文档库 最新最全的文档下载
当前位置:文档库 › 按键识别程序

按键识别程序

按键识别程序
按键识别程序

#include

sbit BY1=P3^4; //定义按键的输入端S2键unsigned char count; //按键计数,每按一下,count加1 unsigned char temp;

unsigned char a,b;

void delay10ms(void) //延时程序

{

unsigned char i,j;

for(i=20;i>0;i--)

for(j=248;j>0;j--);

}

key() //按键判断程序

{

if(BY1==0) //判断是否按下键盘

{

delay10ms(); //延时,软件去干扰

if(BY1==0) //确认按键按下

{

count++; //按键计数加1

if(count==8) //计8次重新计数

{

count=0; //将count清零

}

}

while(BY1==0);//按键锁定,每按一次count只加1.

}

}

move() //广告灯向左移动移动函数

{

a=temp<

b=temp>>(8-count);

P1=a|b;

}

main()

{

count=0; //初始华参数设置

temp=0xfe;

P1=0xff;

P1=temp;

while(1) //永远循环,扫描判断按键是否按下

{

key(); //调用按键识别函数

move(); //调用广告灯移动函数}

}

汇编矩阵键盘程序

方法一、 ORG 0000H LJMP MAIN ORG 0100H MAIN: MOV P1,#0F0H //P1口设初值F0,矩阵按键高四位置1,低四位置0, JNB P1.4,Y0 //用JNB检测按键端口,P1.4口低电平跳转 Y0 JNB P1.5,Y1 JNB P1.6,Y2 JNB P1.7,Y3 SJMP MAIN Y0: MOV 30H,#00H MOV P1,#0EFH JNB P1.4,X0 MOV P1,#0DFH JNB P1.4,X1 MOV P1,#0BFH JNB P1.4,X2 MOV P1,#07FH JNB P1.4,X3 Y1: MOV 30H,#01H MOV P1,#0EFH JNB P1.0,X0 MOV P1,#0DFH JNB P1.1,X1 MOV P1,#0BFH JNB P1.2,X2 MOV P1,#7FH JNB P1.3,X3 Y2: MOV 30H,#02H MOV P1,#0EFH JNB P1.0,X0 MOV P1,#0DFH JNB P1.1,X1 MOV P1,#0BFH JNB P1.2,X2 MOV P1,#7FH JNB P1.3,X3 Y3: MOV 30H,#03H MOV P1,#0EFH

MOV P1,#0DFH JNB P1.1,X1 MOV P1,#0BFH JNB P1.2,X2 MOV P1,#7FH JNB P1.3,X3 X0: MOV 31H,#00H ACALL DELAY MOV P1,#0F0H LJMP JISUAN X1: MOV 31H,#01H ACALL DELAY MOV P1,#0F0H LJMP JISUAN X2: MOV 31H,#02H ACALL DELAY MOV P1,#0F0H LJMP JISUAN X3: MOV 31H,#03H ACALL DELAY MOV P1,#0F0H LJMP JISUAN JISUAN: MOV A,31H MOV B,#04H MUL AB ADD A,30H MOV DPTR,#TAB MOVC A,@A+DPTR MOV P0,A CC: MOV A,P1 ANL A,#0F0H XRL A,#0F0H JNZ CC LCALL MAIN DELAY: MOV R4,#0C5H D1: MOV R5,#43H D0: MOV R6,#10H

超经典CAD lisp程序集锦、CAD快捷键大全

超经典CAD lisp程序集锦 如果您使用 AutoCAD,下面的内容对您一定有帮助。在某些方面能大大提高 您的工作效率。下面的程序均以源程序方式给出,您可以使用、参考、修改它。 bg.lsp --- 表格自动生成 asc.lsp --- 将文本文件内容写入图中,字符是单个的 wf.lsp --- 将图中字符写入磁盘 exstr.lsp --- 将字符串分解成单字 pgtxt.lsp --- 将字符合成字符串 pb.lsp --- 通过给出长度将字符串分成两个串 cht.lsp --- 直接修改文字内容或块属性 ct.lsp --- 对数字串进行加减 chh.lsp --- 直接修改文字高度 chhw.lsp --- 直接修改文字高宽比(针对PKPM软件将字符定位点改为左下角) chst.lsp --- 直接修改文字字体 txt.shx --- 修改后的标准txt.shx文件。(kuozhan.sld为增强的内容幻灯片) tiao.lsp --- 配合修改过的标准字体文件,将中文字符调大 tiao1.lsp --- 配合修改过的标准字体文件,将英文字符调小 untiao.lsp --- 上两个程序的复原 sht.lsp --- 在图中查找字符串 zhuang.lsp --- 桩点及钎探号绘制(勘测图) dim.lsp --- 配合JT.DWG将尺寸标注调成适合建筑结构设计(1:1) dimm.lsp --- 配合JT.DWG将尺寸标注调成适合建筑结构设计(1:100)

di1.lsp~di8.lsp --- 直接连续标注尺寸(用于1:1的图) di100.lsp~di800.lsp --- 直接连续标注尺寸(用于1:100的图) 详细内容及附件下载请浏览北纬服务论坛 https://www.wendangku.net/doc/3019164818.html,/thread-2724-1-1.html

矩阵键盘的工作原理和扫描确认方式

9.3.1 矩阵键盘的工作原理和扫描确认方式 来源:《AVR单片机嵌入式系统原理与应用实践》M16华东师范大学电子系马潮 当键盘中按键数量较多时,为了减少对I/O 口的占用,通常将按键排列成矩阵形式,也称为行列键盘,这是一种常见的连接方式。矩阵式键盘接口见图9-7 所示,它由行线和列线组成,按键位于行、列的交叉点上。当键被按下时,其交点的行线和列线接通,相应的行线或列线上的电平发生变化,MCU 通过检测行或列线上的电平变化可以确定哪个按键被按下。 图9-7 为一个 4 x 3 的行列结构,可以构成12 个键的键盘。如果使用 4 x 4 的行列结构,就能组成一个16 键的键盘。很明显,在按键数量多的场合,矩阵键盘与独立式按键键盘相比可以节省很多的I/O 口线。 矩阵键盘不仅在连接上比单独式按键复杂,它的按键识别方法也比单独式按键复杂。在矩阵键盘的软件接口程序中,常使用的按键识别方法有行扫描法和线反转法。这两种方法的基本思路是采用循环查循的方法,反复查询按键的状态,因此会大量占用MCU 的时间,所以较好的方式也是采用状态机的方法来设计,尽量减少键盘查询过程对MCU 的占用时间。 下面以图9-7 为例,介绍采用行扫描法对矩阵键盘进行判别的思路。图9-7 中,PD0、PD1、PD2 为3 根列线,作为键盘的输入口(工作于输入方式)。PD3、PD4、PD5、PD6 为4根行线,工作于输出方式,由MCU(扫描)控制其输出的电平值。行扫描法也称为逐行扫描查询法,其按键识别的过程如下。 √将全部行线PD3-PD6 置低电平输出,然后读PD0-PD2 三根输入列线中有无低电平出现。只要有低电平出现,则说明有键按下(实际编程时,还要考虑按键的消抖)。如读到的都是高电平,则表示无键按下。 √在确认有键按下后,需要进入确定具体哪一个键闭合的过程。其思路是:依

Verilog写的按键消抖程序

前几天看了特权同学用Verilog写的按键消抖程序,感觉很经典。在这里将程序贴出来分享一下。 module lcd_button2(clk,rst,seg,wei,sw1,sw2,sw3,sw4);//按键按下,数码管依次显示0-9 input clk; input rst; input sw1,sw2,sw3,sw4; output [3:0] wei; output[7:0] seg; reg [7:0] seg; reg [3:0] wei; integer num; initial begin num = 0; end reg[3:0] key_rst; always @(posedge clk or negedge rst) if(!rst) key_rst <= 4'b1111; else key_rst <= {sw4,sw3,sw2,sw1}; reg[3:0] key_rst_r; always @(posedge clk or negedge rst) if(!rst) key_rst_r <= 4'b111; else key_rst_r <= key_rst; wire[3:0] key_an = key_rst_r & (~key_rst); reg[19:0] cnt; always @(posedge clk or negedge rst) if(!rst) cnt <= 0; else if(key_an) cnt <= 0; else cnt <= cnt+1'b1; reg [3:0] low_sw; always @(posedge clk or negedge rst)

按键识别方法

《单片机原理及应用》大作业设计 学院班级: 姓名: 学号

按键识别方法 一.设计任务: 每按下一次开关SP1,计数值加1,通过AT89S51单片机的P1端口的P1.0到P1.3显示出其的二进制计数值。 二.电路原理图:

图1 三.系统板上硬件连线: 1.把“单片机系统”区域中的P3.7/RD端口连接到“独立式键盘”区域中的SP1端口上; 2.把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到L1,P1.1连接到L2,P1.2连接到L3,P1.3连接到L4上。 四.程序设计方法: 其实,作为一个按键从没有按下到按下以及释放是一个完整的过程,也就是说,当我们按下一个按键时,总希望某个命令只执行一次,而在按键按下的过程中,不要有干扰进来,因为,在按下的过程中,一旦有干扰过来,可能造成误触发过程,这并不是我们所想要的。因此在按键按下的时候

图2 要把我们手上的干扰信号以及按键的机械接触等干扰信号给滤除掉,一般情况下,我们可以采用电容来滤除掉这些干扰信号,但实际上,会增加硬件成本及硬件电路的体积,这是我们不希望,总得有个办法解决这个问题,因此我们可以采用软件滤波的方法去除这些干扰。 信号,一般情况下,一个按键按下的时候,总是在按下的时刻存在着一定的干扰信号,按下之后就基本上进入了稳定的状态。具体的一个按键从按下到释放的全过程的信号图如上图所示,从图中可以看出,我们在程序设计时,从按键被识别按下之后,延时5ms以上,从而避开了干扰信号区域,我们再来检测一次,看按键是否真得已经按下,若真得已经按下,这时肯定输出为低电平,若这时检测到的是高电平,证明刚才是由于干扰信号引起的误触发,CPU就认为是误触发信号而舍弃这次的按键识别过程。从而提高了系统的可靠性。由于要求每按下一次,命令被执行一次,直到下一次再按下的时候,再执行一次命令,因此从按键被识别出来之后,我们就可以执行这次的命令,所以要有一个等待按键释放的过程,显然释放的过程,就是使其恢复成高电平状态。 对于按键识别的指令,我们依然选择如下指令JB BIT,REL指令是用来检测BIT是否为高电平,若BIT=1,则程序转向REL处执行程序,否则就继续向 下执行程序。或者是JNB BIT,REL指令是用来检测BIT是否为低电平,若BIT =0,则程序转向REL处执行程序,否则就继续向下执行程序。

矩阵键盘控制12864显示最经典程序

#include //这个程序的功能:用4*4的矩阵键盘(接P3口)按键盘k1——k16中的任何一个键ki #include //12864液晶上显示数字i-1 (液晶数据口接P0) #define uint unsigned int//键盘扫描的思想是将行设置为低,列设置为高,来读取P3口的值,就能知道是哪个按键按下了 #define uchar unsigned char #define LCDdata P0 sbit E = P2^7; sbit RW = P2^6; sbit RS = P2^5; void init(); void delayms(uint x); void displaykey(); void write_com(uchar com);//写命令 void write_data(uchar date);//写数据 uchar temp; //--------------主函数----------------- void main() { init();// P3=0xfe;//P3=0xfd;//P3=0xfb;//P3=0xf7; while(1) { displaykey(); } } //-------------液晶初始化---------------- void init() { write_com(0x01); write_com(0x02); write_com(0x06); write_com(0x0e); } //------------毫秒延时--------------- void delayms(uint x) { uchar i; while(x--) {

课程设计-制作单片机的4X4矩阵键盘

课程设计-制作单片机的4X4矩阵键盘

目录 摘要.............................................. 错误!未定义书签。第一章硬件部分 (5) 第一节AT89C51 (5) 第二节4*4矩阵式键盘 (8) 第三节LED数码管 (11) 第四节硬件电路连接 (13) 第二章软件部分 (15) 第一节所用软件简介 (15) 第二节程序流程图 (18) 第三节程序 (20) 第三章仿真结果 (23) 心得体会 (26) 参考文献 (27)

第一章硬件部分 第一节AT89C51 AT89C51是一种带4K字节FLASH存储器(FPEROM—Flash Programmable and Erasable Read Only Memory)的低电压、高性能CMOS 8位微处理器,俗称单片机。AT89C51单片机为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。引脚如图所示 AT89C5 图1 AT89C51管脚 图 AT89C51其具有以下特性: 与MCS-51 兼容 4K字节可编程FLASH存储器 寿命:1000写/擦循环 数据保留时间:10年

全静态工作:0Hz-24MHz 三级程序存储器锁定 128×8位内部RAM 32可编程I/O线 两个16位定时器/计数器 5个中断源 可编程串行通道 低功耗的闲置和掉电模式 片内振荡器和时钟电路 特性概述: AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 接口,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。同时,AT89C51可降至0Hz的静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作。掉电方式保存RAM中的内容,但振荡器停止工作并禁止其它所有部件工作直到下一个硬件复位。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P0口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的低八位。在FIASH编程时,P0 口作为原码输入口,当FIASH进行校验时,P0输出原码,此时P0外部必须接上拉电阻。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下拉为低电平时,将输出电流,这是由于内部上拉的缘故。在FLASH编程和校验时,P1口作为低八位地址接收。

按键控制键盘检测原理与应用

按键控制键盘检测原理与应用 一、任务目标: 认知目标 1、 掌握按键分类及工作原理 2、 掌握IF 条件选择结构和使用方法 3、 掌握循环结构和使用原理 4、 掌握独立按键子函数的编写原理及方法 1、独立键盘 在简单的单片机应用系统中,往往只需要几个功能键就能满足要求, 此时,可采用独立 式按键结构。 独立式按键是直接用 I/O 口线构成的单个按键电路,其特点是每个按键单独占用一根 I/O 口线,每个按键的工作不会影响其它 I/O 口线的状态。独立式按键的典型应用如图 1.2.1 所示。 独立式按键示意图 独立式按键电路配置灵活,软件结构简单,但每个按键必须占用一根 I/O 口线,因此, 在按键较多时,I/O 口线浪费较大,不宜采用。 程序开始,检测按键是否被按下,若按下,则移动机器人启动,未被按下,继续检测。 这里将程序分成三个部分,分别是延时子函数、按键子函数、主函数。 延时子函数,通过参数 t 设置延时时间;按键模块子函数需用到延时函数,对按键进行 消抖;主函数主要调用按键检测程序,实现对移动机器人的控制。程序流程图如图 1.2.2所 示 xnu Lnu Jnu L] iu lu o 1 3 4 5 6 - IL I 」 IL IL IL IL IL IL- PPPPFFPP 3 S-I

程序示例: 在编写程序开始的部分,将系统头文件“STC89C52RC.H ”包含进来,对常用的变量类 型进行宏定义,规划各函数和变量,对变量进行定义和初始化,对自定义子函数进行声明并添加相应标注,程序开始部分如下 sbit IN仁P1A0; sbit IN2=P1A1; Void key(); 编写主函数,在主函数中就是调用按键检测函数。 Void mai n() { key(); } 编写key()按键检测函数,按键按下,输出低电平,通过if语句检测低电平,延时10ms 后,再次检测,若检测为高电平,则表示为机械抖动,若检测到低电平表示按键按下。 Void key() { if(IN1==0) { delay_ms(10); if(IN 仁=0) { while(IN 仁=0); IN2=~IN2 ; } } } 在上面的程序中,就只有一个检查按键扫描的函数key(),key()函数是检查有没有按键

经典的矩阵键盘扫描程序

键盘是单片机常用输入设备,在按键数量较多时,为了节省I/O口等单片机资源,一般采取扫描的方式来识别到底是哪一个键被按下。即通过确定被按下的键处在哪一行哪一列来确定该键的位置,获取键值以启动相应的功能程序。 4*4矩阵键盘的结构如图1(实物参考见万用板矩阵键盘制作技巧)。在本例中,矩阵键盘的四列依次接到单片机的P1.0~P1.3,四行依次接到单片机的P1.4~P1.7;同时,将列线上拉,通过10K电阻接电源。 查找哪个按键被按下的方法为:一个一个地查找。 先第一行输出0,检查列线是否非全高; 否则第二行输出0,检查列线是否非全高; 否则第三行输出0,检查列线是否非全高; 如果某行输出0时,查到列线非全高,则该行有按键按下; 根据第几行线输出0与第几列线读入为0,即可判断在具体什么位置的按键按下。 下面是具体程序:

void Check_Key(void) { unsigned char row,col,tmp1,tmp2; tmp1 = 0x10; //tmp1用来设置P1口的输出,取反后使 P1.4~P1.7中有一个为0 for(row=0;row<4;row++) // 行检测 { P1 = 0x0f; // 先将p1.4~P1.7置高 P1 =~tmp1; // 使P1.4~p1.7中有一个为0 tmp1*=2; // tmp1左移一位 if ((P1 & 0x0f) < 0x0f) // 检测P1.0~P1.3中是否有一位为0,只要有,则说明此行有键按下,进入列检测 { tmp2 = 0x01; // tmp2用于检测出哪一列为0 for(col =0;col<4;col++) // 列检测 { if((P1 & tmp2)==0x00) // 该列如果为低电平则可以判定为该列 { key_val =key_Map[ row*4 +col ]; // 获取键值,识别按键;key_Map为按键的定义表 return; // 退出循环 } tmp2*=2; // tmp2左移一位 } } } } //结束 这是一种比较经典的矩阵键盘识别方法,实现起来较为简单,程序短小精炼。

单片机按键识别方法之一

单片机按键识别方法之一 1.实验任务 每按下一次开关SP1,计数值加1,通过AT89S51单片机的P1端口的P1.0到P1.3显示出其的二进制计数值。 2.电路原理图 图4.8.1 3.系统板上硬件连线 (1.把“单片机系统”区域中的P3.7/RD端口连接到“独立式键盘”区域中的SP1端口上;

(2.把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到L1,P1.1连接到L2,P1.2连接到L3,P1.3连接到L4上。 4.程序设计方法 (1.其实,作为一个按键从没有按下到按下以及释放是一个完整的过程,也就是说, 当我们按下一个按键 时,总希望某个命令只 执行一次,而在按键按 下的过程中,不要有干 扰进来,因为,在按下的过程中,一旦有干扰过来,可能造成误触发过程,这并不是我们所想要的。 因此在按键按下的时候,图4.8.2 要把我们手上的干扰信号以及按键的机械接触等干扰信号给滤除掉,一般情况 下,我们可以采用电容来滤除掉这些干扰信号,但实际上,会增加硬件成本及 硬件电路的体积,这是我们不希望,总得有个办法解决这个问题,因此我们可 以采用软件滤波的方法去除这些干扰信号,一般情况下,一个按键按下的时候, 总是在按下的时刻存在着一定的干扰信号,按下之后就基本上进入了稳定的状 态。具体的一个按键从按下到释放的全过程的信号图如上图所示: 从图中可以看出,我们在程序设计时,从按键被识别按下之后,延时5ms以上,从而避开了干扰信号区域,我们再来检测一次,看按键是否真得已经按下,若真得已经按下,这时肯定输出为低电平,若这时检测到的是高电平,证明刚才是由于干扰信号引起的误触发,CPU 就认为是误触发信号而舍弃这次的按键识别过程。从而提高了系统的可靠性。 由于要求每按下一次,命令被执行一次,直到下一次再按下的时候,再执行一次命令,因此从按键被识别出来之后,我们就可以执行这次的命令,所以要有一个等待按键释放的过程,显然释放的过程,就是使其恢复成高电平状态。

键盘矩阵的按键识别方法

在键盘中按键数量较多时,为了减少I/O口的占用,通常将按键排列成矩阵形式,在矩阵键盘中每条水平线和垂直线在交叉处不直接相连,而是通过一个按键相连接,这样在由N条水平线和M条垂直线最多可以有N *M 个按键,大大的减少了对于芯片I/O的占用。 键盘矩阵的按键识别方法 图1 矩阵键盘的结构 方法一行扫描法 1、判断键盘中有无键按下将全部行线P1.4-P1.7置低电平,当然P1.0-P1.3为高电平(或许芯片内部已经将这些引脚它上拉),然后检测列线的状态。只要有一列的电平为低,则表示键盘中有键被按下,而且闭合的键位于低电平线与4根行线相交叉的4个按键之中。若所有列线均为高电平,则键盘中无键按下。 2、判断闭合键所在的位置在确认有键按下后,即可进入确定具体闭合键的过程。其方法是:依次将行线置为低电平,即在置某根行线为低电平时,其它线为高电平。在确定某根行线位置为低电平后,再逐行检测各列线的电平状态。若某列为低,则该列线与置为低电平的行线交叉处的按键就是闭合的按键。 方法 二 先从P1口的高四位输出低电平,低四位输出高电平,从P1口的低四位读取键盘状态。再从P1口的低四位输出低电平,高四位输出高电平,从P1口的高四位读取键盘状态。将两次读取结果组合起来就可以得到当前按键的特征编码。 在I.MX27中keypad模块的实现

Keypad port 相关引脚说明: 在keypad模块中总共有16个引脚(8个行引脚 8个列引脚) KP_COL[7:0] 其中[5:0] 作为键盘模块的列引脚如果未使用也可以做为通常的GPIO口使用 [7:6]两引脚复用可以作为键盘模块的列引脚 7脚还可以用做串口2的UART2_CTS 引脚 6脚还可以当做串口2 的UART2_TXD脚使用 6脚有时还做为芯片内部的测试引脚 KP_ROW[5:0] 其中[5:0] 作为键盘模块的行引脚如果未使用也可以做为通常的GPIO口使用 [7:6]两引脚复用可以作为键盘模块的行引脚 7脚还可以用做串口2的UART2_RTS 引脚 6脚还可以当做串口2 的UART2_RXD脚使用 keypad port 相关的寄存器 KPCR 键盘控制寄存器

矩阵键盘程序c程序,51单片机.

/*编译环境:Keil 7.50A c51 */ /*******************************************************/ /*********************************包含头文件********************************/ #include /*********************************数码管表格********************************/ unsigned char table[]={0xC0,0xF9,0xA4,0xB0,0x99,0x92,0x82,0xF8,0x80,0x90,0x88,0x83,0xC6,0xA1,0x86,0x 8E}; /**************************************************************************** 函数功能:延时子程序 入口参数: 出口参数: ****************************************************************************/ void delay(void) { unsigned char i,j; for(i=0;i<20;i++) for(j=0;j<250;j++); } /**************************************************************************** 函数功能:LED显示子程序 入口参数:i 出口参数: ****************************************************************************/ void display(unsigned char i) { P2=0xfe; P0=table[i]; } /**************************************************************************** 函数功能:键盘扫描子程序 入口参数: 出口参数: ****************************************************************************/ void keyscan(void) { unsigned char n; //扫描第一行 P1=0xfe;

(完整版)Revit实用快捷键大全(绝对经典)

Revit实用快捷键大全(绝对经典) 分享自:云台网 设置快捷键时注意: 1。设置规则说明:以[ "WA" menu:"建模-墙" ]为例,"WA" 为快捷命令,"建模-墙" 为下拉彩单“建模”中的“墙”命令。注意:在引号中设置完快捷命令后,要将行首的分号; 删除掉,快捷命令才能生效。 2。目前revit的快捷命令为两个字符,例如墙的快捷命令为WA,如果设置了一个字符如W,则在软件中必须连续单击“W+空格键”,才能激活命令。 3。编辑完KeyboardShortcuts.txt 文件并保存后,需要重新启动Revit 方才生效。此时在下拉菜单中的命令后面会出现设置好的快捷命令。 ————编辑menu———— "DE" menu:"编辑-删除" "MD" menu:"编辑-修改" ; "" menu:"编辑-上次选择" "SA" menu:"编辑-选择全部实例" "MV" menu:"编辑-移动" "CO" menu:"编辑-复制" ; "CC" menu:"编辑-复制" "RO" menu:"编辑-旋转" "AR" menu:"编辑-阵列" "MM" menu:"编辑-镜像" "RE" menu:"编辑-调整大小" "GP" menu:"编辑-成组-创建组" "EG" menu:"编辑-成组-编辑" "UG" menu:"编辑-成组-解组" "LG" menu:"编辑-成组-链接组" "EX" menu:"编辑-成组-排除构件" "MP" menu:"编辑-成组-将构件移到项目" "RB" menu:"编辑-成组-恢复已排除构件"

"RA" menu:"编辑-成组-全部恢复" "AP" menu:"编辑-成组-添加到组" "RG" menu:"编辑-成组-从组中删除" "AD" menu:"编辑-成组-附着详图" "PG" menu:"编辑-成组-组属性" "FG" menu:"编辑-成组-完成组" "CG" menu:"编辑-成组-取消组" "PP" menu:"编辑-锁定位置" "UP" menu:"编辑-解锁位置" "CS" menu:"编辑-创建类似实例" "PR" menu:"编辑-属性" ————绘图menu———— "DI" menu:"绘图-尺寸标注" "EL" menu:"绘图-高程点标注-高程点" ; "" menu:"绘图-高程点标注-高程点坐标" "TX" menu:"绘图-文字" "GR" menu:"绘图-网格" "LL" menu:"绘图-标高" "TG" menu:"绘图-标记-按类别" "RM" menu:"绘图-房间" "RT" menu:"绘图-房间标记" "DL" menu:"绘图-详图线" ————工具menu———— F7 menu:"工具-拼写检查" "MA" menu:"工具-匹配" "LW" menu:"工具-线处理" "PT" menu:"工具-填色"

51单片机矩阵键盘扫描程序

/*----------------------------------------------- 名称:矩阵键盘依次输入控制使用行列逐级扫描 论坛:https://www.wendangku.net/doc/3019164818.html, 编写:shifang 日期:2009.5 修改:无 内容:如计算器输入数据形式相同从右至左使用行列扫描方法 ------------------------------------------------*/ #include //包含头文件,一般情况不需要改动,头文件包含特殊功能寄存器的定义 #define DataPort P0 //定义数据端口程序中遇到DataPort 则用P0 替换 #define KeyPort P1 sbit LATCH1=P2^2;//定义锁存使能端口段锁存 sbit LATCH2=P2^3;// 位锁存 unsigned char code dofly_DuanMa[]={0x3f,0x06,0x5b,0x4f,0x66,0x6d,0x7d,0x07,0x7f,0x6f, 0x77,0x7c,0x39,0x5e,0x79,0x71};// 显示段码值0~F unsigned char code dofly_WeiMa[]={0xfe,0xfd,0xfb,0xf7,0xef,0xdf,0xbf,0x7f};//分别对应相应的数码管点亮,即位码 unsigned char TempData[8]; //存储显示值的全局变量 void DelayUs2x(unsigned char t);//us级延时函数声明 void DelayMs(unsigned char t); //ms级延时 void Display(unsigned char FirstBit,unsigned char Num);//数码管显示函数 unsigned char KeyScan(void);//键盘扫描 unsigned char KeyPro(void); void Init_Timer0(void);//定时器初始化 /*------------------------------------------------ 主函数 ------------------------------------------------*/ void main (void) { unsigned char num,i,j; unsigned char temp[8]; Init_Timer0(); while (1) //主循环 { num=KeyPro();

51单片机C语言实验及实践教程_8.按键识别方法之一

51单片机C语言实验及实践教程_8.按键识别方法之一 发布: 2009-4-04 12:57 | 作者: 孙青安 | 查看: 88次 1.实验任务 I/O并行口直接驱动LED显示 每按下一次开关SP1,计数值加1,通过AT89S51单片机的P1端口的P1.0到P1.3显示出其的二进制计数值。 2.电路原理图 图4.8.1 3.系统板上硬件连线

(1.把“单片机系统”区域中的P3.7/RD端 口连接到“独立式键盘”区域中的SP1端口上; (2.把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连接到“八路发光二极管指示模块”区域中的“L1-L8”端口上;要求,P1.0连接到 L1,P1.1连接到L2,P1.2连接到L3,P1.3连接到L4上。 4.程序设计方法 (1.其实,作为一个按键从没有按下到按下以及释放是一个完整的过程,也就是说,当我们按下一个按键时,总希望某个命令只执行一次,而 在按键按下的过程中,不要有干扰进来,因为,在按下的过程中, 一旦有干扰过来,可能造成误触发过程,这并不是我们所想要的。因 此在按键按下的时候,图4.8.2 要把我们手上的干扰信号以及按键的机械接触等干扰信号给滤除 掉,一般情况下,我们可以采用电容来滤除掉这些干扰信号,但实际 上,会增加硬件成本及硬件电路的体积,这是我们不希望,总得有个 办法解决这个问题,因此我们可以采用软件滤波的方法去除这些干扰 信号,一般情况下,一个按键按下的时候,总是在按下的时刻存在着 一定的干扰信号,按下之后就基本上进入了稳定的状态。具体的一个 按键从按下到释放的全过程的信号图如上图所示: 从图中可以看出,我们在程序设计时,从按键被识别按下之后,延时5ms 以上,从而避开了干扰信号区域,我们再来检测一次,看按键是否真得已经按下,若真得已经按下,这时肯定输出为低电平,若这时检测到的是高电平,证明刚才是由于干扰信号引起的误触发,CPU就认为是误触发信号而舍弃这次的按键识别过程。从而提高了系统的可靠性。 由于要求每按下一次,命令被执行一次,直到下一次再按下的时候,再执行一次命令,因此从按键被识别出来之后,我们就可以执行这次的命令,所以要有一个等待按键释放的过程,显然释放的过程,就是使其恢复成高电平状态。

小键盘按键识别(微机原理课程设计)

微机原理与接口技术课程设计报告 专业: 班级: 姓名: 学号:

小键盘按键识别 一.课题任务与要求 实验箱上有一个24键小键盘,出厂时按键接点已经按图所示连接。小键盘有8根横向引出线。实验前将8根横向引出线与PA0~PA7相连,3根纵向引出线与PB0~PB2相连,再从“I/O口地址译码器”选择一个译码器输出连接到8255的片选端,做好上述连接之后,就构成了以8255为核心的键盘输入电路要求: 在实际的自动控制系统中,键盘输入电路的作用是输入数据(0~9,A~F)或者输入控制信号(G,M,P,R,W,X,Y,S)。实现上述功能的核心程序是“按键识别”。 本实验要求设计按键识别程序,当按下小键盘上某一个键的时候,主机屏幕显示闭合键的键名,按下小键盘“R”键之后停止演示。 二.完成任务的方法或方案简介 本程序显示数字0到9,刚刚开始提出两中解决方案一是用跳转法直接显示数值,二是用查找法间接显示数值,本程序是用第一种方案,虽然程序多了些,但直观容易理解,故采纳第一种方案。 DISPLAY函数用来将BUFFER中的键值显示在数码管上。 设定A口方式0输出,B口方式0输入。 GETINPUT函数通过行值和列值查出输入的键值,并将它保存在AL中,如果输入是R,则AL赋值为FFH;如果输入非法字符,则AL赋值为0AH。 设定如果是R则退出程序. CHANGE函数用来改变BUFFER中保存的键值,将BUFFER中的键值移位,最后一位加入AL中的新键值。 CLOSEALL此函数用在退出程序时将数码管关闭. 以上是主题函数,在设计过程中还碰到了一些细节问题,例数码管的显示才用延迟20MS的

51单片机矩阵键盘程序

/*风清云扬*/ # include #define uchar unsigned char #define uint unsigned int void delay(uint i) { uchar x,j; for(j=0;j

} else if(temp0==0x0b) { switch (temp1) { case 0xe0: num=12;break; case 0xd0: num=11;break; case 0xb0: num=10;break; case 0x70: num=9;break; default:num=0;break; } } else if(temp0==0x07) { switch (temp1) { case 0xe0: num=16;break; case 0xd0: num=15;break; case 0xb0: num=14;break; case 0x70: num=13;break; default:num=0;break; } } } } return num; } void main() { char num; while(1) { num=key_scan(); P2=num/10; P3=num%10; } }

一键多功能按键识别技术

1.实验任务 如图4.9.1所示,开关SP1接在P3.7/RD管脚上,在AT89S51单片机的P1端口接有四个发光二极管,上电的时候,L1接在P1.0管脚上的发光二极管在闪烁,当每一次按下开关SP1的时候,L2接在P1.1管脚上的发光二极管在闪烁,再按下开关SP1的时候,L3接在P1.2管脚上的发光二极管在闪烁,再按下开关SP1的时候,L4接在P1.3管脚上的发光二极管在闪烁,再按下开关SP1的时候,又轮到L1在闪烁了,如此轮流下去。 2.电路原理图 图4.9.1 3.系统板上硬件连线 (1.把“单片机系统”区域中的P3.7/RD端口连接到“独立式键 盘”区域中的SP1端口上; (2.把“单片机系统”区域中的P1.0-P1.4端口用8芯排线连 接到“八路发光二极管指示模块”区域中的“L1-L8”端口上; 要求,P1.0连接到L1,P1.1连接到L2,P1.2连接到L3, P1.3连接到L4上。 4.程序设计方法

(1.设计思想由来 在我们生活中,我们很容易通过这个叫张三,那个叫李四,另外一个是王五;那是因为每个人有不同的名子,我们就很快认出,同样,对于要通过一个按键来识别每种不同的功能,我们给每个不同的功能模块用不同的ID号标识,这样,每按下一次按键,ID的值是不相同的,所以单片机就很容易识别不同功能的身份了。 (2.设计方法 从上面的要求我们可以看出,L1到L4发光二极管在每个时刻的闪烁的时间是受开关SP1来控制,我们给L1到L4闪烁的时段定义出不同的ID号,当L1在闪烁时,ID=0;当L2在闪烁时,ID=1;当L3在闪烁时,ID=2;当L4在闪烁时,ID=3;很显然,只要每次按下开关K1时,分别给出不同的ID号我们就能够完成上面的任务了。下面给出有关程序设计的框图。 5.程序框图

X4扫描式矩阵键盘课程设计

X4扫描式矩阵键盘课程设计 (总13页) -CAL-FENGHAI.-(YICAI)-Company One1 -CAL-本页仅作为文档封面,使用请直接删除

4X4扫描式矩阵键盘课程设计 课程设计名称: 4_4扫描式矩阵键盘设计 姓名: DUKE 班级:电子1008班 学号: 10086 成绩: 日期: 2014年1月6日

摘要 随着21世纪的到来,电子信息行业将是人类社会的高科技行业之一,式设施现代化的基础,也是人类通往科技巅峰的直通路。电子行业的发展从长远来看很重要,但最主要的还是科技问题。 矩阵式键盘提高效率进行按键操作管理有效方法,它可以提高系统准确性,有利于资源的节约,降低对操作者本身素质的要求。是它能准时、实时、高效地显示按键信息,以提高工作效率和资源利用率。 矩阵式键盘乃是当今使用最为广泛的键盘模式,该系统以N个端口连接控制N*N 个按键,显示在LED数码管上。单片机控制依据这是键盘显示系统,该系统可以对不同的按键进行实时显示,其核心是单片机和键盘矩阵电路部分,主要对按键与显示电路的关系、矩阵式技术及设备系统的硬件、软件等各个部分进行实现。 4*4矩阵式键盘采用AT89C51单片机为核心,主要由矩阵式键盘电路、译码电路、显示电路等组成,软件选用C语言编程。单片机将检测到的按键信号转换成数字量,显示于LED显示器上。该系统灵活性强,易于操作,可靠性高,将会有更广阔的开发前景。

目录 第一章:系统功能要求-------------------------------------------------------- 4*4 矩阵式键盘系统概述------------------------------------------------ 本设计任务和主要内容--------------------------------------------------- 第二章:方案论证--------------------------------------------------------------- 第三章:系统硬件电路的设计------------------------------------------------ 单片机控制系统原理----------------------------------------------------- 原理图绘制说明---------------------------------------------------------- 画出流程图---------------------------------------------------------------- 原理图绘制--------------------------------------------------------------- 第四章:系统程序的设计------------------------------------------------------ 程序的编写步骤-----------------------------------------------------------

相关文档
相关文档 最新文档