文档库 最新最全的文档下载
当前位置:文档库 › 关于计算极限的几种方法

关于计算极限的几种方法

关于计算极限的几种方法
关于计算极限的几种方法

目录

摘要 (1)

引言 (2)

一.利用导数定义求极限 (2)

二.利用中值定理求极限 (2)

三.利用定积分定义求极限 (3)

四.利用施笃兹公式 (4)

五.利用泰勒公式 (5)

六.级数法 (5)

七.结论 (6)

参考文献 (6)

内容摘要

摘要:极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法。极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法.

关键词:极限;计算;方法

Abstract:the limit is one of the most basic, the most important concept in mathematical analysis, the limit is an important foundation for the calculus, an important means to study the function of the nature of the concept description. The limit is an important trend in the infinite process function, through typical examples, infer other things from one fact,several commonly used methods for the limits. A lot of calculation method of limit, and there are rules and skills, certain of

this, this paper will be based on case analysis, discussion, and sums up some calculation method.

Key words: limit; Calculation; methods

引言:

极限是分析数学中最基本的概念之一,用以描述变量在一定的变化过程中的终极状态。早在中国古代,极限的朴素思想和应用就已在文献中有记载。例如,3世纪中国数学家刘徽的割圆术,就是用圆内接正多边形周长的极限是圆周长这一思想来近似地计算圆周率 的。随着微积分学的诞生,极限作为数学中的一个概念也就明确提出。但最初提出的这一概念是含糊不清的,因此在数学界引起不少争论甚至怀疑。直到19世纪,由A.-L.柯西、K. (T.W.)外尔斯特拉斯等人的工作,才将其置于严密的理论基础之上,从而得到举世一致的公认。

数学分析中的基本概念的表述,都可以用极限来描述。如函数()x f y =在

0x x =处导数的定义,定积分的定义,偏导数的定义,二重积分,三重积分的定义,无穷级数收敛的定义,都是用极限来定义的。极限是研究数学分析的基本公具。极限是贯穿数学分析的一条主线。

一.利用导数定义求极限

据文[]1定理1导数的定义:函数)(x f 在0x 附近有定义,对于任意的x ?,

则)()(00x f x x f y -?+=? 如果x

x f x x f x x ?-?+=→?→?

)

()(lim lim 000

0存在,则此极限值就

称函数)(x f 在点0x 的导数记为 )('0x f .即x x f x x f x f x ?-?+=→?)

()(lim )('0000在这

种方法的运用过程中。首先要选好)(x f ,然后把所求极限。表示成)(x f 在定点0x 的导数。

例1:求a

x x

a a x x a a a a

x

--→lim

解:原式0

)(lim lim 1lim 0---?=---=-→→→a x x a a x a a x a x x a a

a

x x a a a a x a a a a a

x x

a x x

,令a x x a y -=, 当a x →时,0→y ,故原式a a a a a

a

a y y a ln |)'(0=?==

一般地,能直接运用导数定义求的极限就直接用导数定义来求,值得注意的是许多从表面看起来,不能直接用导数定义但经过恒等变形后,都可以利用导数定义来求,如上述例题。

二.利用中值定理求极限 2.1利用微分中值定理求极限

计算数列和函数的极限时,经常遇到的多是"0

","0"∞?,"0"∞···的不定

形式,其中有时"0"也以差的形式出现,这就给应用微分中值定理提供了机会,微分中值定理把差化成积之后,就可在积的极限中,用等价无穷小进行代换,从而起到化繁为简的作用,另一方面,微分中值定理把函数差变成其间的导数值这种转化往往能变难为易。 例2:求(

)

1lim +∞

→-m m

n a a n ξ

()0>a

解:因为m a 和1+m a 可以看成指数函数x a 在n

x 1

=

和11+=n x 两点处的函数值,

又因a a a x x ln )'(=故由微分中值定理知)

1(1

ln 1+?

?=-+n n a a a a m m ξ,其中

1+<

)

a n n n a a a n

m m

ln )

1(1

1

+?=-

ξ

ξ 故得

(

)

a a a n m m

n ln lim 1=-+∞

→ξ

例3:求[]x x x ln sin )1ln(sin lim -+∞

解:由微分中值定理知ξ

ξ

ln cos ln sin )1ln(sin =

-+x x ,其中1+<

1ln cos ≤ξ,故[]0ln sin )1ln(sin lim =-+∞

→x x x

从以上两例可以看出,当不定式中的"0"以同一函数在不同的两点之差的形式出现时,利用微分中值定理求极限,有统一简便且易于掌握的优点。

2.2利用积分中值定理求极限

据文[]1定理9.7积分中值定理:如果函数()x f 在闭区间[]b a ,上连续,那么一定存在[]b a ,∈ξ,使()()()ξf a b dx x f b

a -=?

如果某些数列含有带参数的定积分,并且定积分不易计算,那么在求这类数列的极限时应当首先考虑利用积分中值定理脱去积分符号,然后再作进一步的处理。

例4:求dx x x I p

n n

n 2

sin lim ?

+∞→??

?

??= (0>p ) 解:利用积分中值定理,得2

2

sin sin ???

? ??=??

?

???

+ξξp dx x x p

n n

(p n n +≤≤ξ) 因为无穷小与有界量的乘积还是无穷小,所以

0sin 1lim sin lim sin lim 2

22

2

=?=???

? ?

?=???? ??+∞→+∞→∞→ξξξξ

ξξ

ξξn 故所求极限0sin lim 2

=????

??=∞→ξξn p I 例5:求?-∞→=2

1

arctan lim nxdx I n

解:作变量代换:nx u =则ndx du =于是

??

? ??+==???-∞→-∞→n n n n n n n n udu udu n udu n I 22arctan arctan 1lim arctan 1lim

?∞→=n

n

n udu n 2arctan 1lim (利用定积分的对称性,第一项积分为零) =()ξarctan 21

lim n n n

n -∞→ (n n 2≤≤ξ)(利用积分中值定理) =2

arctan lim arctan lim π

ξξξ=

=+∞

→∞

→n

所以原式?-∞→=2

1

arctan lim nxdx I n =

2

π

三.利用定积分定义求极限

据文[]1定理2:设f 是定义在[]b a ,上的一个函数,J 是一个确定的实数,

若对任给的正数ε,总存在某一正数δ,使得对[]b a ,的任何分割T ,以及在其上任意选取的点集i ξ,只要ξ

i i i J x f 1)(,则称函数f 在区间

[]b a ,上可积或黎曼可积,数J 称为f 在[]b a ,上的定积分或黎曼积分,记作

例6:()()()??

????++++++∞→22

212111lim n n n n n n 解:记f (x )=

()

2

11

x +,x []1,0∈,则()x f 在[]1,0上连续,所以可积,取T ={0,n 1,n 2,n n , },i ε=i x =i n

i

?∈,i =1,2, ,n 则 ()?+1

021x dx =()i n

i i T f ?∑=→1

0lim ξ=∑=∞→?

?? ?

?+n i n n i n 12_11

1lim =()()()??????++++++∞→22212111lim n n n n n =-1

0|11x +=(-21)-(-1) =2

1 例7:41

lim

n

n ∞→(1+332n ++ ) 解:记()x f =3x ,则()x f 在[]1,0上连续且可积,取T ={0,n 1,n 2, ,n

n

}==i i x ε

i n

i

i ,?∈=1,2, ,n 则dx x ?1

3=()i n

i i T f ?∑

=∞

→1

lim

ξ=3

11lim ∑=∞→??

?

??n i n n i n =()33343211lim n n n ++++∞→ =41|4110

= 运用该方法时,通常是将所求式转化成和式n

a

b n i a b a f n

i --+

∑=1

)

)((的极限,相当于定积分中的n

a b x i -=?,

n i

a b a i )(-+

=ξ也就是将区间[]b a ,等分,每个小

区间的长度为

n a b -,取每个小区间的右断点为n

i

a b a i )(-+=ξ,这样就可以将和

式的极限n

a

b n i a b a f n

i n --+

∑=∞

→1

)

)((lim 写成定积分dx x f b a ?)(形式。 四.利用施笃兹公式

据文[]2117页定理6:设数列{}n x 及{}n y 满足: (1)n n y y >+1 (n=1,2,3,····); (2)+∞=∞

→n n y lim ;

(3)n n n n n y y x x --++∞

→11lim

存在(有理数或者是-∞+)则n

n n n n n n n y y x

x y x --=++∞→∞→11lim lim

例5:求αααn n n 1

11lim --∞→++ (0>α)

解:利用施笃兹公式

原式=()α

ααα??

? ??--=--∞

→-∞→n n

n n n n n 1111

lim

1lim 1

=n n n n

e n n n n 11lim 11ln 1lim 11

lim 11ln αααα--

=??

? ??--

=--

∞→∞→??? ??-∞→ =

α

1

例8:求n

n n ln 1211lim

+++

→ 解:因为∞→-→

??? ??

-+n n n ,1

1111ln 利用施笃兹公式,便有 原式=()??

? ??

-+=--∞

→∞→111ln 1

lim 1ln ln 1lim

n n n n n n n =n

n n 1

lim

-∞→=1

推论1:若存在(有限数或者是-∞+),则其算术平均值数列

n

x x x n

+++ 21 (n=1,2,3,····)的极限也存在,并且

n n n n x n

x x x ∞→∞→=++lim lim 21 推论2:若0>n x 且n n x ∞

→lim 存在(有限数或者是∞+),则其几何平均值数列

n

n x x x 21(n=1,2,3·

··)的极限也存在,并且 n n n n n x x x x ∞

→∞

→=lim lim 21

例9:设0>n x ,并且()0lim

1

>=+∞→l x x n

n n ,证明l x n n n =∞→lim

证明:由条件()0lim

1>=+∞→l x x n

n n ,即正项数列 ,,,,123121n n x x x x

x x x +

当∞→n 时,有极限l ,于是根据推论2,应有l x x x x x x x x n n n n n n n ==??

→-∞

→lim lim 123

121 例10:求n

n n n !1lim

∞→ 解:设0!

>=n n n

n x 则

()()!1!1lim lim 11n n n n x x n n x n

n x ?++=+∞→+∞→=n n n

n n n n ??

? ??+=???

??+∞

→∞→111lim 1lim =e

1 由例9便得e

n n x n n n n n 1!1lim

lim ==∞→∞

→ 在数列极限中,有一类数列极限用常规方法,是不容易解决或者是相当困难的,

比如求109

99433321lim ,21lim n n n n n n ++++++∞→∞→ 按通常的方法是先求和式∑=n

i i 13和∑=n

i i 1

9再求极限,显然第一步是困难的,对于这类

∞∞

型不定式n

n y x 极限,如果运用施笃兹定理将会得到一种简便的方法。

五.利用泰勒公式求极限

泰勒展开式:若 f(x)在x=0点有直到n+1 阶连续导数,

()()///

2()()(0)(0)()

2!!n

n

n f x f x f x f f x x x R x n =+++++

()11

()()(1)!n n n f R x x

n ξ++=+ (其中ξ在0与1之间)

几个重要的泰勒公式

(1)()

n n

x

x o n x x x e +++++=!

!212 ;

(2)()()()m m m x o m x x x x x 2121

53!121!

5!3sin +--+++-=-- ; (3)()()(

)

12242!21!

4!21cos ++-+++-=m m

m x o m x

x x x ;

(4)()()()

n n

n x o n

x

x x x x +-+++-=+-1321321ln ;

(5)()()

()()

()

n n n

x o x n n x x x ++--+

+-+

+=+!

11!

21112αααααα .

例11:求()

n

n

n n n ln lim ∞→

解:因为???

? ??++==22ln 1ln ln 1

1n n o n n e

n n n

n ()

1ln 1lim ln 1lim =???

??

???? ??+=-?∞→∞→n n o n n n n n n 例12:求极限3

0cos sin lim

x x

x x x -→

解:分析:将x sin 和x x cos 分别按x 的幂展开成三阶泰勒公式

)(!31sin 3

3x o x x x +-=,)(!2cos 33x o x x x x +-=将上两式代入原式,因为泰勒公式

是恒等式,所以相当于把自己代进去了,结果仍然不变。即

33333030))(!21

()(!31lim cos sin lim

x

x o x x x o x x x

x

x x x x +--+-

=-→→

由于分母已经是一个简单的多项式,所以不用再做什么变化,分子整理得到

)(3

1

)(!21()(!31333333x o x x o x x x o x x +=+--+-

,这里要注意,第一个)(3x o 和第二个)(3x o 只是一个代号,二者不一定完全相等。所以相减后的结果不一定是0,,但可以肯定的是它们的差一定是的高阶无穷小,所以二者的差用)(3x o 代替,即

原式3

1

)

(31lim 333

0=+=→x x o x x 由上述例题可以看出,使用泰勒公式展到几阶由分母的最低次数来决定。

六.利用级数法求极限

6.1利用收敛级数的和求极限

根据数项与数列其内在的联系,利用递推形式把一些极限转化为一些已知收

敛且易于求和的数项级数来求。

例13:设b a ,为正数,且b a <,而b x a x ==10,令2

2

1--+=n n n x x x 求n n x ∞→lim 解:由已知条件知)(2

1

2

22121

11------=--=-+=

-n n n n n n n n n x x x

x x x x x x n n n n n n a b x x x x 2

)1()(21)1()(2101323--=--==-=-- 因而有1

1

11

11

1012)

1()(--+=+=-+--=-=-∑∑i i n i n i i i n a b x x x x 1

1

1

)21

()(-+=∑--=i n i a b

因为级数n

n ∑∞

=-0

)21

(收敛,且其和为32,故)(32)(lim a b a x n n -=-∞→

所以)2(3

1

lim a b x n n +=∞→

6.2利用级数的性质

(1)级数收敛的必要条件:如果级数∑∞

=1

n n u 收敛,则0lim =∞

→n n u

例14:计算n n n n

n !2lim ∞→

解:因为 ()()121lim 2!21!

12lim 1

1<=?

?

?

??+=++∞→++∞→e n n n

n n n n n n n n n n

根据正项级数的比式判别法可知级数n n n n n !

2lim ∞→收敛,再利用级数收敛的必要条件

可知0!

2lim =∞→n n n n

n

(2)级数收敛的柯西准则:∑∞

=1n n u 收敛0>??ε,总存在正整数N ,当N n >及

任意正整数p ,有ε<++++++p n n n u u u 21

例15:设1>p ,计算()()()????

?

?+++++∞→p p p n n n n 212111lim 解:因为1>p 时,级数∑∞

=11

n p

n

收敛,再利用级数收敛的柯西准则知

()()()0212111lim =???? ?

?+++++∞→p p p n n n n

七.结论

以上内容简单归纳了计算极限的几种特殊方法,并举出了相关方法的示例。

求解极限的方法很多,而且非常灵活,因此对于找到解决问题的方法是至关重要的,每种方法都是有局限的,都不是万能的,因此在遇到比较复杂的题时,我们首先考虑应用导数定义和中值定理来求极限,当题中出现带有"!"的形式时可以用级数收敛的必要性求极限。总之解决的办法并不是一成不变的,这需要自身努力,从而能灵活掌握和运用.总之,在求极限时,要认真审题,认真分析解题思路,寻找解题途径。

参考文献

[1]华东师范大学数学系编,数学分析(上册)第四版[M],高等教育出版社,2010.07.01

[2]华东师范大学数学系编,数学分析(下册)第四版[M],高等教育出版社, 2010.06

[3]郝梅编,求函数极限的方法[J],福建教育学校学报,2006.10

[4] 邓乐斌编,数学分析的理论、方法与技巧[M],华中科技大学出版社,2005.12

[5] 徐利治编,大学数学解题法诠释[M],安徽教育出版社,2001.12

[6] 樊启斌编,数学综合复习解题指南[M],武汉大学出版社,2003.06

[7]钱吉林编,数学分析题解精粹(第二版)[M],高等教育出版社,2009

指导老师单位职称

指导教师评语:

指导教师: (盖章)

年月日

答辩小组评语:

成绩组长签名: (盖章)

年月日

答辩委员会意见:

负责人签名: (盖章)

年月日

高等数学极限计算方法总结

极限计算方法总结 《高等数学》是理工科院校最重要的基础课之一,极限是《高等数学》的重要组成部分。求极限方法众多,非常灵活,给函授学员的学习带来较大困难,而极限学的好坏直接关系到《高等数学》后面内容的学习。下面先对极限概念和一些结果进行总结,然后通过例题给出求极限的各种方法,以便学员更好地掌握这部分知识。 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可 以用上面的极限严格定义证明,例如: )0,(0lim ≠=∞→a b a an b n 为常数且; 5 )13(lim 2 =-→x x ; ???≥<=∞→时当不存在, 时 当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运 用,而不需再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条 件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x

(2) e x x x =+→10 ) 1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+ ∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的 等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2x - ~ 2x -。 定理4 如果函数)(),(),(),(11x g x f x g x f 都是0x x →时的无穷小,且 )(x f ~)(1x f ,)(x g ~)(1x g ,则当) ()(lim 110 x g x f x x →存在时,)() (lim 0x g x f x x →也存在且等于)(x f )()(lim 110 x g x f x x →,即)() (lim 0x g x f x x →=) ()(lim 110x g x f x x →。 5.洛比达法则 定理5 假设当自变量x 趋近于某一定值(或无穷大)时,函数)(x f 和)(x g 满 足:(1))(x f 和)(x g 的极限都是0或都是无穷大; (2))(x f 和)(x g 都可导,且)(x g 的导数不为0; (3)) () (lim x g x f ''存在(或是无穷大);

高中化学计算题的常用解题技巧(3)------极限法

高中化学计算题的常用解题技巧(3)------极限法 极限法:极限法与平均值法刚好相反,这种方法也适合定性或定量地求解混合物的组成.根据混合物中各个物理量(例如密度,体积,摩尔质量,物质的量浓度,质量分数等)的定义式或结合题目所给条件,将混合物看作是只含其中一种组分A,即其质量分数或气体体积分数为100%(极大)时,另一组分B对应的质量分数或气体体积分数就为0%(极小),可以求出此组分A的某个物理量的值N1,用相同的方法可求出混合物只含B 不含A时的同一物理量的值N2,而混合物的这个物理量N平是平均值,必须介于组成混合物的各成分A,B的同一物理量数值之间,即N1 [例5]4个同学同时分析一个由KCl和KBr组成的混合物,他们各取2.00克样品配成水溶液,加入足够HNO3后再加入适量AgNO3溶液,待沉淀完全后过滤得到干燥的卤化银沉淀的质量如下列四个选项所示,其中数据合理的是 A.3.06g B.3.36g C.3.66g D.3.96 本题如按通常解法,混合物中含KCl和KBr,可以有无限多种组成方式,则求出的数据也有多种可能性,要验证数据是否合理,必须将四个选项代入,看是否有解,也就相当于要做四题的计算题,所花时间非常多.使用极限法,设2.00克全部为KCl,根据KCl-AgCl,每74.5克KCl可生成143.5克AgCl,则可得沉淀为(2.00/74.5)*143.5=3.852克,为最大值,同样可求得当混合物全部为KBr时,每119克的KBr可得沉淀188克,

所以应得沉淀为(2.00/119)*188=3.160克,为最小值,则介于两者之间的数值就符合要求,故只能选B和C。等量物质燃烧时乙醛耗氧最多。

极限的计算、证明

极限的论证计算,其一般方法可归纳如下 1、 直接用定义()等δεε--,N 证明极限 例、试证明01 lim =∞→n n 证:要使ε<-01n ,只须ε 1 >n ,故 0>?ε,11 +?? ? ???=?εN ,N n >?,有ε<-01 n 2、 适当放大,然后用定义或定理求极限或证明极限 例、证明:0! lim =∞→n a n n ,0>a 证:已知0>a 是一个常数 ?∴正整数k ,使得k a ≤ ()ε 1!,01+???? ????=?>?∴+εεk a N k ,当N n >时,有 ε<-0! n a n 3、用两边夹定理在判定极限存在的同时求出极限 例、求()() n n n n 264212531lim ??-??∞ → 解: ()()()()n n n n n 212264212753264212531?-??-??=??-?? ()()()()n n n n n n 41 125312642211253264?-????=?-??> ∴ ()()n n n 41 2642125312 >??? ? ????-??

两边开n 2次方: ()()121 21412642125311222→?=>??-??>n n n n n n n n 由两边夹:()() 1264212531lim =??-??∞ →n n n n 4、 利用等价性原理把求一般极限的问题化为无穷小量的极限问 题 例、设0≠→l S n ()∞→n ,0>p 为常数,求证:p p n l S →()∞→n 证:00→-≤-≤l S l S n n ,得 l S n →()∞→n 记 n n l S α+=,其中 0→n α()∞→n 再记n n l S α+=()n n l l l βα+=??? ? ? ?+=11,其中0→=l n n αβ()∞→n 则有()p n p p n l S β+=1。 若取定自然数p K >,则当1

(完整)初中化学计算极值法

初中化学计算极值法 基本原理:极值法== 极端假设+ 平均思想 常见题型 1、确定物质的成分 例1 某气体是由SO2、N2和CO2中的一种或几种组成,现测得该气体中氧元素的质量分数为50%,则该气体的组成情况有①;②;③。 练习1、由Na、Mg、Al三种金属中的两种组成的混合物共10g,与足量的盐酸反应产生 0.5g氢气,则此混合物必定含有() A Al B Mg C Na D 都有可能 练习2、两种金属的混合物共12g,加到足量的稀硫酸中可产生1g氢气,该金属混合物可能是() A Al和Fe B Zn和Fe C Mg和Zn D Mg和Fe 2 确定杂质的成分 例2 某含有杂质的Fe2O3粉末,测知其中氧元素的质量分数为32.5%,则这种杂质可能是() A SiO2 B Cu C NaCl D CaO 练习1、将13.2g可能混有下列物质的(NH4)2SO4样品,在加热的条件下,与过量的NaOH 反应,可收集到气体4.3L(密度为17g/22.4L),则样品中不可能含有的物质是() A NH4HCO3、NH4NO3 B (NH4)2CO3 、NH4NO3 C NH4HCO3、NH4Cl D NH4Cl、(NH4)2CO3 2、不纯的CuCl2样品13.5g与足量的AgNO3溶液充分反应后得到沉淀29g,则样品中不可能含有的杂质是() A AlCl3 B NaCl C ZnCl2 D CaCl2 练习3、某K2CO3样品中含有Na2CO3、KNO3、Ba(NO3) 2三种杂质中的一种或两种,现将6.9g样品溶于足量水中,得到澄清溶液。若再加入过量的CaCl2溶液,得到4.5g沉淀,对样品所含杂质的判断正确的是() A 肯定有KNO3和Na2CO3,肯定没有Ba(NO3)2 B 肯定有KNO3,没有Ba(NO3)2,还可能有Na2CO3 C 肯定没有Na2CO3和Ba(NO3) 2,可能有KNO3 D 无法判断 练习4、有一种不纯的K2CO3固体,可能含有Na2CO3、MgCO3、NaCl中的一种或两种。到该样品13.8g加入50g稀盐酸,恰好完全反应,得到无色溶液,同时产生气体4.4g。下列判断正确的是()A样品中一定含有NaCl B 样品中一定含有MgCO3 C 样品中一定含有Na2CO3 D 所加的稀盐酸中溶质的质量分数为7.3% 练习5 一包混有杂质的Na2CO3,其杂质可能是Ba(NO3) 2、KCl、NaHCO3的一种或几种。取10.6g样品,溶于水得澄清溶液;另取10.6g样品,加入足量的盐酸,收集到4gCO2,则下列判断正确的是()A.样品中只混有KCl B.样品中有NaHCO3,也有Ba(NO3) 2 C.样品中一定混有KCl,可能有NaHCO3 D.样品中一定混有NaHCO3,可能有KCl

极限计算方法总结

极限计算方法总结 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的 极限严格定义证明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且; 5)13(lim 2=-→x x ;??? ≥<=∞→时当不存在,时当,1||1||0lim q q q n n ;等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需 再用极限严格定义证明。 2.极限运算法则 定理1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1)B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时, 不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+→1 )1(lim ; e x x x =+∞→)11(l i m 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如:133sin lim 0=→x x x ,e x x x =--→21 0) 21(lim ,e x x x =+∞ →3 )31(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价 关系成立,例如:当0→x 时, 13-x e ~ x 3 ;)1ln(2 x - ~ 2x -。

归纳函数极限的计算方法

归纳函数极限的计算方法-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

归纳函数极限的计算方法 摘 要 :本文总结出了求极限的几种方法,比如用定义、公式、定理、性质求极限. 关键词 :函数极限;计算方法;洛必达法则; 四则运算 The sum of the Method of Computing Function Limit Abstract :The write sums up in this article several ways of extacting the limit by the means of definition, formula,nature, theorem and so on. Key Words :Function Limit ;Computing method ;L’Hospita l rules; Four fundamental rules 前言 极限的概念是高等数学中一个最基本、最重要的概念,极限理论是研究连续、导数、积分、级数等的基本工具,因此正确理解和运用极限的概念、掌握极限的求法,对学好数学分析是十分重要的.求极限的方法很多且非常灵活,本文归纳了函数极限计算的一些常见方法和技巧. 1. 预备知识 1.1函数极限的εδ-定义]1[ 设函数f 在点0x 的某个空心邻域'0(;)U x δ内有定义,A 为定数,若对任给的0ε>,存在正数'()δδ<,使得当00||x x δ<-<时有|()|f x A ε-<,则称函数当趋于0x 时以A 为极限,记作0 lim ()x x f x A →=或()f x A →0()x x →. 2.求函数极限的方法总结 极限是描述函数的变化趋势,以基于图形或直观结合定义可以求出一些简单的函数的极限;但是结构较为复杂的函数的图形不易画出,基于直观也就无法得出极

高考化学解题方法极限法

化学解题技巧 ------------------------极限法 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围。 例1 :在120℃时分别进行如下四个反应: A.2H2S+O2=2H2O+2S B.2H2S+3O2=2H2O+2SO2 C.C2H4+3O2=2H2O+2CO2D.C4H8+6O2=4H2O+4CO2 (l)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(P)分别符合关系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。 (2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合关系式d前>d后和V前d后和V前>V后的是(请填写反应的代号)。 方法:从反应物全部变成生成物来作极限判断。 解析:(1)在容积固定的容器内,四个反应的反应物和生成物中除硫单质外均为气体, 总结:解本题还应用了物理学中气态方程和化学中的阿伏加德罗定律。这是一道物理和化学学科间综合试题,体现了当今的命题方向。 例2 :把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300mg,则该氯化镁中的杂质可能是( ) A.氯化钠 B.氯化铝 C.氯化钾 D.氯化钙 方法:采用极值法或平均分子量法。 解析:[解法一]:(极值法)

假设95mg全为MgCl2,无杂质,则有:MgCl2 ~ 2AgCl 95mg 2×143.5mg 生成沉淀为287mg,所以假设95mg全部为杂质时,产生的AgCl沉淀应大于300mg。 总结:极值法和平均分子量法本质上是相同的,目的都是求出杂质相对分子量的区间值,或者杂质中金属元素的原子量的区间值,再逐一与选项比较,筛选出符合题意的选项。 例3 :在一个容积固定的反应器中,有一可左右滑动的密封隔板,两侧分别进行如图所示 的可逆反应.各物质的起始加入量如下:A、B和C均为4.0mol、D为6.5 mol、F为2.0 mol,设E为x mol.当x在一定范围内变化时,均可以通过调节反应器的温度,使两侧反应都达到平衡,并且隔板恰好处于反应器的正中位置.请填写以下空白: (1)若x=4.5,则右侧反应在起始时向(填“正反应”或“逆反应”)方向进行.欲使起始反应维持向该方向进行,则x的最大取值应小于. (2)若x分别为4.5和5.0,则在这两种情况下,当反应达平衡时,A的物质的量是否相等? (填“相等”、“不相等”或“不能确定”).其理由是:。 方法:解答该题时,首先要考虑两侧都达到平衡时物质的量必须相等,然后要从完全反应

利用“极限思维法”巧解化学计算题

利用“极限思维法”巧解化学计算题 (湖北松滋湖北省松滋市实验中学) 极限思维法简称极值法,就是把研究的对象或变化过程假设成某种理想的极限状态进行分析、推理、判断的一种思维方法;是将题设构造为问题的两个极端,然后依据有关化学知识确定所需反应物或生成物的量值进行判断分析求得结果。极值法的特点是“抓两端,定中间”。极值法的优点是将某些复杂的、难于分析清楚的化学问题(如某些混合物的计算、平行反应计算和讨论型计算等)变得单一化、极端化和简单化,使解题过程简洁,解题思路清晰,把问题化繁为简,化难为易,从而提高了解题效率。下面就结合部分试题具体谈谈极值法在化学解题中应用的方法与技巧。 一.用极值法确定判断物质的组成 例1:某K2CO3样品中含有Na2CO3、KNO3和Ba(NO3)2三种杂质中的一种或两种,现将6.9g 样品溶于足量水中,得到澄清溶液。若再加入过量的CaCl2溶液,得到4.5g沉淀,对样品所含杂质的判断正确的是() A、肯定有KNO3和Na2CO3,没有Ba(NO3)2 B、肯定有KNO3,没有Ba(NO3)2,还可能有Na2CO3 C、肯定没有Na2CO3和Ba(NO3)2,可能有KNO3 D、无法判断 解析:样品溶于水后得到澄清溶液,因此一定没有Ba(NO3)2。对量的关系用“极值法”可快速解答。设样品全为K2CO3,则加入过量的CaCl2溶液可得到沉淀质量为5g,;若6.9g全为Na2CO3则可得到沉淀质量为6.5g。显然,如果只含有碳酸钠一种杂质,产生沉淀的质量将大于5g;如果只含有KNO3,由于KNO3与CaCl2不反应,沉淀的质量将小于5g,可能等于4.5g。综合分析,样品中肯定有KNO3,肯定没有Ba(NO3)2,可能有Na2CO3。故本题选B。 【点评】用极值法确定杂质的成分:在确定混合物的杂质成分时,可以将主要成分和杂质极值化考虑(假设物质完是杂质或主要成分),然后与实际比较,即可迅速判断出杂质的成分。二.用极值法确定可逆反应中反应物、生成物的取值范围 例2:一定条件下向2L密闭容器中充入3molX气体和1molY气体发生下列反应:2X(g) + Y(g) 3Z(g) +2W(g),在某一时刻达到化学平衡时,测出下列各生成物浓度的数据肯定错误的是() A、c(Z)=0.75mol?L-1 B、c(Z)=1.20mol?L-1 C、c(W)=0.80 mol?L-1 D、c(W)=1.00 mol?L-1 解析:用极限思维假设此反应中3molX和1molY能完全反应,求出最大值。1molY完全反应生成3molZ和2molW。所以,0<c(Z) <1.5 mol?L-1;0<c(W) <1 mol?L-1 故答案为D。 【点评】由于可逆反应总是不能完全进行到底,故在可逆反应中分析反应物、生成物的量时利用极值法把可逆反应看成向左或向右进行完全的反应,这样可以准确、迅速得出答案。三.利用极值法确定多个平行反应中生成物浓度的范围 例3:在标准状况下,将NO2、NO、O2的混合气体充满容器后倒置于水中,气体完全溶解,溶液充满容器。若产物不扩散到容器外,则所得溶液的物质的量浓度为() A、1/22.4 mol?L-1 B、1/28 mol?L-1 C、1/32 mol?L-1 D、1/40 mol?L-1

极限计算方法总结(简洁版)

极限计算方法总结(简洁版) 一、极限定义、运算法则和一些结果 1.定义:(各种类型的极限的严格定义参见《高等数学》函授教材,这里不一一叙述)。 说明:(1)一些最简单的数列或函数的极限(极限值可以观察得到)都可以用上面的极限严格定义证 明,例如:)0,(0lim ≠=∞→a b a an b n 为常数且;5)13(lim 2=-→x x ;???≥<=∞→时当不存在, 时当,1||1||0lim q q q n n ; 等等 (2)在后面求极限时,(1)中提到的简单极限作为已知结果直接运用,而不需再用极限严格定义证明。 2.极限运算法则 定理 1 已知 )(lim x f ,)(lim x g 都存在,极限值分别为A ,B ,则下面极限都存在,且有 (1) B A x g x f ±=±)]()(lim[ (2)B A x g x f ?=?)()(lim (3))0(,)()(lim 成立此时需≠=B B A x g x f 说明:极限号下面的极限过程是一致的;同时注意法则成立的条件,当条件不满足时,不能用。 3.两个重要极限 (1) 1sin lim 0=→x x x (2) e x x x =+ →1 )1(lim ; e x x x =+∞ →)11(lim 说明:不仅要能够运用这两个重要极限本身,还应能够熟练运用它们的变形形式, 作者简介:靳一东,男,(1964—),副教授。 例如: 133sin lim 0=→x x x ,e x x x =--→21 0)21(lim ,e x x x =+∞→3)3 1(lim ;等等。 4.等价无穷小 定理2 无穷小与有界函数的乘积仍然是无穷小(即极限是0)。 定理3 当0→x 时,下列函数都是无穷小(即极限是0),且相互等价,即有: x ~x sin ~x tan ~x arcsin ~x arctan ~)1ln(x +~1-x e 。 说明:当上面每个函数中的自变量x 换成)(x g 时(0)(→x g ),仍有上面的等价

数学分析中求极限的方法总结

数学分析中求极限的方法 总结 This model paper was revised by the Standardization Office on December 10, 2020

数学分析中求极限的方法总结 1 利用极限的四则运算法则和简单技巧 极限的四则运算法则叙述如下: 定理:如果0 x x lim f x =,lim g x =x x →→A B ()() (1)[]0 lim ()()lim ()lim ()x x x x x x f x g x f x g x →→→±=±=A ±B (2)[]0 x x lim f x g x =lim f x)lim ()x x x x g x →→→??=A?B ()()( (3)若B ≠0 (4)0 x lim c ()lim ()x x x f x c f x c →→?=?=A (5)[]00lim ()lim ()n n n x x x x f x f x →→??==A ????(n 为自然数) 上述性质对于,,x x x →∞→+∞→-∞也同样成立i 由上述的性质和公式我们可以看书函数的和、差、积、商的极限等于函数极限的和、差、积、商。 例1. 求225 lim 3x x x →+-的极限 解:由定理中的第三式可以知道 例2. 求3 x →的极限

式子经过化简后就能得到一个只有分母含有未知数的分式,直接求极限即可 例3. 已知 ()1111223 1n x n n = +++ ??-?,求lim n n x →∞ 解: 观察 11=112 2-? 111=2323- ?因此得到 ()1111223 1n x n n = +++ ??-? 所以 1lim lim 11n n n x n →∞→∞ ?? =-= ??? 2 利用导数的定义求极限 导数的定义:函数f(x)在0x 附近有定义,χ??,则 如果 存在, 则此极限值就称函数f(x)在点0x 的导数记为 () 0'f x 。 即 在这种方法的运用过程中,首先要选好f(x)。然后把所求极限都表示成f(x)在定点 x 的导数。

极限法在化学计算中的应用

极限法在化学计算中的应用 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围,以此来做计算或确定混合物的组成。 1.把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应,生成氯化银沉淀300mg,则 该氯化镁中的杂质可能是() A.氯化钠B.氯化铝C.氯化钾D.氯化钙 2.取 3.5 g某二价金属的单质投入50g溶质质量分数为18.25%的稀盐酸中,反应结束后,金属仍有剩余;若2.5g 该金属投入与上述相同质量、相同质量分数的稀盐酸中,等反应结束后,加入该金属还可以反应。该金属的相对原子质量为( ) A.24 B.40 C.56 D.65 3.在一定条件下,气体A可发生如下反应:2 A(g) B(g)+3 C(g)。若已知所得混合气体对H2的相对密 度为4.25。则A的式量可能是() A.8.5 B.16 C.17 D.34 4.取 5.4 g由碱金属(R)及其氧化物(R2O)组成的混合物,使之与足量水反应,蒸发反应后的溶液,得到8 g无水晶体。通过计算判断此金属为哪一种碱金属。 5.某混合物含有KCl、NaCl、Na2CO3,经分析知含Na 31.5%,含氯为27.08%(质量百分含量)。则该混合物 中含Na2CO3为( ) A.25% B.50% C.80% D.无法确定 6.0.03mol铜完全溶于硝酸,产生氮的氧化物(NO、NO2、N2O4)混合气体共0.05mol。求该混合气体的平均 相对分子质量的取值范围。 7.常温下A和B两种气体组成的混合气体(A的分子量大于B的分子量),经分析混合气中只含有氮和氢两种元素,而且,不论A和B以何种比例混合,氮和氢的质量比总大于14/3。由此可确认A为①____,B为②____,其理由是③____。若上述混合气体中氮和氢的质量比为7:1,则在混合气中A和B的物质的量之比为④____;A在混合气中的体积分数为⑤____。 8.等物质的量的NaHCO3和KHCO3的混合物9.20g与100mL盐酸反应。 (1)试分析,欲求标准状况下生成的CO2的体积时,还需什么数据(用a、b等表示,要注明单位)。 (2)利用所确定的数据,求标准状况下生成的CO2的体积: 所需数据的取值范围生成CO2的体积(标准状况) 盐酸不足时 盐酸过量时 (3)若NaHCO3和KHCO3不是等物质的量混合,则9.2g固体与盐酸完全反应时,在标准状况下生成CO2气体的体积大于L,小于L 。

数学分析求极限的方法

求极限的方法 具体方法 ⒈利用函数极限的四则运算法则来求极限 定理1①:若极限)(lim 0 x f x x →和)(lim x g x x →都存在,则函数)(x f ±)(x g ,)()(x g x f ? 当0x x →时也存在且 ①[])()()()(lim lim lim 0 .00 x g x f x g x f x x x x x →→→± = ± ②[])()()()(lim lim lim 0 x g x f x g x f x x x x x x →→→?= ? 又若0)(lim 0 ≠→x g x x ,则 ) ()(x g x f 在0x x →时也存在,且有 ) ()() ()(lim lim lim x g x f x g x f x x x x x x →→→= 利用极限的四则运算法则求极限,条件是每项或每个因子极限存在,一般所给的变量都不满足这个条件,如 ∞ ∞、 0等情况,都不能直接用四则运算法则, 必须要对变量进行变形,设法消去分子、分母中的零因子,在变形时,要熟练掌握饮因式分解、有理化运算等恒等变形。 例1:求2 42 2 lim --- →x x x 解:原式=()() ()022 22lim lim 2 2 =+= -+-- - →→x x x x x x ⒉用两个重要的极限来求函数的极限 ①利用1sin lim =→x x x 来求极限 1sin lim =→x x x 的扩展形为: 令()0→x g ,当0x x →或∞→x 时,则有 ()() 1sin lim =→x g x g x x 或()() 1sin lim =∞ →x g x g x

论文二重极限计算方法

包头师范学院 本科毕业论文 题目:二重极限的计算方法 学生姓名:王伟 学院:数学科学学院 专业:数学与应用数学 班级:应数一班 指导教师:李国明老师 二〇一四年四月

摘要 函数极限是高等数学中非常重要的内容。关于一元函数的极限及求法,各种高等数学教材中都有详细的例题和说明。二元函数极限是在一元函数极限的基础上发展起来的,二者之间既有联系又有区别。本文在二元函数定义基础上通过求对数,变量代换等方式总结了解决二重极限问题的几种方法,并给出相关例题及解题步骤,及二重极限不存在的几种证明方法。 关键词:二重极限变量代换等不存在的证明二元函数连续性

Abstract The limit function is a very important contents of advanced mathematics. The limit of a function and method, all kinds of advanced mathematics textbooks are detailed examples and explanation. The limit function of two variables is the basis for the development in the limit of one variable function on it, there are both connections and differences in the two yuan on the basis of the definition of the logarithm function between the two, variable substitution, summarizes several methods to solve the problem of double limit, and gives some examples and solving steps. Several proof method and double limit does not exist. keywords: Double limit variable substitution, etc. There is no proof Dual function of continuity

考研数学极限计算方法:利用单侧极限

https://www.wendangku.net/doc/3e19147835.html, 版权所有翻印必究 考研数学极限计算方法:利用单侧极限 今天给大家带来极限计算方法中的利用单侧极限来求极限。为什么会有单侧极限这种极限的计算方法呢,我们知道极限存在的充要条件要求函数左右两侧的极限同时存在且相等才表示函数极限存在,那么在极限计算中出现哪些“信号”是要分左右极限计算呢? 第一,当分段函数的分段点两侧表达式不同时,求分段点处的极限利用单侧极限。例如,讨论函数1,0arcsin(tan )()2,0ln(1arctan ),0121x e x x f x x x x x ?-+-?? 在0=x 处的极限。分析:在做这道题时我们发现0=x 处左右两侧的解析式是不同的,所以计算0=x 处的极限要分左右来求解,也即 1lim 22 1arctan lim 121)arctan 1ln(lim 000==?=-+++++→→→x x x x x x x x x ,1tan lim )arcsin(tan 1lim 00==---→→x x x e x x x ,左右两侧的极限同时存在且相等,所以1)(lim 0 =→x f x 。有一些特殊的分段函数,如,[],max{},min{},sgn x x x ,当题目中出现这几个函数时需要考虑单侧极限。 第二,如果出现(),arctan e a ∞∞∞,求极限是要分左右的,例如,???? ? ??+++→x x e e x x x sin 12lim 410分析:这道题让我们求解0=x 处的极限,我们发现它有x ,在脱绝对值时

版权所有翻印必究 https://www.wendangku.net/doc/3e19147835.html, 2会出现负号,同时出现了e ∞,故分单侧计算极限, 11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ++++→→→→????+++ ? ?+=+=+= ? ? ? ?+++????,11144400002sin 2sin 2sin lim lim lim lim 1111x x x x x x x x x x e x e x e x x x x e e e ----→→→→????+++ ? ?+=-=-= ? ? ? ?+++???? ,所以1sin 12lim 410=???? ? ??+++→x x e e x x x 。上述几种情况原理比较简单,但是需要同学们在做题目中多去总结,掌握其具体的解题思路,也要将知识点和不同类型的题目建立联系,提高自己的解题能力。

爆炸极限的计算方法

爆炸极限的计算方法 1 根据化学理论体积分数近似计算 爆炸气体完全燃烧时,其化学理论体积分数可用来确定链烷烃类的爆炸下限,公式如下: L下≈0.55c0 式中 0.55——常数; c0——爆炸气体完全燃烧时化学理论体积分数。若空气中氧体积分数按20.9%计,c0可用下式确定 c0=20.9/(0.209+n0) 式中 n0——可燃气体完全燃烧时所需氧分子数。 如甲烷燃烧时,其反应式为 CH4+2O2→CO2+2H2O 此时n0=2 则L下=0.55×20.9/(0.209+2)=5.2由此得甲烷爆炸下限计算值比实验值5%相差不超过10%。 2 对于两种或多种可燃气体或可燃蒸气混合物爆炸极限的计算 目前,比较认可的计算方法有两种: 2.1 莱?夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱?夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 2.2 理?查特里公式 理?查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。 Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。 Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369 3 可燃粉尘 许多工业可燃粉尘的爆炸下限在20-60g/m3之间,爆炸上限在2-6kg/m3之间。 碳氢化合物一类粉尘如能完全气化燃尽,则爆炸下限可由布尔格斯-维勒关系式计算: c×Q=k

高数-极限求解方法与技巧总结

第一章 极限论 极限可以说是整个高等数学的核心,贯穿高等数学学习的始终。因为有关函数的可积、连续。可导等性质都是用极限来定义的。毫不夸张地说,所谓高数,就是极限。衡量一个人高等数学的水平只需看他对极限的认识水平,对极限认识深刻,有利于高等数学的学习,本章将介绍数列的极限、函数的极限以及极限的求解。重点是求极限。 ??????? ?? ?? ?? 极限的定义数列极限极限的性质 函数极限的定义函数极限函数极限的性质 一、求极限的方法 1.利用单调有界原理 单调有界原理:若数列具有单调性、且有有界性,也即单调递增有上界、单调递减有下界,则该数列的极限一定存在。可以说,整个高等数学是从该结论出发来建立体系的。 利用该定理一般分两步:1、证明极限存在。2、求极限。 说明:对于这类问题,题中均给出了数列的第n 项和第1n +项的关系式,首先用归纳法或作差法或作商法等证明单调性,再证明其有界性(或先证有界、再证单调性),由单调有界得出极限的存在性,在最终取极限。 例1设0110,0,()0,1,2n n n a a x x x n x +>>=+=,…证{}n x 的极限存在,并求其极限。 分析:本题给出的是数列前后两项的关系,所以应该用单调有界原理求解。 解:由基本不等式,11()2n n n a x x x +=+≥n x 有下界;下面证单 调性,可知当2n ≥时,有2 111 ()()22n n n n n n n x a x x x x x x +=+≤+=,则n x 单调递减。综 合可得,则n x 单调递减有下界,所以lim n n x →∞ 存在;令lim n n x A →∞ = ,带入等式解得 A 评注:对于该题,再证明有界性的过程中用到基本不等式;特别是在证明单调性

(完整word)高中化学极限法

专题7·极限法 极限判断是指从事物的极端上来考虑问题的一种思维方法。该思维方法的特点是确定了事物发展的最大(或最小)程度以及事物发生的范围。 例1 :在120℃时分别进行如下四个反应: A.2H2S+O2=2H2O+2S B.2H2S+3O2=2H2O+2SO2 C.C2H4+3O2=2H2O+2CO2D.C4H8+6O2=4H2O+4CO2 (l)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(P)分别符合关系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。 (2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合关系式d前>d后和V前d后和V前>V后的是(请填写反应的代号)。 方法:从反应物全部变成生成物来作极限判断。 解析:(1)在容积固定的容器内,四个反应的反应物和生成物中除硫单质外均为气体, 总结:解本题还应用了物理学中气态方程和化学中的阿伏加德罗定律。这是一道物理和化学学科间综合试题,体现了当今的命题方向。 例2 :把含有某一种氯化物杂质的氯化镁粉末95mg溶于水后,与足量的硝酸银溶液反应, 生成氯化银沉淀300mg,则该氯化镁中的杂质可能是() A.氯化钠B.氯化铝C.氯化钾D.氯化钙

方法:采用极值法或平均分子量法。 解析:[解法一]:(极值法) 假设95mg全为MgCl2,无杂质,则有:MgCl2 ~ 2AgCl 95mg2×143.5mg 生成沉淀为287mg,所以假设95mg全部为杂质时,产生的AgCl沉淀应大于300mg。 总结:极值法和平均分子量法本质上是相同的,目的都是求出杂质相对分子量的区间值,或者杂质中金属元素的原子量的区间值,再逐一与选项比较,筛选出符合题意的选项。 例3 :在一个容积固定的反应器中,有一可左右滑动的密封隔板,两侧分别进行如图所示的可逆反应.各物质的起始加入量如下:A、B和C均为4.0mol、D为6.5 mol、F为2.0 mol,设E为x mol.当x在一定范围内变化时,均可以通过调节反应器的温度,使两侧反应都达到平衡,并且隔板恰好处于反应器的正中位置.请填写以下空白:

关于计算极限的几种方法

目录 摘要 (1) 引言 (2) 一.利用导数定义求极限 (2) 二.利用中值定理求极限 (2) 三.利用定积分定义求极限 (3) 四.利用施笃兹公式 (4) 五.利用泰勒公式 (5) 六.级数法 (5) 七.结论 (6) 参考文献 (6)

内容摘要 摘要:极限是数学分析中最基本、最重要的概念之一,极限是微积分的重要基础,研究函数性质的重要手段.极限是描述函数在无限过程中的变化趋势的重要概念,本文通过典型例题,举一反三,给出几种常用的求极限方法。极限的计算方法很多,并且有一定的规律和技巧性,对此,本文将根据实例进行分析、探讨,并归纳出一些计算方法. 关键词:极限;计算;方法 Abstract:the limit is one of the most basic, the most important concept in mathematical analysis, the limit is an important foundation for the calculus, an important means to study the function of the nature of the concept description. The limit is an important trend in the infinite process function, through typical examples, infer other things from one fact,several commonly used methods for the limits. A lot of calculation method of limit, and there are rules and skills, certain of

相关文档