.一物块静止在粗糙的水平桌面上,从某时刻开始,物块受到一方向不变的水平拉力作用.假设物块与桌面间的最大静摩擦力等于滑动摩擦力,以a表示物块的加速度大小,F表示水平拉力的大小.能正确描述F与a之间关系的图象是() A B C D C[设物块所受滑动摩擦力为f,在水平拉力F作用下,物块做匀加速直线运动,由牛顿第二定律,F-f=ma,F=ma+f,所以能正确描述F与a之间关系的图象是C.] 2.如图1所示,质量为m2的物体2放在正沿平直轨道向右行驶的车厢底板上,并用竖直细绳通过光滑定滑轮连接质量为m1的物体,跟物体1相连接的绳与竖直方向成θ角不变,下列说法中正确的是() 【导学号:84082159】 图1 A.车厢的加速度大小为g tan θ B.绳对物体1的拉力为m1g cos θ C.底板对物体2的支持力为(m2-m1)g

D .物体2所受底板的摩擦力为0 A [以物体1为研究对象进行受力分析,如图甲所示, 物体1受到重力m 1g 和拉力T 作用,根据牛顿第二定律得 m 1g tan θ=m 1a ,解得a =g tan θ,则车厢的加速度也为g tan θ, 将T 分解,在竖直方向根据二力平衡得T =m 1g cos θ,故A 正确,B 错误;对物体2 进行受力分析如图乙所示,根据牛顿第二定律得N =m 2g -T =m 2g - m 1g cos θ ,f =m 2a =m 2g tan θ,故C 、D 错误.] 3.质量为2 kg 的物体在水平推力F 的作用下沿水平面做直线运动,一段时间后撤去F ,其运动的v -t 图象如图2所示.则物体与水平面间的动摩擦因数μ和水平推力F 的大小分别为(g 取10 m/s 2)( ) 图2 A .0.2 6 N B .0.1 6 N C .0.2 8 N D .0.1 8 N A [本题的易错之处是忽略撤去F 前后摩擦力不变.由v -t 图象可知,物体 在6~10 s 内做匀减速直线运动,加速度大小a 2=|Δv Δt |=|0-84| m/s 2=2 m/s 2.设物 体的质量为m ,所受的摩擦力为f ,根据牛顿第二定律有f =ma 2,又因为f =μmg ,解得μ=0.2.由v -t 图象可知,物体在0~6 s 内做匀加速直线运动,加速度大小 a 1=Δv Δt =8-26 m/s 2=1 m/s 2,根据牛顿第二定律有F -f =ma 1,解得F =6 N ,故只有A 正确.] 4.滑块A 的质量为2 kg ,斜面体B 的质量为10 kg ,斜面倾角θ=30°,已知A 、B 间和B 与地面之间的动摩擦因数均为μ=0.27,将滑块A 放在斜面B 上

高考物理一轮题复习 第三章 牛顿运动定律 微专题21 动力学中的连接体(叠体)问题

动力学中的连接体(叠体)问题 1.考点及要求:(1)受力分析(Ⅱ);(2)牛顿运动定律(Ⅱ).2.方法与技巧:整体法、隔离法交替运用的原则:若连接体内各物体具有相同的加速度,且要求物体之间的作用力,可以先用整体法求出加速度,然后再用隔离法选取合适的研究对象,应用牛顿第二定律求作用力.即“先整体求加速度,后隔离求内力”. 1.(物块的叠体问题)如图1所示,在光滑水平面上,一个小物块放在静止的小车上,物块和小车间的动摩擦因数μ=0.2,重力加速度g=10 m/s2.现用水平恒力F拉动小车,关于物块的加速度a m和小车的加速度a M的大小,下列选项可能正确的是( ) 图1 A.a m=2 m/s2,a M=1 m/s2 B.a m=1 m/s2,a M=2 m/s2 C.a m=2 m/s2,a M=4 m/s2 D.a m=3 m/s2,a M=5 m/s2 2. (绳牵连的连接体问题)如图2所示,质量均为m的小物块A、B,在水平恒力F的作用下沿倾角为37°固定的光滑斜面加速向上运动.A、B之间用与斜面平行的形变可忽略不计的轻绳相连,此时轻绳张力为F T=0.8mg.已知sin 37°=0.6,下列说法错误的是( ) 图2 A.小物块A的加速度大小为0.2g B.F的大小为2mg C.撤掉F的瞬间,小物块A的加速度方向仍不变 D.撤掉F的瞬间,绳子上的拉力为0 3. (绳、杆及弹簧牵连的连接体问题)(多选)如图3所示,A、B、C三球的质量均为m,轻质

弹簧一端固定在斜面顶端、另一端与A球相连,A、B间由一轻质细线连接,B、C间由一轻杆相连.倾角为θ的光滑斜面固定在地面上,弹簧、细线与轻杆均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是( ) 图3 A.A球的加速度沿斜面向上,大小为g sin θ B.C球的受力情况未变,加速度为0 C.B、C两球的加速度均沿斜面向下,大小均为g sin θ D.B、C之间杆的弹力大小为0 4.(多选)如图4所示,物块A、B质量相等,在恒力F作用下,在水平面上做匀加速直线运动,若水平面光滑,物块A的加速度大小为a1,物块A、B间的相互作用力大小为F N1;若水平面粗糙,且物块A、B与水平面间的动摩擦因数相同,物块B的加速度大小为a2,物块A、B间的相互作用力大小为F N2,则以下判断正确的是( ) 图4 A.a1=a2B.a1>a2 C.F N1=F N2D.F N1

微专题20 动力学中的图像问题

1.两类问题,一类问题是从图像中挖掘信息,再结合题干信息解题;另一类是由题干信息判断出正确的图像. 2.两种方法,一是函数法:列出所求物理量的函数关系式,理解图像的意义,理解斜率和截距的物理意义;二是特殊值法:将一些特殊位置或特殊时刻或特殊情况的物理量值与图像对应点比较. 1.如图1甲所示,一质量m=1 kg的物块静置在倾角θ=37°的斜面上,从t=0时刻开始对物块施加一沿斜面方向的拉力F,取沿斜面向上为正方向,F随时间t变化的关系如图乙所示,已知物块与斜面间的动摩擦因数μ=0.8,取sin 37°=0.6,cos 37°=0.8,重力加速度g=10 m/s2,物块与斜面间的最大静摩擦力等于滑动摩擦力,则下列图像中正确反映物块的速率v随时间t变化的规律的是() 图1

2.(2020·湖北宜昌市调研)如图2所示,水平轻弹簧左端固定,右端连接一物块(可以看作质点),物块静止于粗糙的水平地面上,弹簧处于原长.现用一个水平向右的力F拉动物块,使其向右做匀加速直线运动(整个过程不超过弹簧的弹性限度).以x表示物块离开静止位置的位移,下列表示F和x之间关系的图像可能正确的是()

图2 3.(2019·湖北荆州市质检)如图3所示,一劲度系数为k 的轻质弹簧,上端固定,下端连一质量为m 的物块A ,A 放在质量也为m 的托盘B 上,以N 表示B 对A 的作用力,x 表示弹簧的伸长量.初始时,在竖直向上的力F 作用下系统静止,且弹簧处于竖直自然状态(x =0).现 改变力F 的大小,使B 以g 2 的加速度匀加速向下运动(g 为重力加速度,空气阻力不计),此过程中N 、F 随x 变化的图像正确的是( )

连接体问题的解题思路

连接体问题的求解思路 【例题精选】 【例1】在光滑的水平面上放置着紧靠在一起的两个物体A和B(如图),它们的质量分别为m A、m B。当用水平恒力F推物体A时,问:⑴A、B两物体的加速度多大?⑵A物体对B物体的作用力多大? 分析:两个物体在推力的作用下在水平面上一定做匀加速直线运动。对整体来说符合牛顿第二定律;对于两个孤立的物体分别用牛顿第二定律也是正确的。因此,这一道连接体的问题可以有解。 解:设物体运动的加速度为a,两物体间的作用力为T,把A、B两个物体隔离出来画在右侧。因为物体组只在水平面上运动在竖直方向上是平衡的,所以分析每个物体受力时可以只讨论水平方向的受力。A物体受水平向右的推力F和水平向左的作用力T,B物体只受一个水平向右的作用力T。对两个物体分别列牛顿第二定律的方程:对m A满足 F-T= m A a ⑴ 对m B满足 T = m B a ⑵ ⑴+⑵得 F =(m A+m B)a ⑶ 经解得: a = F/(m A+m B)⑷ 将⑷式代入⑵式可得 T= Fm B/(m A+m B) 小结:①解题时首先明确研究对象是其中的一个物体还是两个物体组成的物体组。如果本题只求运动的加速度,因为这时A、B两物体间的作用力是物体组的力和加速度无关,那么我们就可以物体组为研究对象直接列出⑶式动力学方程求解。若要求两物体间的作用力就要用隔离法列两个物体的动力学方程了。 ②对每个物体列动力学方程,通过解联立方程来求解是解决连接体问题最规的解法,也是最保险的方法,同学们必须掌握。 【例2】如图所示,5个质量相同的木块并排放在光滑的水平桌面上,当用水平向右推力F推木块1,使它们共同向右加速运动时,求第2与第3块木块之间弹力及第4与第 5块木块之间的弹力。

高中物理连接体动力学完美训练版(四大连接体)

高中物理连接体动力学完美训练版 查看答案方法:在word 中按Ctrl + Shift + 8 四大连接体、内力口诀 接触体 1. (2015·课标卷Ⅱ,20)【多选】在一东西向的水平直铁轨上,停放着一列已用挂钩连接好的车厢.当机车在东边拉着这列车厢以大小为a 的加速度向东行驶时,连接某两相邻车厢的挂钩P 和Q 间的拉 力大小为F ;当机车在西边拉着车厢以大小为23 a 的加速度向西行驶时,P 和Q 间的拉力大小仍为F .不计车厢与铁轨间的摩擦,每节车厢质量相同,则这列车厢的节数可能为() A .8 B .10 C.15 D .18 2. 如图所示,质量为M 的圆槽内有质量为m 的光滑小球,在水平恒力F 作用下两者保持相对静止,地面光滑.则() A .小球对圆槽的压力为MF M +m B .小球对圆槽的压力为mF M +m C .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置升高 D .F 变大后,如果小球仍相对圆槽静止,小球在槽内位置降低 3. 如图所示,两相互接触的物块放在光滑的水平面上,质量分别为m 1和m 2,且m 1

动力学的两类基本问题

动力学的两类基本问题文件管理序列号:[K8UY-K9IO69-O6M243-OL889-F88688]

4.6用牛顿运动定律解决问题(一)【学习目标】 知识与技能 1.知道应用牛顿运动定律解决的两类主要问题。 2.掌握应用牛顿运动定律解决问题的基本思路和方法。 过程与方法 1.通过实例感受研究力和运动关系的重要性。 2.帮助学生学会运用实例总结归纳一般问题的解题规律的能力。情感态度与价值观 1.初步认识牛顿运动定律对社会发展的影响。 2.初步建立应用科学知识的意识。 【学习重点】应用牛顿运动定律解决问题的基本思路和方法。 【学习难点】物体的受力分析及运动状态分析,解题方法的灵活选择和运用。正交分解法的应用。 【学习过程】 一、自主学习 1、理解牛顿第一定律的含义 揭示了力与运动的关系,力不是维持物体运动的原因,而 是。 对于牛顿第一定律,你还有哪一些理解? 2、理解牛顿第二定律是力与运动联系的桥梁 牛顿第二定律确定了_______________的关系,使我们能够把物体的___________情况和_________情况联系起来。

类型一:从受力确定运动情况 如果已知物体的受力情况,可以由牛顿第二定律求出物体的___________,再通过__________就可以确定物体的运动情况。 类型二:从运动情况确定受力 如果已知物体的运动情况,根据运动学公式求出物体的加速度,于是就可以由牛顿第二定律确定物体所受的___________。 3、能运用牛顿第三定律分析物体之间的相互作用 物体之间的作用力和反作用力总是 当一个物体的受力不容易分析的时候,我们能不能分析对它施加力的物体? 分析的时候应该注意什么问题? 跟踪练习 1.一个静止在水平面上的木箱,质量为2 kg,在水平拉力F=6 N的作用下从静止开始运动,已知木箱与水平面间滑动摩擦力是4N,求物体2 s末的速度及2 s内的位移。(g取10 m/s2) 2.如图所示,是电梯上升的v~t图象,若电梯的质量为100kg,则钢绳对电梯的拉力在0~2s之间、2~6s之间、6~9s之间分别为多大?(g取10m/s2) 二、课内探究 引言:牛顿第二定律确定了_______________的关系,使我们能够把物体的 ___________情况和_________情况联系起来。 类型一:从受力确定运动情况 如果已知物体的受力情况,可以由牛顿第二定律求出物体的________,再通过_______规律确定物体的运动情况。 例题1:一个静止在水平地面上的物体,质量是 2 kg,在6.4 N的水平拉力作

动力学中的连接体问题

动力学中的连接体问题 1.连接体问题的类型 物物连接体、轻杆连接体、弹簧连接体、轻绳连接体. 2.整体法的选取原则 若连接体内各物体具有相同的加速度,且不需要求物体之间的作用力,可以把它们看成一个整体,分析整体受到的合外力,应用牛顿第二定律求出加速度(或其他未知量). 3.隔离法的选取原则 若连接体内各物体的加速度不相同,或者要求出系统内各物体之间的作用力时,就需要把物体从系统中隔离出来,应用牛顿第二定律列方程求解. 4.整体法、隔离法的交替运用 若连接体内各物体具有相同的加速度,且要求出物体之间的作用力时,一般采用“先整体求加速度,后隔离求内力”. 例1

(多选)我国高铁技术处于世界领先水平.如图1所示,和谐号动车组是由动车和拖车编组而成,提供动力的车厢叫动车,不提供动力的车厢叫拖车.假设动车组各车厢质量均相等,动车的额定功率都相同,动车组在水平直轨道上运行过程中阻力与车重成正比.某列车组由8节车厢组成,其中第1、5节车厢为动车,其余为拖车,则该动车组() 图1 A.启动时乘客受到车厢作用力的方向与车运动的方向相反 B.做匀加速运动时,第5、6节与第6、7节车厢间的作用力之比为3∶2 C.进站时从关闭发动机到停下来滑行的距离与关闭发动机时的速度成正比 D.与改为4节动车带4节拖车的动车组最大速度之比为1∶2 答案BD

解析 列车启动时,乘客随车厢加速运动,加速度方向与车的运动方向相同,故乘客受到车厢的作用力方向与车运动方向相同,选项A 错误;动车组运动的加速度a =2F -8kmg 8m =F 4m - kg ,则对6、7、8节车厢的整体有F 56=3ma +3kmg =3 4F ,对7、8节车厢的整体有F 67=2ma +2kmg =1 2F ,故5、6节车厢与6、7节车厢间的作用力之比为F 56∶F 67=3∶2,选项B 正 确;关闭发动机后,根据动能定理得12·8m v 2 =8kmgx ,解得x =v 22kg ,可见滑行的距离与关闭 发动机时速度的平方成正比,选项C 错误;8节车厢有2节动车时的最大速度为v m1=2P 8kmg ; 8节车厢有4节动车时最大速度为v m2= 4P 8kmg ,则v m1v m2=12 ,选项D 正确. 例2 如图2所示,粗糙水平面上放置B 、C 两 物体,A 叠放在C 上,A 、B 、C 的质量分别为m 、2m 、3m ,物体B 、C 与水平面间的动摩

高三物理《弹簧连接体问题专题训练题》精选习题

高三物理《弹簧连接体问题专题训练题》 教材中并未专题讲述弹簧。主要原因是弹簧的弹力是一个变力。不能应用动力学和运动学的知识来详细研究。但是,在高考中仍然有少量的弹簧问题出现(可能会考到,但不一定会考到)。即使试题中出现弹簧,其目的不是为了考查弹簧,弹簧不是问题的难点所在。而是这道题需要弹簧来形成一定的情景,在这里弹簧起辅助作用。所以我们只需了解一些关于弹簧的基本知识即可。具体地说,要了解下列关于弹簧的基本知识: 1、 认识弹簧弹力的特点。 2、 了解弹簧的三个特殊位置:原长位置、平衡位置、极端位置。特别要理解“平衡位置”的含义 3、 物体的平衡中的弹簧 4、 牛顿第二定律中的弹簧 5、 用功和能量的观点分析弹簧连接体 6、 弹簧与动量守恒定律 经典习题: 1、如图所示,四个完全相同的弹簧都处于水平位置,它们的右端受到大小皆为F 的拉力作用,而左端的情况各不相同:①中弹 簧的左端固定在墙上,②中弹簧的左端受大小也为F 的拉力作用,③中弹簧的左端拴一小物块,物块在光滑的桌面上滑动,④中弹簧的左端拴一小物块,物块在有摩擦的桌面上滑动。若认为弹簧的质量都为零,以l 1、l 2、l 3、l 4依次表示四个弹簧的伸长量,则有 ( ) A .l 2>l 1 B .l 4>l 3 C .l 1>l 3 D .l 2=l 4 2、(双选)用一根轻质弹簧竖直悬挂一小球,小球和弹簧的受力如右图所示,下列说法正确的是( ) A .F 1的施力者是弹簧 B .F 2的反作用力是F 3 C .F 3的施力者是小球 D .F 4的反作用力是F 1 3、如图,两个小球A 、B ,中间用弹簧连接,并用细绳悬于天花板下,下面四对力中,属于平衡力的是( ) A 、绳对A 的拉力和弹簧对A 的拉力 B 、弹簧对A 的拉力和弹簧对B 的拉力 C 、弹簧对B 的拉力和B 对弹簧的拉力 D 、B 的重力和弹簧对B 的拉力 4、如图所示,质量为1m 的木块一端被一轻质弹簧系着,木块放在质量为2m 的木板上,地面光滑,木块与木板之间的动摩擦 因素为μ,弹簧的劲度系数为k ,现在用力F 将木板拉出来,木块始终保持静止,则弹簧的伸长量为( ) A .k g m 1μ B .k g m 2μ C . k F D .k g m F 1μ- 5、如图所示,劲度系数为k 的轻质弹簧两端连接着质量分别为1m 和2m 的两木块, 开始时整个系统处于静止状态。现缓慢向上拉木块2m ,直到木块1m 将要离开地面, 在这过程中木块2m 移动的距离为___________。 6、如图所示,U 型槽放在水平桌面上,M=0.5kg 的物体放在槽内,弹簧撑于物体和槽壁 之间并对物体施加压力为3N , 物体与槽底之间无摩擦力。 当槽与物体M 一起以6 m/s 2 的加速度向左运动时,槽壁对物体M 的压力为_____N.

牛顿第二定律应用及连接体问题

牛顿定律的应用 一 两类常用的动力学问题 1. 已知物体的受力情况,求解物体的运动情况; 2. 已知物体的运动情况,求解物体的受力情况 上述两种问题中,进行正确的受力分析和运动分析是关键,加速度的求解是解决此类问题的纽带,思维过程可以参照如下: 解决两类动力学问题的一般步骤 根据问题的需要和解题的方便,选出被研究的物体,研究对象可以是单个物体, 也可以是几个物体构成的系统 画好受力分析图,必要时可以画出详细的运动情景示意图,明确物体的运动性 质和运动过程 通常以加速度的方向为正方向 或者以加速度的方向为某一坐标的正方向 若物体只受两个共点力作用,通常用合成法,若物体受到三个或是三个以上不 在一条直线上的力的作用,一般要用正交分解法 根据牛顿第二定律=ma F 合或者x x F ma = ;y y F ma = 列方向求解,必要时对结论进行讨论 解决两类动力学问题的关键是确定好研究对象分别进行运动分析跟受力分析,求出加速度 例1(新课标全国一2014 24 12分) 公路上行驶的两汽车之间应保持一定的安全距离。当前车突然停止时,后车司机以采取刹车措施,使汽车在安全距离内停下而不会与前车相碰。通常情况下,人的反应时间和汽车系统的反应时间之和为1s 。当汽车在晴天干燥沥青路面上以108km/h 的速度匀速行驶时,安全距离为120m 。设雨天时汽车轮胎与沥青路面间的动摩擦因数为晴天时的2/5,若要求安全距离仍为120m ,求汽车在雨天安全行驶的最大速度。 解:设路面干燥时,汽车与路面的摩擦因数为μ0,刹车加速度大小为a 0,安全距离为s ,反应时间为t 0,由 牛顿第二定律和运动学公式得:ma mg =0μ ①0 20002a v t v s += ②式中,m 和v 0分别为汽车的质量和刹车钱的速度。 明确研究对象 受力分析和运动 状态分析 选取正方向或建 立坐标系 确定合外力F 合 列方程求解

新教材高中物理必修一第四章 专题强化 动力学连接体问题和临界问题

[学习目标]掌握动力学连接体问题和临界问题的分析方法,会分析几种典型临界问题的临界条件. 一、动力学的连接体问题 1.连接体:两个或两个以上相互作用的物体组成的具有相同运动状态的整体叫连接体.如几个物体叠放在一起,或并排挤放在一起,或用绳子、细杆等连在一起,如图1所示,在求解连接体问题时常用的方法为整体法与隔离法.

图1 2.整体法:把整个连接体系统看作一个研究对象,分析整体所受的外力,运用牛顿第二定律列方程求解.其优点在于它不涉及系统内各物体之间的相互作用力. 3.隔离法:把系统中某一物体(或一部分)隔离出来作为一个单独的研究对象,进行受力分析,列方程求解.其优点在于将系统内物体间相互作用的内力转化为研究对象所受的外力,容易看清单个物体(或一部分)的受力情况或单个过程的运动情形. 4.整体法与隔离法的选用 (1)求解各部分加速度都相同的连接体问题时,要优先考虑整体法;如果还需要求物体之间的作用力,再用隔离法. (2)求解连接体问题时,随着研究对象的转移,往往两种方法交替运用.一般的思路是先用其中一种方法求加速度,再用另一种方法求物体间的作用力或系统所受合力.

如图2甲所示,A、B两木块的质量分别为m A、m B,在水平推力F作用下沿水平面向右加速运动,重力加速度为g. (1)若地面光滑,则A、B间的弹力为多大? (2)若两木块与水平面间的动摩擦因数均为μ,则A、B间的弹力为多大? (3)如图乙所示,若把两木块放在固定斜面上,两木块与斜面间的动摩擦因数均为μ,在方向平行于斜面的推力F作用下沿斜面向上加速,A、B间的弹力为多大?

图2 答案(1) m B m A+m B F(2) m B m A+m B F(3) m B m A+m B F 解析(1)若地面光滑,以A、B整体为研究对象,有F=(m A+m B)a, 然后隔离出B为研究对象,有F N=m B a, 联立解得F N=m B m A+m B F. (2)若动摩擦因数均为μ,以A、B整体为研究对象,有F-μ(m A+m B)g=(m A+m B)a1,然后隔 离出B为研究对象,有F N′-μm B g=m B a1,联立解得F N′=m B m A+m B F. (3)以A、B整体为研究对象,设斜面的倾角为θ, F-(m A+m B)g sin θ-μ(m A+m B)g cos θ=(m A+m B)a2 以B为研究对象 F N″-m B g sin θ-μm B g cos θ=m B a2 联立解得F N″=m B m A+m B F. 连接体的动力分配原理:两个物体(系统的两部分)在外力(总动力)的作用下以共同的加速度运动时,单个物体分得的动力与自身的质量成正比,与系统的总质量成反比.相关性:两物体间的内力与接触面是否光滑无关,与物体所在接触面倾角无关.

相关文档
相关文档 最新文档