文档库 最新最全的文档下载
当前位置:文档库 › ASTM G31——金属的实验室浸泡腐蚀标准

ASTM G31——金属的实验室浸泡腐蚀标准

ASTM G31——金属的实验室浸泡腐蚀标准
ASTM G31——金属的实验室浸泡腐蚀标准

Designation:G31–72(Reapproved2004)

Standard Practice for

Laboratory Immersion Corrosion Testing of Metals1

This standard is issued under the?xed designation G31;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.

1.Scope

1.1This practice2describes accepted procedures for and factors that in?uence laboratory immersion corrosion tests, particularly mass loss tests.These factors include specimen preparation,apparatus,test conditions,methods of cleaning specimens,evaluation of results,and calculation and reporting of corrosion rates.This practice also emphasizes the impor-tance of recording all pertinent data and provides a checklist for reporting test data.Other ASTM procedures for laboratory corrosion tests are tabulated in the Appendix.(Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that de?es removal by chemical or ordinary mechanical means.In many such cases,corrosion rates are established by mass gain rather than mass loss.)

1.2The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.

1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.

2.Referenced Documents

2.1ASTM Standards:3

A262Practices for Detecting Susceptibility to Intergranu-lar Attack in Austenitic Stainless Steels

E8Test Methods for Tension Testing of Metallic Materials G1Practice for Preparing,Cleaning,and Evaluating Cor-rosion Test Specimens

G4Guide for Conducting Corrosion Coupon Tests in Field Applications

G16Guide for Applying Statistics to Analysis of Corrosion Data

G46Guide for Examination and Evaluation of Pitting Corrosion

3.Signi?cance and Use

3.1Corrosion testing by its very nature precludes complete standardization.This practice,rather than a standardized pro-cedure,is presented as a guide so that some of the pitfalls of such testing may be avoided.

3.2Experience has shown that all metals and alloys do not respond alike to the many factors that affect corrosion and that “accelerated”corrosion tests give indicative results only,or may even be entirely misleading.It is impractical to propose an in?exible standard laboratory corrosion testing procedure for general use,except for material quali?cation tests where standardization is obviously required.

3.3In designing any corrosion test,consideration must be given to the various factors discussed in this practice,because these factors have been found to affect greatly the results obtained.

4.Interferences

4.1The methods and procedures described herein represent the best current practices for conducting laboratory corrosion tests as developed by corrosion specialists in the process industries.For proper interpretation of the results obtained,the speci?c in?uence of certain variables must be considered. These include:

4.1.1Metal specimens immersed in a speci?c hot liquid may not corrode at the same rate or in the same manner as in equipment where the metal acts as a heat transfer medium in heating or cooling the liquid.If the in?uence of heat transfer effects is speci?cally of interest,specialized procedures(in which the corrosion specimen serves as a heat transfer agent) must be employed(1).4

4.1.2In laboratory tests,the velocity of the environment relative to the specimens will normally be determined by convection currents or the effects induced by aeration or boiling or both.If the speci?c effects of high velocity are to be studied,special techniques must be employed to transfer the

1This practice is under the jurisdiction of ASTM Committee G01on Corrosion of Metals and is the direct responsibility of Subcommittee G01.05on Laboratory Corrosion Tests.

Current edition approved May1,2004.Published May2004.Originally approved https://www.wendangku.net/doc/4044939.html,st previous edition approved in1998as G31–72(1998).

2This practice is based upon NACE Standard TM-01-69,“Test Method-Laboratory Corrosion Testing of Metals for the Process Industries,”with modi?ca-tions to relate more directly to Practices G1and G31and Guide G4.

3For referenced ASTM standards,visit the ASTM website,https://www.wendangku.net/doc/4044939.html,,or contact ASTM Customer Service at service@https://www.wendangku.net/doc/4044939.html,.For Annual Book of ASTM

Standards volume information,refer to the standard’s Document Summary page on the ASTM website.

4The boldface numbers in parentheses refer to the list of references at the end of this practice.

1

Copyright?ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.

environment through tubular specimens or to move it rapidly past the plane face of a corrosion coupon(2).Alternatively,the coupon may be rotated through the environment,although it is then difficult to evaluate the velocity quantitatively because of the stirring effects incurred.

4.1.3The behavior of certain metals and alloys may be profoundly in?uenced by the presence of dissolved oxygen.If this is a factor to be considered in a speci?c test,the solution should be completely aerated or deaerated in accordance with 8.7.

4.1.4In some cases,the rate of corrosion may be governed by other minor constituents in the solution,in which case they will have to be continually or intermittently replenished by changing the solution in the test.

4.1.5Corrosion products may have undesirable effects on a chemical product.The amount of possible contamination can be estimated from the loss in mass of the specimen,with proper application of the expected relationships among(1)the area of corroding surface,(2)the mass of the chemical product handled,and(3)the duration of contact of a unit of mass of the chemical product with the corroding surface.

4.1.6Corrosion products from the coupon may in?uence the corrosion rate of the metal itself or of different metals exposed at the same time.For example,the accumulation of cupric ions in the testing of copper alloys in intermediate strengths of sulfuric acid will accelerate the corrosion of copper alloys,as compared to the rates that would be obtained if the corrosion products were continually removed.Cupric ions may also exhibit a passivating effect upon stainless steel coupons ex-posed at the same time.In practice,only alloys of the same general type should be exposed in the testing apparatus.

4.1.7Coupon corrosion testing is predominantly designed to investigate general corrosion.There are a number of other special types of phenomena of which one must be aware in the design and interpretation of corrosion tests.

4.1.7.1Galvanic corrosion may be investigated by special devices which couple one coupon to another in electrical contact.The behavior of the specimens in this galvanic couple are compared with that of insulated specimens exposed on the same holder and the galvanic effects noted.It should be observed,however,that galvanic corrosion can be greatly affected by the area ratios of the respective metals,the distance between the metals and the resistivity of the electrolyte.The coupling of corrosion coupons then yields only qualitative results,as a particular coupon re?ects only the relationship between these two metals at the particular area ratio involved.

4.1.7.2Crevice corrosion or concentration cell corrosion may occur where the metal surface is partially blocked from the corroding liquid as under a spacer or supporting hook.It is necessary to evaluate this localized corrosion separately from the overall mass loss.

4.1.7.3Selective corrosion at the grain boundaries(for example,intergranular corrosion of sensitized austenitic stain-less steels)will not be readily observable in mass loss measurements unless the attack is severe enough to cause grain dropping,and often requires microscopic examination of the coupons after exposure.

4.1.7.4Dealloying or“parting”corrosion is a condition in which one constituent is selectively removed from an alloy,as in the dezinci?cation of brass or the graphitization of cast iron. Close attention and a more sophisticated evaluation than a simple mass loss measurement are required to detect this phenomenon.

4.1.7.5Certain metals and alloys are subject to a highly localized type of attack called pitting corrosion.This cannot be evaluated by mass loss alone.The reporting of nonuniform corrosion is discussed below.It should be appreciated that pitting is a statistical phenomenon and that the incidence of pitting may be directly related to the area of metal exposed.For example,a small coupon is not as prone to exhibit pitting as a large one and it is possible to miss the phenomenon altogether in the corrosion testing of certain alloys,such as the AISI Type 300series stainless steels in chloride contaminated environ-ments.

4.1.7.6All metals and alloys are subject to stress-corrosion cracking under some circumstances.This cracking occurs under conditions of applied or residual tensile stress,and it may or may not be visible to the unaided eye or upon casual inspection.A metallographic examination may con?rm the presence of stress-corrosion cracking.It is imperative to note that this usually occurs with no signi?cant loss in mass of the test coupon,although certain refractory metals are an exception to these observations.Generally,if cracking is observed on the coupon,it can be taken as positive indication of susceptibility, whereas failure to effect this phenomenon simply means that it did not occur under the duration and speci?c conditions of the test.Separate and special techniques are employed for the speci?c evaluation of the susceptibility of metals and alloys to stress corrosion cracking(see Ref.(3)).

5.Apparatus

5.1A versatile and convenient apparatus should be used, consisting of a kettle or?ask of suitable size(usually500to 5000mL),a re?ux condenser with atmospheric seal,a sparger for controlling atmosphere or aeration,a thermowell and temperature-regulating device,a heating device(mantle,hot plate,or bath),and a specimen support system.If agitation is required,the apparatus can be modi?ed to accept a suitable stirring mechanism,such as a magnetic stirrer.A typical resin ?ask setup for this type test is shown in Fig.1.

5.2The suggested components can be modi?ed,simpli?ed, or made more sophisticated to?t the needs of a particular investigation.The suggested apparatus is basic and the appa-ratus is limited only by the judgment and ingenuity of the investigator.

5.2.1A glass reaction kettle can be used where the con?gu-ration and size of the specimen will permit entry through the narrow kettle neck(for example,45/50ground-glass joint).For solutions corrosive to glass,suitable metallic or plastic kettles may be employed.

5.2.2In some cases a wide-mouth jar with a suitable closure is sufficient when simple immersion tests at ambient tempera-tures are to be investigated.

5.2.3Open-beaker tests should not be used because of evaporation and

contamination.

5.2.4In more complex tests,provisions might be needed for continuous ?ow or replenishment of the corrosive liquid,while simultaneously maintaining a controlled atmosphere.

6.Sampling

6.1The bulk sampling of products is outside the scope of this practice.

7.Test Specimen

7.1In laboratory tests,uniform corrosion rates of duplicate specimens are usually within 610%under the same test conditions.Occasional exceptions,in which a large difference is observed,can occur under conditions of borderline passivity

of metals or alloys that depend on a passive ?lm for their resistance to corrosion.Therefore,at least duplicate specimens should normally be exposed in each test.

7.2If the effects of corrosion are to be determined by changes in mechanical properties,untested duplicate speci-mens should be preserved in a noncorrosive environment at the same temperature as the test environment for comparison with the corroded specimens.The mechanical property commonly used for comparison is the tensile strength.Measurement of percent elongation is a useful index of embrittlement.The procedures for determining these values are shown in detail in Test Methods E 8.

7.3The size and shape of specimens will vary with the purpose of the test,nature of the materials,and apparatus used.A large surface-to-mass ratio and a small ratio of edge area to total area are desirable.These ratios can be achieved through the use of square or circular specimens of minimum thickness.Masking may also be used to achieve the desired area ratios but may cause crevice corrosion problems.Circular specimens should preferably be cut from sheet and not bar stock,to minimize the exposed end grain.Special coupons (for example,sections of welded tubing)may be employed for speci?c purposes.

7.3.1A circular specimen of about 38-mm (1.5-in.)diam-eter is a convenient shape for laboratory corrosion tests.With a thickness of approximately 3mm (0.125-in.)and an 8-mm (5?16-in.)or 11-mm (7?16-in.)diameter hole for mounting,these specimens will readily pass through a 45/50ground-glass joint of a distillation kettle.The total surface area of a circular specimen is given by the following equation:

A 5p /2~D 22d 2!1t p D 1t p d

(1)

where:t =thickness,D =diameter of the specimen,and d =diameter of the mounting hole.

7.3.1.1If the hole is completely covered by the mounting support,the last term (t p d )in the equation is omitted.

7.3.2Strip coupons 50by 25by 1.6or 3mm (2by 1by 1?16or 1?8in.)may be preferred as corrosion specimens,particularly if interface or liquid line effects are to be studied by the laboratory tests (see Fig.1),but the evaluation of such speci?c effects are beyond the scope of this practice.

7.3.3All specimens should be measured carefully to permit accurate calculation of the exposed areas.A geometric area calculation accurate to 61%is usually adequate.

7.4More uniform results may be expected if a substantial layer of metal is removed from the specimens to eliminate variations in condition of the original metallic surface.This can be done by chemical treatment (pickling),electrolytic removal,or by grinding with a coarse abrasive paper or cloth such as No.50,using care not to work harden the surface (see section 5.7).At least 0.0025mm (0.0001in.)or 0.0155to 0.0233mg/mm 2(10to 15mg/in.2)should be removed.(If clad alloy specimens are to be used,special attention must be given to ensure that excessive metal is not removed.)After ?nal preparation of the specimen surface,the specimens should be stored in a desic-cator until exposure,if they are not used immediately.In special cases (for example,for aluminum and certain copper alloys),a minimum of 24h storage in a desiccator is recom-mended.The choice of a speci?c treatment must be considered on the basis of the alloy to be tested and the reasons for testing.A commercial surface may sometimes yield the most signi?-cant results.Too much surface preparation may remove segre-gated elements,surface contamination,and so forth,and therefore not be representative.

7.5Exposure of sheared edges should be avoided unless the purpose of the test is to study effects of the shearing operation.It may be desirable to test a surface representative of the material and metallurgical conditions used in practice.

N OTE 1—The ?ask can be used as a versatile and convenient apparatus to conduct simple immersion tests.Con?guration of top to ?ask is such that more sophisticated apparatus can be added as required by the speci?c test being conducted.A =thermowell,B =resin ?ask,C =specimens hung on supporting device,D =air inlet,E =heating mantle,F =liquid inter-face,G =opening in ?ask for additional apparatus that may be required,and H =re?ux condenser.

FIG.1Typical Resin Flask

7.6The specimen can be stamped with an appropriate identifying mark.If metallic contamination of the stamped area may in?uence the corrosion behavior,chemical cleaning must be employed to remove any traces of foreign particles from the surface of the coupon(for example,by immersion of stainless steel coupons in dilute nitric acid following stamping with steel dies).

7.6.1The stamp,besides identifying the specimen,intro-duces stresses and cold work in the specimen that could be responsible for localized corrosion or stress-corrosion crack-ing,or both.

7.6.2Stress-corrosion cracking at the identifying mark is a positive indication of susceptibility to such corrosion.How-ever,the absence of cracking should not be interpreted as indicating resistance(see4.1.7.6).

7.7Final surface treatment of the specimens should include ?nishing with No.120abrasive paper or cloth or the equiva-lent,unless the surface is to be used in the mill?nished condition.This resurfacing may cause some surface work hardening,to an extent which will be determined by the vigor of the surfacing operation,but is not ordinarily signi?cant.The surface?nish to be encountered in service may be more appropriate for some testing.

7.7.1Coupons of different alloy compositions should never be ground on the same cloth.

7.7.2Wet grinding should be used on alloys which work harden quickly,such as the austenitic stainless steels.

7.8The specimens should be?nally degreased by scrubbing with bleach-free scouring powder,followed by thorough rins-ing in water and in a suitable solvent(such as acetone, methanol,or a mixture of50%methanol and50%ether),and air dried.For relatively soft metals(such as aluminum, magnesium,and copper),scrubbing with abrasive powder is not always needed and can mar the surface of the specimen. Proper ultrasonic procedures are an acceptable alternate.The use of towels for drying may introduce an error through contamination of the specimens with grease or lint.

7.9The dried specimens should be weighed on an analytical balance to an accuracy of at least60.5mg.If cleaning deposits (for example,scouring powder)remain or lack of complete dryness is suspected,then recleaning and drying is performed until a constant mass is attained.

7.10The method of specimen preparation should be de-scribed when reporting test results,to facilitate interpretation of data by other persons.

7.11The use of welded specimens is sometimes desirable, because some welds may be cathodic or anodic to the parent metal and may affect the corrosion rate.

7.11.1The heat-affected zone is also of importance but should be studied separately,because welds on coupons do not faithfully reproduce heat input or size effects of full-size weldments.

7.11.2Corrosion of a welded coupon is best reported by description and thickness measurements rather than a millime-tre per year(mils per year)rate,because the attack is normally localized and not representative of the entire surface.

7.11.3A complete discussion of corrosion testing of welded coupons or the effect of heat treatment on the corrosion resistance of a metal is not within the scope of this practice.

8.Test Conditions

8.1Selection of the conditions for a laboratory corrosion test will be determined by the purpose of the test.

8.1.1If the test is to be a guide for the selection of a material for a particular purpose,the limits of the controlling factors in service must be determined.These factors include oxygen concentration,temperature,rate of?ow,pH value,composi-tion,and other important characteristics of the solution.

8.2An effort should be made to duplicate all pertinent service conditions in the corrosion test.

8.3It is important that test conditions be controlled through-out the test in order to ensure reproducible results.

8.4The spread in corrosion rate values for duplicate speci-mens in a given test probably should not exceed610%of the average when the attack is uniform.

8.5Composition of Solution:

8.5.1Test solutions should be prepared accurately from chemicals conforming to the Speci?cations of the Committee on Analytical Reagents of the American Chemical Society5and distilled water,except in those cases where naturally occurring solutions or those taken directly from some plant process are used.

8.5.2The composition of the test solutions should be controlled to the fullest extent possible and should be described as completely and as accurately as possible when the results are reported.

8.5.2.1Minor constituents should not be overlooked be-cause they often affect corrosion rates.

8.5.2.2Chemical content should be reported as percentage by weight of the solutions.Molarity and normality are also helpful in de?ning the concentration of chemicals in some test solutions.

8.5.3If problems are suspected,the composition of the test solutions should be checked by analysis at the end of the test to determine the extent of change in composition,such as might result from evaporation or depletion.

8.5.4Evaporation losses may be controlled by a constant level device or by frequent addition of appropriate solution to maintain the original volume within61%.Preferably,the use of a re?ux condenser ordinarily precludes the necessity of adding to the original kettle charge.

8.5.5In some cases,composition of the test solution may change as a result of catalytic decomposition or by reaction with the test coupons.These changes should be determined if possible.Where required,the exhausted constituents should be added or a fresh solution provided during the course of the test.

8.5.6When possible,only one type of metal should be exposed in a given test(see4.1.6).

5Reagent Chemicals,American Chemical Society Speci?cations,American Chemical Society,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville,

MD.

8.6Temperature of Solution :

8.6.1Temperature of the corroding solution should be controlled within 61°C (61.8°F)and must be stated in the report of test results.

8.6.2If no speci?c temperature,such as boiling point,is required or if a temperature range is to be investigated,the selected temperatures used in the test,and their respective duration,must be reported.

8.6.3For tests at ambient temperature,the tests should be conducted at the highest temperature anticipated for stagnant storage in summer months.This temperature may be as high as from 40to 45°C (104to 113°F)in some areas.The variation in temperature should be reported also (for example,4062°C).8.7Aeration of Solution :

8.7.1Unless speci?ed,the solution should not be aerated.Most tests related to process equipment should be run with the natural atmosphere inherent in the process,such as the vapors of the boiling liquid.

8.7.2If aeration is employed,the specimen should not be located in the direct air stream from the sparger.Extraneous effects can be encountered if the air stream impinges on the specimens.

8.7.3If exclusion of dissolved oxygen is necessary,speci?c techniques are required,such as prior heating of the solution and sparging with an inert gas (usually nitrogen).A liquid atmospheric seal is required on the test vessel to prevent further contamination.

8.7.4If oxygen saturation of the test solution is desired,this can best be achieved by sparging with oxygen.For other degrees of aeration,the solution should be sparaged with air or synthetic mixtures of air or oxygen with an inert gas.Oxygen saturation is a function of the partial pressure of oxygen in the gas.

8.8Solution Velocity :

8.8.1The effect of velocity is not usually determined in normal laboratory tests,although speci?c tests have been designed for this purpose.

8.8.2Tests at the boiling point should be conducted with the minimum possible heat input,and boiling chips should be used to avoid excessive turbulence and bubble impingement.

8.8.3In tests below the boiling point,thermal convection generally is the only source of liquid velocity.

8.8.4In test solutions with high viscosity,supplemental controlled stirring with a magnetic stirrer is recommended.8.9Volume of Test Solution :

8.9.1The volume of the test solution should be large enough to avoid any appreciable change in its corrosivity during the test,either through exhaustion of corrosive constituents or by accumulation of corrosion products that might affect further corrosion.

8.9.2Two examples

of a minimum “solution volume-tospecimen area”ratio are 0.20mL/mm 2(125mL/in.2)of specimen surface (Practice A 262),and 0.40mL/mm 2(250mL/in.2).

8.9.3When the test objective is to determine the effect of a metal or alloy on the characteristics of the test solution (for example,to determine the effects of metals on dyes),it is desirable to reproduce the ratio of solution volume to exposed

metal surface that exists in practice.The actual time of contact of the metal with the solution must also be taken into account.Any necessary distortion of the test conditions must be considered when interpreting the results.8.10Method of Supporting Specimens :

8.10.1The supporting device and container should not be affected by or cause contamination of the test solution.

8.10.2The method of supporting specimens will vary with the apparatus used for conducting the test,but should be designed to insulate the specimens from each other physically and electrically and to insulate the specimens from any metallic container or supporting device used within the apparatus.8.10.3Shape and form of the specimen support should assure free contact of the specimen with the corroding solution,the liquid line,or the vapor phase as shown in Fig.1.If clad alloys are exposed,special procedures will be required to ensure that only the cladding is exposed,unless the purpose is to test the ability of the cladding to protect cut edges in the test solution.

8.10.4Some common supports are glass or ceramic rods,glass saddles,glass hooks,?uorocarbon plastic strings,and various insulated or coated metallic supports.8.11Duration of Test :

8.11.1Although duration of any test will be determined by the nature and purpose of the test,an excellent procedure for evaluating the effect of time on corrosion of the metal and also on the corrosiveness of the environment in laboratory tests has been presented by Wachter and Treseder (4).This technique is called the “planned interval test,”and the procedure and evaluation of results are given in Table 1.Other procedures that require the removal of solid corrosion products between exposure periods will not measure accurately the normal changes of corrosion with time.

8.11.2Materials that experience severe corrosion generally do not ordinarily need lengthy tests to obtain accurate corro-sion rates.However,there are cases where this assumption is not valid.For example,lead exposed to sulfuric acid corrodes at an extremely high rate at ?rst,while building a protective ?lm;then the rates decrease considerably so that further corrosion is negligible.The phenomenon of forming a protec-tive ?lm is observed with many corrosion-resistant materials.Therefore,short tests on such materials would indicate a high corrosion rate and be completely misleading.

8.11.3Short-time tests also can give misleading results on alloys that form passive ?lms,such as stainless steels.With borderline conditions,a prolonged test may be needed to permit breakdown of the passive ?lm and subsequent more rapid attack.Consequently,tests run for long periods are considerably more realistic than those conducted for short durations.This statement must be quali?ed by stating that corrosion should not proceed to the point where the original specimen size or the exposed area is drastically reduced or where the metal is perforated.

8.11.4If anticipated corrosion rates are moderate or low,the following equation gives the suggested test duration:

Hours 52000/~corrosion rate in mpy !

(2)

where mpy =mils per year (see 11.2.1and Note 1for conversion to other units).

8.11.4.1Example —Where the corrosion rate is 0.25mm/y (10mpy),the test should run for at least 200h.

8.11.4.2This method of estimating test duration is useful only as an aid in deciding,after a test has been made,whether or not it is desirable to repeat the test for a longer period.The most common testing periods are 48to 168h (2to 7days).8.11.5In some cases,it may be necessary to know the degree of contamination caused by the products of corrosion.This can be accomplished by analysis of the solution after corrosion has occurred.The corrosion rate can be calculated from the concentration of the matrix metal found in the solution and it can be compared to that determined from the mass loss of the specimens.However,some of the corrosion products usually adhere to the specimen as a scale and the corrosion rate calculated from the metal content in the solution is not always correct.

8.12The design of corrosion testing programs is further discussed in Guide G 16.

9.Methods of Cleaning Specimens after Test

9.1Before specimens are cleaned,their appearance should be observed and recorded.Location of deposits,variations in types of deposits,or variations in corrosion products are extremely important in evaluating localized corrosion,such as pitting and concentration cell attack.

9.2Cleaning specimens after the test is a vital step in the corrosion test procedure and if not done properly,can cause misleading results.

9.2.1Generally,the cleaning procedure should remove all corrosion products from specimens with a minimum removal of sound metal.

9.2.2Set rules cannot be applied to specimen cleaning,because procedures will vary,depending on the type of metal being cleaned and on the degree of adherence of corrosion products.

9.3Cleaning methods can be divided into three general categories:mechanical,chemical,and electrolytic.

9.3.1Mechanical cleaning includes scrubbing,scraping,brushing,mechanical shocking,and ultrasonic procedures.Scrubbing with a bristle brush and mild abrasive is the most popular of these methods.The others are used principally as a supplement to remove heavily encrusted corrosion products before scrubbing.Care should be used to avoid the removal of sound metal.

9.3.2Chemical cleaning implies the removal of material from the surface of the specimen by dissolution in an appro-priate chemical solution.Solvents such as acetone,carbon tetrachloride,and alcohol are used to remove oil,grease,or resin and are usually applied prior to other methods of cleaning.Chemicals are chosen for application to a speci?c material.Methods for chemical cleaning after testing of spe-ci?c metals and alloys are described in Practice G 1.

9.3.3Electrolytic cleaning should be preceded by scrubbing to remove loosely adhering corrosion products.A method of electrolytic cleaning is described in Practice G 1.

9.3.3.1Precautions must be taken to ensure good electrical contact with the specimen,to avoid contamination of the solution with easily reducible metal ions,and to ensure that inhibitor decomposition has not occurred.

9.4Whatever treatment is used to clean specimens after a corrosion test,its effect in removing metal should be deter-mined and the mass loss should be corrected accordingly.A “blank”specimen should be weighed before and after exposure to the cleaning procedure to establish this mass loss (see also Practice G 1).Careful observation is needed to ensure that pitting does not occur during cleaning.

9.4.1Following removal of all scale,the specimen should be treated as discussed in 5.8.

9.4.2The description of the cleaning method should be included with the data reported.10.Interpretation of Results

10.1After corroded specimens have been cleaned,they should be reweighed with an accuracy corresponding to that of the original weighing.The mass loss during the test period can be used as the principal measure of corrosion.

TABLE 1Planned Interval Corrosion Test

(Reprinted by permission from Chemical Engineering Progress,June

1947)

Identical specimens all placed in the same corrosive ?uid.Imposed conditions of the test kept constant for entire time t +1.Letters,A 1,A t ,A t +1,B ,represent corrosion damage experienced by each test

specimen.A 2is calculated by subtracting A t from A t +1.

Occurrences During Corrosion Test

Criteria

Liquid corrosiveness

unchanged decreased increased

A 1=

B B

unchanged decreased increased

A 2=

B A 2

Combinations of Situations

Liquid corrosiveness Metal corrodibility Criteria

1.unchanged unchanged A 1=A 2=B

2.unchanged decreased A 2

3.unchanged increased A 1=B

4.decreased unchanged A 2=B

5.decreased decreased A 2

6.decreased increased A 1>B

7.increased unchanged A 1

8.increased decreased A 1A 2

9.

increased

increased

A 1<

B

Example;Conditions:Duplicate strips of low-carbon steel,each 19by 76mm (3?4by 3in.),immersed in 200mL of 10%AlCl 3-90%SbCl 3mixture through which dried HCl gas was slowly bubbled at atmospheric pressure.Temperature 90°C.

Interval,days

Mass Loss,

mg Penetration,mm (mils)Apparent Corrosion Rate,mm/y (mpy)A 10–11080.043(1.69)15.7(620)A t 0–31430.057(2.24) 6.9(270)A t +10–41460.058(2.29) 5.3(210)B 3–4

70.003(0.11) 1.0(40)A 2

calc.3–4

30

.001(0.05)

0.5

(18)

Example:A 2

.001<.003<.043(0.05<0.11<1.69)

Therefore,liquid markedly decreased in

corrosiveness during test,and formation of partially protective scale on the steel was indicated.

10.2After the specimens have been reweighed,they should be examined carefully for the presence of any pits.If there are any pits,the average and maximum depths of pits are deter-mined with a pit gage or a calibrated microscope which can be focused?rst on the edges and then on the bottoms of the pits. The degree of lateral spreading of pits may also be noted. 10.2.1Pit depths should be reported in millimetres or thousandths of an inch for the test period and not interpolated or extrapolated to millimetres per year,thousandths of an inch per year,or any other arbitrary period because rarely,if ever,is the rate of initiation or propagation of pits uniform.

10.2.2The size,shape,and distribution of pits should be noted.A distinction should be made between those occurring underneath the supporting devices(concentration cells)and those on the surfaces that were freely exposed to the test solution(see Guide G46).

10.3If the material being tested is suspected of being subject to dealloying forms of corrosion such as dezinci?cation or to intergranular attack,a cross section of the specimen should be microscopically examined for evidence of such attack.

10.4The specimen may be subjected to simple bending tests to determine whether any embrittlement attack has occurred.

10.5It may be desirable to make quantitative mechanical tests,comparing the exposed specimens with uncorroded specimens reserved for the purpose,as described in7.2. 11.Calculating Corrosion Rates

11.1Calculating corrosion rates requires several pieces of information and several assumptions:

11.1.1The use of corrosion rates implies that all mass loss has been due to general corrosion and not to localized corrosion,such as pitting or intergranular corrosion of sensi-tized areas on welded coupons.Localized corrosion is reported separately.

11.1.2The use of corrosion rates also implies that the material has not been internally attacked as by dezinci?cation or intergranular corrosion.

11.1.3Internal attack can be expressed as a corrosion rate if desired.However,the calculations must not be based on mass loss(except in quali?cation tests such as Practices A262), which is usually small but on microsections which show depth of attack.

11.2Assuming that localized or internal corrosion is not present or is recorded separately in the report,the average corrosion rate can be calculated by the following equation:

Corrosion rate5~K3W!/~A3T3D!(3) where:

K=a constant(see below)

T=time of exposure in hours to the nearest0.01h,

A=area in cm2to the nearest0.01cm2,

W=mass loss in g,to nearest1mg(corrected for any loss during cleaning(see9.4)),and

D=density in g/cm3,(see Appendix X1of Practice G1).

11.2.1Many different units are used to express corrosion https://www.wendangku.net/doc/4044939.html,ing the above units for T,A,W,and D,the corrosion rate can be calculated in a variety of units with the following appropriate value of K:

Corrosion Rate Units Desired

Constant(K)in Corrosion

Rate Equation

mils per year(mpy) 3.453106

inches per year(ipy) 3.453103

inches per month(ipm) 2.873102 millimetres per year(mm/y)8.763104 micrometres per year(μm/y)8.763107 picometres per second(pm/s) 2.783106

grams per square metre per hour(g/m2·h) 1.0031043D A milligrams per square decimetre per day(mdd) 2.4031063D A micrograms per square metre per second(μg/

m2·s)

2.7831063D A

___________

A Density is not needed to calculate the corrosion rate in these units.The density in the constant K cancels out the density in the corrosion rate equation.

N OTE1—If desired,these constants may also be used to convert corrosion rates from one set of units to another.To convert a corrosion rate

in units X to a rate of units Y,multiply by K

Y

/K

X

for example:

15mpy5153[~2.783106!/~~3.453106!#pm/s

512.1pm/s(4) 12.Report

12.1The importance of reporting all data as completely as possible cannot be overemphasized.

12.2Expansion of the testing program in the future or correlating the results with tests of other investigators will be possible only if all pertinent information is properly recorded.

12.3The following checklist is a recommended guide for reporting all important information and data.

12.3.1Corrosive media and concentration(any changes during test).

12.3.2V olume of test solution.

12.3.3Temperature(maximum,minimum,average).

12.3.4Aeration(describe conditions or technique).

12.3.5Agitation(describe conditions or technique).

12.3.6Type of apparatus used for test.

12.3.7Duration of each test.

12.3.8Chemical composition or trade name of metals tested.

12.3.9Form and metallurgical conditions of specimens. 12.3.10Exact size,shape,and area of specimens.

12.3.11Treatment used to prepare specimens for test. 12.3.12Number of specimens of each material tested,and whether specimens were tested separately or which specimens tested in the same container.

12.3.13Method used to clean specimens after exposure and the extent of any error expected by this treatment.

12.3.14Initial and?nal masses and actual mass losses for each specimen.

12.3.15Evaluation of attack if other than general,such as crevice corrosion under support rod,pit depth and distribution, and results of microscopical examination or bend tests.

12.3.16Corrosion rates for each

specimen.

12.4Minor occurrences or deviations from the proposed test program often can have signi?cant effects and should be reported if known.

12.5Statistics can be a valuable tool for analyzing the results from test programs designed to generate adequate data. Excellent references for the use of statistics in corrosion studies include Ref.(5-7)and in Guide G16.13.Keywords

13.1accelerated;immersion;laboratory;mass loss;metals; pitting

REFERENCES

(1)Fisher,A.O.,and Whitney,Jr., F.L.,“Laboratory Methods for

Determining Corrosion Rates Under Heat Flux Conditions,”Corro-sion,V ol15,No.5,May1959,p.257t.

(2)U.S.Patent3,228,236,1969.

(3)“Stress Corrosion Test Environments and Test Durations,”Symposium

on Stress Corrosion Testing,ASTM STP425,ASTM,1967.

(4)Wachter,A.,and Treseder,R.S.,“Corrosion Testing Evaluation of

Metals for Process Equipment,”Chemical Engineering Progress,V ol 43,June1947,pp.315–326.

(5)Mickley,H.S.,Sherwood,T.K.,and Reed,C.E.editors,Applied

Mathematics in Chemical Engineering2nd Edition,McGraw-Hill Book Co.,New York,NY1957.

(6)Youden,W.J.,Experimentation and Measurement,National Science

Teachers Assn.,Washington,DC,1962.

(7)Booth, F. F.,and Tucker,G. E.G.,“Statistical Distribution of

Endurance in Electrochemical Stress-Corrosion Tests,”Corrosion,V ol 21,No.5,May1965,pp.173–177.

(8)Champion,F.A.,Corrosion Testing Procedures,2nd Edition,John

Wiley&Sons,Inc.,New York,NY,1965.

ASTM International takes no position respecting the validity of any patent rights asserted in connection with any item mentioned in this https://www.wendangku.net/doc/4044939.html,ers of this standard are expressly advised that determination of the validity of any such patent rights,and the risk of infringement of such rights,are entirely their own responsibility.

This standard is subject to revision at any time by the responsible technical committee and must be reviewed every?ve years and if not revised,either reapproved or withdrawn.Your comments are invited either for revision of this standard or for additional standards and should be addressed to ASTM International Headquarters.Your comments will receive careful consideration at a meeting of the responsible technical committee,which you may attend.If you feel that your comments have not received a fair hearing you should make your views known to the ASTM Committee on Standards,at the address shown below.

This standard is copyrighted by ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959, United States.Individual reprints(single or multiple copies)of this standard may be obtained by contacting ASTM at the above address or at610-832-9585(phone),610-832-9555(fax),or service@https://www.wendangku.net/doc/4044939.html,(e-mail);or through the ASTM website

(https://www.wendangku.net/doc/4044939.html,).

金属腐蚀与防护

摘要:本文论述了腐蚀的产生机理,从而探讨了防腐蚀的办法。文章介绍了金属腐蚀与腐蚀机理,详细综述了形成保护层、电化学保护法、缓蚀剂法等几种常见腐蚀防护方法的原理以及在金属腐蚀与防腐中的应用和研究进展。 关键词:金属腐蚀防护 金属腐蚀的分类:根据金属腐蚀的反应机理,腐蚀可以分为电化学腐蚀和化学腐蚀。电化学腐蚀是指金属表面与离子导电的介质因发生电化学作用而产生的破坏;化学腐蚀是指金属表面与非电解质直接发生化学作用而引起的破坏。电化学腐蚀是最常见、最普遍的腐蚀,因为只要环境的介质中有水存在,金属的腐蚀就会以电化学腐蚀的形式进行。金属在各种电解质溶液,比如大气、海水和土壤等介质中所发生的腐蚀都属于电化学腐蚀.。环境中引起金属腐蚀的物质主要是氧分子和氢离子,它们分别导致金属的吸氧腐蚀和析氢腐蚀,其中又以吸氧腐蚀最为普遍。 腐蚀给人类社会带来的直接损失是巨大的。20世纪70年代前后,许多工业发达国家相继进行了比较系统的腐蚀调查工作,并发表了调查报告。结果显示,腐蚀的损蚀占全国GNP的1%到5%。这次调查是各国政府关注腐蚀的危害,也对腐蚀科学的发展起到了重要的推动作用。在此后的30年间,人们在不同程度上进行了金属的保护工作。在以后的不同时间各国又进行了不同程度的调查工作,不同时期的损失情况也是不同的。有资料记载,美国1975年的腐蚀损失为820亿美元,占国民经济总产值的4.9%;1995年为3000亿美元,占国民经济总产值的4.21%。这些数据只是与腐蚀有关的直接损失数据,间接损失数据有时是难以统计的,甚至是一个惊人的数字。我国的金属腐蚀情况也是很严重的,特别是我国对金属腐蚀的保护工作与发达的工业国家相比还有一段距离。据2003年出版的《中国腐蚀调查报告》中分析,中国石油工业的金属腐蚀损失每年约100亿人民币,汽车工业的金属腐蚀损失约为300亿人民币,化学工业的金属腐蚀损失也约为300亿人民币,这些数字都属于直接损失。如该报告中调查某火电厂锅炉酸腐蚀脆爆的实例,累计损失约15亿千瓦·时的电量,折合人民币3亿元,而由于缺少供电量所带来的间接损失还没有计算在内。所以说,金属腐蚀的损失是很严重的,必须予以高度的重视。金属腐蚀在造成经济损失的同时,也造成了资源和能源的浪费,由于所报废的设备或构件有少部分是不能再生的,可以重新也冶炼再生的部分在冶炼过程中也会耗费大量的能源。目前世界上的资源和能源日益紧张,因此由腐蚀所带来的问题不仅仅只是一个经济损失的问题了。腐蚀对金属的破坏,有时也会引发灾难性的后果,此方面的例子太多了,所以对金属腐蚀的研究是利国利民的选择。由于世界各国对于腐蚀的危害有了深刻的认识,因此利用各种技术开展了金属腐蚀学的研究,经过几十年代努力已经取得了显著的成绩。 金属防护的方法: 改善金属的本质根据不同的用途选择不同的材料组成耐蚀合金,或在金属中添加合金元素,提高其耐腐蚀性,可以防止或减缓金属的腐蚀。例如,在钢中加入镍制成不锈钢可以增强防腐蚀能力。 在金属表面形成保护层在金属表面覆盖各种保护,把被保护金属与腐蚀性介质隔开,是防止金属腐蚀的有效方法[3]。工业上普遍使用的保护层有非金属保护层和金属保护层两大类。它们是用化学方法、物理方法和电化学方法实现的。该法就是使金属表面形成转化层和加上一层坚固的保护层,达到隔离大气保护金属的目的.如对金属表面实施电镀、化学镀以及氧化、磷化处理等,可使金属表面覆盖一层耐腐蚀的保护层;也可以对金属表面氮化。

金属防腐蚀的方法

防止金属腐蚀的方法和途径很多,主要有以下几种: 一、提高金属材料内在耐蚀性能 采用不易与周围介质发生反应的金属及合金材料来加工产品,是有效的防腐办法。例如,有些金属及合金在空气单不易氧化,或能生成致密的钝化薄膜,可以抵抗酸、碱、盐腐蚀,如不锈钢,就是在钢中加入定量的铬、镍、钦等元素,当铬元素含量超过12%时,就可以起到不锈的作用。有些在高温高压时性能稳定,如耐热不起皮钢;有些在空气中不易腐蚀,如铝、锌等。获得这种金属材料的途径卞要是采用冶炼方法来改变金属的化学成分,例如在碳钢中加入镍、铬、硅、锰、钒等元素炼成耐蚀合金钢。不锈钢就是含有较多铬、镍、钛等元素的高合金钢。耐蚀低合金钢就是在钢中加入微量的钒、钛、稀土等元素炼成的低合金耐蚀钢。此外,对于某些金属材料,还可以通过热处理方法,改变金属的金相组织,提高耐蚀性能。 二、涂、镀非金属和金属保护层 在金属表面上制成保护层,借以隔开金属与腐蚀介质的接触,从而减少腐蚀。根据构成保护层的物质,可以分为以下几类:(1)非金属保护层把有机和无机化合物涂覆在金属表面,如油漆、塑料、玻璃钢、橡胶、沥青、搪瓷、混凝土、珐琅、防锈油等。在金属表面涂覆非金属保护层,用得最广泛的是油漆和塑料涂层。油漆是千百年来的传统方法,但油漆在造漆和涂装过程中有环境污染现象,正在变革工艺,向水溶性方向发展。塑料涂层是近几十年来发展最快的防腐方法,尤其是把有机树脂做成粉末涂料,采用各种方法在金属表面形成优良的涂层,获得了空前的发展。(2)金属保护层在金属表面镀上一种金属或合金,作为保护层,以减慢腐蚀速度。用作保护层的金属通常有锌、锡、铝、镍、铬、铜、镉、钛、铅、金、银、钯、铑及各种合金等。获得金属镀层的方法也有许多。①电镀用电沉积的方法在金属表面上镀上层金属或合金。镀层金属有

钢铁表面处理标准说明及各标准比较

钢铁表面主要表面处理标准 GB8923-88 中国国家标准 ISO8501-1:1988 国际标准化组织标准 SIS055900-1967 瑞典标准 SSPC-SP2,3,5,6,7和10 美国钢结构涂装协会表面处理标准 BS4232 英国标准 DIN55928 德国标准 JSRA SPSS 日本造船研究协会标准国标GB8923-88 对除锈等级描述: 喷射或抛射除锈以字母“Sa”表示。本标准订有四个除锈等级: Sa1 轻度的喷射或抛射除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮,铁锈和油漆涂层等附着物。Sa2 彻底的喷射或抛射除锈 钢材表面应无可见的油脂和污垢,并且氧化皮,铁锈和油漆涂层等附着物已基本清除,其残留物应该是附着牢固的。 Sa2.5 非常彻底的喷射或抛射除锈 钢材表面应无可见的油脂,污垢,氧化皮,铁锈和油漆涂层等附着物,任何残留的痕迹应仅是点状或条纹状的轻微色斑。 Sa3 钢材表面外观洁净的喷射或抛射除锈 钢材表面应无可见的油脂,污垢,氧化皮,铁锈和油漆涂层等附着物,该表面应显示均匀的金属色泽。 手工和动力工具除锈以字母“St”表示。本标准订有二个除锈等级: St2 彻底的手工和动力工具除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。 St3 非常彻底的手工和动力工具除锈 钢材表面应无可见的油脂和污垢,并且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。除锈应比St2更为彻底,底材显露部分的表面应具有金属光泽。

我国的除锈标准与相当的国外除锈标准对照表: 注:SSPC中的Sp6比Sa2.5 略为严格,Sp2为人工钢丝刷除锈,Sp3为动力除锈。 表面粗糙度及其评定 喷砂、抛丸、手工和动力除锈,其目的除达到前述一定的表面清洁度外,还会对钢铁表面造成一定的微观不平整度,即表面粗糙度。对于涂漆前钢铁表面的粗糙度通常以一些主要的波峰和波谷间的高度值来表示。钢铁表面粗糙度对漆膜的附着力,防腐蚀性能和保护寿命有很大影响。钢铁表面合适的粗糙度有利于漆膜保护性能的提高,粗糙度太小,不利于漆膜的附着力的提高,粗糙度太大,如漆膜用量一定时,则会造成漆膜厚度分布的不均匀,特别是在波峰处的漆膜厚度不足而低于设计要求,引起早期的锈蚀,此外,粗糙度过大,还常在较深的波谷凹坑内截留住气泡,将成为漆膜起泡的根源。 对于常用涂料,合适的粗糙度范围以39—75um为宜。

金属腐蚀与防护课后答案

《金属腐蚀理论及腐蚀控制》 习题解答 第一章 1.根据表1中所列数据分别计算碳钢和铝两种材料在试验介质中的失重腐蚀速度V- 和年腐蚀深度V p,并进行比较,说明两种腐蚀速度表示方法的差别。 解:由题意得: (1)对碳钢在30%HNO3( 25℃)中有: Vˉ=△Wˉ/st =(18.7153-18.6739)/45×2×(20×40+20×3+40×30)×0.000001 =0.4694g/ m?h 又有d=m/v=18.7154/20×40×0.003=7.798g/cm2?h Vp=8.76Vˉ/d=8.76×0.4694/7.798=0.53mm/y 对铝在30%HNO3(25℃)中有: Vˉ=△Wˉ铝/st =(16.1820-16.1347)/2×(30×40+30×5+40×5)×45×10-6

=0.3391g/㎡?h d=m铝/v=16.1820/30×40×5×0.001=2.697g/cm3 说明:碳钢的Vˉ比铝大,而Vp比铝小,因为铝的密度比碳钢小。 (2)对不锈钢在20%HNO3( 25℃)有: 表面积S=2π×2 .0+2π×0.015×0.004=0.00179 m2 015 Vˉ=△Wˉ/st=(22.3367-22.2743)/0.00179×400=0.08715 g/ m2?h 试样体积为:V=π×1.52×0.4=2.827 cm3 d=W/V=22.3367/2.827=7.901 g/cm3 Vp=8.76Vˉ/d=8.76×0.08715/7.901=0.097mm/y 对铝有:表面积S=2π×2 .0+2π×0.02×0.005=0.00314 m2 02 Vˉ=△Wˉ/st=(16.9646-16.9151)/0.00314×20=0.7882 g/ m2?h 试样体积为:V=π×2 2×0.5=6.28 cm3 d=W/V=16.9646/6.28=2.701 g/cm3 Vp=8.76Vˉ/d=8.76×0.7882/2.701=2.56mm/y 试样在98% HNO3(85℃)时有: 对不锈钢:Vˉ=△Wˉ/st =(22.3367-22.2906)/0.00179×2=12.8771 g/ m2?h Vp=8.76Vˉ/d=8.76×12.8771/7.901=14.28mm/y 对铝:Vˉ=△Wˉ/st=(16.9646-16.9250)/0.00314×40=0.3153g/ m2?h Vp=8.76Vˉ/d=8.76×0.3153/2.701=1.02mm/y 说明:硝酸浓度温度对不锈钢和铝的腐蚀速度具有相反的影响。

设备防腐蚀办法

设备防腐蚀办法引言 防腐蚀的方法总的来说可以分为两大类:一是正确地选择防腐蚀材料和其他防腐蚀措施;二是选择合理的工艺操作及设备结构。严格遵守化工生产的工艺规程,可以消除不应当发生的腐蚀现象,而即使采用良好的耐腐蚀材料,在操作工艺上不腐蚀规程,也会引起严重的腐蚀。目前,化工生产中常用的防腐蚀方法有以下几种。 1 正确选材和设计 了解不同材料的耐蚀性能,正确地、合理地选择防腐蚀材料是最行之有效的方法。众所周知,材料的品种很多,不同材料在不同环境中的腐蚀速度也不同,选材人员应当针对某一特定环境选择腐蚀率低、价格较便宜、物理力学性能等满足设计要求的材料,以便设备获得经济、合理的使用寿命。 2 调整环境 如果能消除环境中引起腐蚀的各种因素,腐蚀就会终止或减缓,但是多数环境是无法控制的,如大气和土壤中的水分,海水中的氧等都不可能除去,且化工生产流程也不可能随意更改。但是有些局部环境是可以被调整的,如锅炉进水先去除氧(加入脱氧剂亚硫酸钠和肼等),可保护锅炉免遭腐蚀;又如空气进入密闭的仓库前先出去水分,也可避免贮存的金属部件生锈;为了防止冷却水对换热器和其他设备造成结垢和穿孔,可在水中加入碱或酸以调节PH值至最佳范围(接近中性);炼油工艺中常加碱或 氨使生产流体保持中性或碱性。温度过高时,可在器壁冷却降温,或在设备内壁砌衬耐火砖隔热,等。这些都是改变环境且不影响产品和工艺的前提下采用的方法,在允许的前提下,建议工艺中选用缓和的介质代替强腐蚀介质。 3

加入缓蚀剂 通常,在腐蚀环境中加入少量缓蚀剂就可以大大减缓金属的腐蚀,我们一般将它分为无机、有机和气相缓蚀剂三类,其缓蚀机理也各不相同。 1无机缓蚀剂 有些缓蚀剂会使阳极过程变慢,称之为阳极型缓蚀剂,它包括促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、铁离子等)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐等),它们主要在阳极区域反应,促进阳极极化。一般阳极缓蚀剂会在阳极表面生成保护膜,这种情况下的缓蚀效果较好,但也存在一定风险,因为如果剂量不充足,会造成保护膜不完整,膜缺陷处暴露的裸金属面积小,阳极电流密度大,更容易发生穿孔。另一类缓蚀剂是在阴极反应,如钙离子、锌离子、镁离子、铜离子、锰离子等与阴极产生氢氧根离子,形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧扩散到阴极,增大浓差极化。除此之外,也有同时阻滞阳极和阴极的混合型缓蚀剂,但加入量一般都需要先通过试验才可确定。 2有机缓蚀剂 有机缓蚀剂是吸附型的,吸附在金属表面,形成几个分子厚的不可视膜,可同时阻滞阳极和阴极反应,但对二者的影响力稍有不同。常用无机缓蚀剂有含氮、含硫、含氧及含磷的有机化合物,其吸附类型随有机物分子构型的不同可分为静电吸附、化学吸附及π键(不定位电子)吸附。有机缓蚀剂的发展很快,用途十分广泛,但是使用它同时也会产生一些缺点,如污染产品,特别是食品类,缓蚀剂可能对生产流程的这一部分有利,但进入另一部分则变为有害物质,也有可能会阻抑需要的反应,如酸洗时使去膜速度过缓,等。 3气相缓蚀剂 这类缓蚀剂是挥发性很高的物质,含有缓蚀基团,一般用来保护贮藏和运输中的金属零部件,以固体形态应用居多。它的蒸汽被大气中的水分解出有效的缓蚀基团,吸附在金属表面,达到减缓腐蚀的目的。另外,它也是一种吸附性缓蚀剂,被保护的金属表面不需要除锈处理。

金属表面防腐通用技术标准

金属表面防腐通用技术标准

金属表面防腐通用技术标准 1 主题内容与适用范围 本标准规定了金属件(铜、铝、碳钢)防腐处理的一般技术要求、验收等内容。 本标准适用于金属件表面的镀锌、镀铬、阳极氧化、达克罗表面处理。 2 引用标准 下列标准所包含的条款,通过在本标准中引用而构成为本标准的条款。 GB 2828-87 逐批检查计数抽样程序及抽样表(适用于连续批的检查) GB/T10125-2012 人造气氛腐蚀盐雾试验 GB 6461-86 金属覆盖层对底材为阴极的覆盖层腐蚀试验后的电镀试样的评级 JB 2864-81 汽车用电镀层和化学处理 GB-T18684-2002 达克罗国家标准 GB/T 8005.3-2008 铝及铝合金表面处理 3镀锌、镀铬 3.1外观 3.1.1外表应致密、平滑、均匀,镀层应不起层、不起泡、不发脆。 3.2工艺 3.2.1镀锌流程:化学除油--水洗--电解除油--热水洗--水洗--强腐蚀--水洗--电镀锌铁合金--水洗(2次)--出光--钝化--水洗--干燥。 3.2.2镀铬流程:出油--水洗--侵蚀--水洗--闪镀氰铜(镍)--水洗--酸铜--水洗--亮镍--水洗--镀铬--水洗--干燥。 3.3深镀指标规定孔径或缝隙的宽度<5mm的零件,镀层的技术要求一般不做规定,孔径或缝隙的宽度≥5mm的零件,孔径或缝隙内镀层的深度应大于孔径或缝隙宽度。 3.4 对于镀层厚度无特殊要求的,镀层厚度应达到表1所列的范围: 2

3.5 外观检测 3.5.1允许缺陷: a)少有不明显的水迹(光亮镀层除外),不均匀的颜色。 b) 零件的锐边上允许有不影响装配的轻微粗糙。 c) 在不影响装配质量及不降低零件质量条件下,镀层厚度大于规定值。 3.5.2不允许缺陷:镀层结晶应均匀细致,不允许有下列缺陷存在。 a) 有未镀到的地方、可擦取的镀层, 有未洗净的盐类痕迹。 b) 镀层有针孔、麻点、气瘤、起泡、暴皮等缺陷,呈树枝状、海绵状或条纹状。 c) 零件尺寸或形状的改变,超过技术条件规定中允许的误差范围。 3.6 镀层结合力要求 对于一般零件,在镀层表面上,用钢针或尖刀,划4-6条彼此间距1-2mm的深达金属基体的平行线,再划4-6条与此垂直的平行线(划线应按同一方向),在直线交叉处镀层不起皮,不脱落。 3.7 白色钝化和彩色钝化层要求: 3.7.1 白色钝化:表面光洁,不失光、不挂灰、不发黑。 3.7.2彩色钝化:钝化膜应具有红中透绿、绿中透红的美丽的彩虹色,色彩协调,不应有层次分明、色彩生硬或有淡黄色和白色现象存在。 3.8耐蚀性 3

金属腐蚀与防护课后习题答案

腐蚀与防护试题 1化学腐蚀的概念、及特点 答案:化学腐蚀:介质与金属直接发生化学反应而引起的变质或损坏现象称为金属的化学腐蚀。 是一种纯氧化-还原反应过程,即腐蚀介质中的氧化剂直接与金属表面上的原子相互作用而形成腐蚀产物。在腐蚀过程中,电子的传递是在介质与金属之间直接进行的,没有腐蚀电流产生,反应速度受多项化学反应动力学控制。 归纳化学腐蚀的特点 在不电离、不导电的介质环境下 反应中没有电流产生,直接完成氧化还原反应 腐蚀速度与程度与外界电位变化无关 2、金属氧化膜具有保护作用条件,举例说明哪些金属氧化膜有保护作用,那些没有保护作用,为什么? 答案:氧化膜保护作用条件: ①氧化膜致密完整程度;②氧化膜本身化学与物理稳定性质;③氧化膜与基体结合能力;④氧化膜有足够的强度 氧化膜完整性的必要条件:PB原理:生成的氧化物的体积大于消耗掉的金属的体积,是形成致密氧化膜的前提。 PB原理的数学表示: 反应的金属体积:V M = m/ρ m-摩尔质量 氧化物的体积: V MO = m'/ ρ ' 用? = V MO/ V M = m' ρ /( m ρ ' ) 当? > 1 金属氧化膜具备完整性条件 部分金属的?值 氧化物?氧化物?氧化物? MoO3 3.4 WO3 3.4 V2O5 3.2 Nb2O5 2.7 Sb2O5 2.4 Bi2O5 2.3 Cr2O3 2.0 TiO2 1.9 MnO 1.8 FeO 1.8 Cu2O 1.7 ZnO 1.6 Ag2O 1.6 NiO 1.5 PbO2 1.4 SnO2 1.3 Al2O3 1.3 CdO 1.2 MgO 1.0 CaO 0.7 MoO3 WO3 V2O5这三种氧化物在高温下易挥发,在常温下由于?值太大会使体积膨胀,当超过金属膜的本身强度、塑性时,会发生氧化膜鼓泡、破裂、剥离、脱落。 Cr2O3 TiO2 MnO FeO Cu2O ZnO Ag2O NiO PbO2 SnO2 Al2O3 这些氧化物在一定温度范围内稳定存在,?值适中。这些金属的氧化膜致密、稳定,有较好的保护作用。 MgO CaO ?值较小,氧化膜不致密,不起保护作用。 3、电化学腐蚀的概念,与化学腐蚀的区别 答案:电化学腐蚀:金属与介质发生电化学反应而引起的变质与损坏。 与化学腐蚀比较: ①是“湿”腐蚀 ②氧化还原发生在不同部位 ③有电流产生 ④与环境电位密切相关

防腐国 家标准

国家标准 序号标准号标准、资料名称定价元备注 A综合类 01GB/T 21774 - 2008粉末涂料烘烤条件的测定 02GB/T 21775 - 2008闪点的测定闭杯平衡法 03GB/T 21776 - 2008粉末涂料及其涂层的检验标准指南 04GB/T 21777- 2008色漆和清漆用漆基氯化聚合物树脂通用试验方法 05GB/ -2008粉末涂料第1部分:筛分法测定粒度分布 06GB/ -2008粉末涂料第2部分:气体比较比重仪法测定密度(仲裁法) 07GB/粉末涂料第3部分:液体置换比重瓶法测定密度 08GB/ 2008粉末涂料第4部分:爆炸下限的计算 09GB/ -2008粉末涂料第8部分:热固性粉末贮存稳定性的测定 10GB/粉末涂料第10部分:沉积效率的测定 11GB/T 4054 -2008涂料涂覆标记 12GB/T 4955-2005覆盖层厚度测量阳极溶解库仑法 13GB/T 6807-2001钢铁工件涂装前磷化处理技术条件 14GB/T 6464-1997金属及其覆盖层大气腐蚀试验现场的一般要求 15GB/T 涂覆涂料钢材表面处理表面处理方法总则 16GB/T 涂覆涂料钢材表面处理表面处理方法磨料喷射清理 17GB/T 涂覆涂料钢材表面处理表面处理方法手工和动力工具清 理 18GB/T 13912-2002金属覆盖层钢铁制件热浸镀锌层技术要求及实验方法 19GB/T 16744-2002热喷涂层自熔合金喷涂与重熔 20GB/T 8264-2008涂装技术术语 11GB/T 14441-93涂装作业安全规程术语 12GB 14443-2007涂装作业安全规程涂层烘干室安全技术规定 13GB 14444-2006涂装作业安全规程喷涂室安全技术规定 14GB/T 14773-2007涂装作业安全规程静电喷枪及其辅助装置安全技术条件 15GB/T 12367-2006涂装作业安全规程静电喷漆工艺安全 F1GB/T 15607-95涂装作业安全规程粉末静电喷涂工艺安全 16GB 7692-1999涂装作业安全规程涂漆前处理工艺安全及其通风净化

设备防腐蚀办法

设备防腐蚀办法 引言 防腐蚀的方法总的来说可以分为两大类:一是正确地选择防腐蚀材料和其他防腐蚀措施;二是选择合理的工艺操作及设备结构。严格遵守化工生产的工艺规程,可以消除不应当发生的腐蚀现象,而即使采用良好的耐腐蚀材料,在操作工艺上不腐蚀规程,也会引起严重的腐蚀。目前,化工生产中常用的防腐蚀方法有以下几种。 1 正确选材和设计 了解不同材料的耐蚀性能,正确地、合理地选择防腐蚀材料是最行之有效的方法。众所周知,材料的品种很多,不同材料在不同环境中的腐蚀速度也不同,选材人员应当针对某一特定环境选择腐蚀率低、价格较便宜、物理力学性能等满足设计要求的材料,以便设备获得经济、合理的使用寿命。 2 调整环境 如果能消除环境中引起腐蚀的各种因素,腐蚀就会终止或减缓,但是多数环境是无法控制的,如大气和土壤中的水分,海水中的氧等都不可能除去,且化工生产流程也不可能随意更改。但是有些局部环境是可以被调整的,如锅炉进水先去除氧(加入脱氧剂亚硫酸钠和肼等),可保护锅炉免遭腐蚀;又如空气进入密闭的仓库前先出去水分,也可避免贮存的金属部件生锈;为了防止冷却水对换热器和其他设备造成结垢和穿孔,可在水中加入碱或酸以调节PH值至最佳范围(接近中性);炼油工艺中常加碱或氨使生产流体保持中性或碱性。温度过高时,可在器壁冷却降温,或在设备内壁砌衬耐火砖隔热,等。这些都是改变环境且不

影响产品和工艺的前提下采用的方法,在允许的前提下,建议工艺中选用缓和的介质代替强腐蚀介质。 3 加入缓蚀剂 通常,在腐蚀环境中加入少量缓蚀剂就可以大大减缓金属的腐蚀,我们一般将它分为无机、有机和气相缓蚀剂三类,其缓蚀机理也各不相同。 1无机缓蚀剂 有些缓蚀剂会使阳极过程变慢,称之为阳极型缓蚀剂,它包括促进阳极钝化的氧化剂(铬酸盐、亚硝酸盐、铁离子等)或阳极成膜剂(碱、磷酸盐、硅酸盐、苯甲酸盐等),它们主要在阳极区域反应,促进阳极极化。一般阳极缓蚀剂会在阳极表面生成保护膜,这种情况下的缓蚀效果较好,但也存在一定风险,因为如果剂量不充足,会造成保护膜不完整,膜缺陷处暴露的裸金属面积小,阳极电流密度大,更容易发生穿孔。另一类缓蚀剂是在阴极反应,如钙离子、锌离子、镁离子、铜离子、锰离子等与阴极产生氢氧根离子,形成不溶性的氢氧化物,以厚膜形态覆盖在阴极表面,因而阻滞氧扩散到阴极,增大浓差极化。除此之外,也有同时阻滞阳极和阴极的混合型缓蚀剂,但加入量一般都需要先通过试验才可确定。 2有机缓蚀剂 有机缓蚀剂是吸附型的,吸附在金属表面,形成几个分子厚的不可视膜,可同时阻滞阳极和阴极反应,但对二者的影响力稍有不同。常用无机缓蚀剂有含氮、含硫、含氧及含磷的有机化合物,其吸附类型随有机物分子构型的不同可分为静电吸附、化学吸附及π键(不定位电子)吸附。有机缓蚀剂的发展很快,用途十分广泛,但是使用它同时也会产生一些缺点,如污染产品,特别是食品类,缓蚀剂可能对生产流程的这一部分有利,但进入另一部分则变为有害物质,也有可能会阻抑需要的反应,如酸洗时使去膜速度过缓,等。

防腐国家标准

国家标准 国家标准 序号标准号标准、资料名称定价元备注 A综合类 01 GB/T21774-2008 粉末涂料烘烤条件的测定14.00 02 GB/T21775-2008 闪点的测定闭杯平衡法18.00 03 GB/T21776-2008 粉末涂料及其涂层的检验标准指 南24.00 04 GB/T21777-2008 色漆和清漆用 漆基 氯化聚合物树 脂通用试验方法14.00 05 GB/T21782.1-2008 粉末涂料第1部分:筛分法测定粒 度分布14.00 06 GB/T21782.2-2008 粉末涂 料 第2部分:气体比较比重仪法测定密度(仲裁 法)14.00 07 GB/T21782.3-2008 粉末涂 料 第3部分:液体置换比重瓶法测定密 度14.00 08 GB/T21782.4-2008 粉末涂料第4部分:爆炸下限的 计算14.00 09 GB/T21782.8-2008 粉末涂 料 第8部分:热固性粉末贮存稳定性的 测定16.00 10 GB/T21782.10- 2008 粉末涂 料 第10部分:沉积效率的 测定14.00 11 GB/T4054-2008 涂料涂覆标记14.00 12 GB/T4955-2005 覆盖层厚度 测量阳极溶解库仑法18.00 13 GB/T6807-2001 钢铁工件涂装前磷化处理技术条 件14.00 14 GB/T6464-1997 金属及其覆盖层大气腐蚀试验现场的一般要求 15 GB/T18839.1- 2002 涂覆涂料钢材表面 处理表面处理方法总则14.00 16 GB/T18839.2- 2002 涂覆涂料钢材表面 处理 表面处理方 法磨料喷射清理18.00 17 GB/T18839.3- 2002 涂覆涂料钢材表面 处理表面处理方法 手工和动力工具 清14.00 理 18 GB/T13912-2002 金属覆盖 层 钢铁制件热浸镀锌层技术要求及实验方 法21.00 19 GB/T16744-2002 热喷涂 层自熔合金喷涂与重熔16.00 20 GB/T8264-2008 涂装技术术语21.00 11 GB/T14441-93 涂装作业安全规程 术语16.00 12 GB14443-2007 涂装作业安全规程涂层烘干室安全技术规定18.00 13 GB14444-2006 涂装作业安全规程喷涂室安全技术 规定18.00 14 GB/T14773-2007 涂装作业安全规 程 静电喷枪及其辅助装置安全技术条 件16.00 15 GB/T12367-2006 涂装作业安全规 程 静电喷漆工艺 安全18.00 F1 GB/T15607-95 涂装作业安全规 程粉末静电喷涂工艺安全16.00 16 GB7692-1999 涂装作业安全 规程涂漆前处理工艺安全及其通风净化18.00 17 GB6514-1995 涂装作业安全规 程涂漆工艺安全及其通风净化18.00

水工金属结构防腐蚀工作管理办法

水工金属结构防腐蚀工作管理办法 (2005年7月5日水利部水综合[2005]264号) 第一章 总 则 第一条 水工金属结构是水利水电工程的重要组成部分,其防腐蚀质量对水工金属结构使用寿命和水利水电工程的安全运行有重大影响。为加强对水工金属结构防腐蚀工作的管理,保证水工金属结构的质量,维护水利水电工程安全运行,根据《中华人民共和国产品质量法》等有关规定,制定本办法。 第二条 从事水工金属结构防腐蚀施工的单位,根据自愿的原则,可向水利部产品质量监督总站申请取得《水工金属结构防腐蚀专业施工能力证书》。施工能力分为涂料涂装、金属喷涂、电化学保护三个专业。 第三条 从事水工金属结构防腐蚀工作的人员分为质检员和操作工,质检员和操作工必须经过培训。培训由水工金属结构防腐蚀质检员和操作工考试委员会(以下简称“考试委员会”)组织,也可由本单位自行安排。经考试委员会培训并考试合格的,由水利部产品质量监督总站发给《水工金属结构防腐蚀质检员合格证书》和《水工金属结构防腐蚀操作工合格证书》。 第四条 本办法对从事水工金属结构制造、安装、使用等的单位,具有指导作用。 第二章 管理机构及职责 第五条 水利部产品质量监督总站(以下简称“产品质量监督总站”)负责水工金属结构防腐蚀专业施工能力评定管理工作,其主要职责是: (一)根据国家有关法律、法规及政策,制定和完善管理办法,宣传、贯彻、落实管理办法的有关要求,组织制定《水工金属结构防腐蚀专业施工能力评定细则》和《水工金属结构防腐蚀质检员和操作工培训工作细则》; (二)负责水工金属结构防腐蚀专业施工能力证书申请的受理、评定、备案、公示和颁发专业施工能力证书以及监督管理工作; (三)负责水工金属结构防腐蚀施工质量的监督工作; (四)负责考核、评定水工金属结构防腐蚀质检员和操作工考试委员会,并对其工作进行监督; (五)审查水工金属结构防腐蚀质检员和操作工考试结果,对考试合格人员颁发《水工金属结构防腐蚀质检员合格证书》和《水工金属结构防腐蚀操作工合格证书》。 第三章 申请条件

金属构件的表面处理方法及要求

金属构件的表面处理方法及要求(除锈)表面处理的好坏直接关系到防腐层的防腐效果,尤其对于涂层,其与基体的机械性粘合和附着,直接影响着涂层的破坏、剥落和脱层。未处理表面的原有铁锈及杂质的污染,如油脂、水垢、灰尘等都直接影响防腐层与基体表面的粘合和附着。因此,在设备施工前,必须十分重视表面处理。 (一)钢材表面原始锈蚀分级 钢材表面原始锈蚀分为A、B、C、D四级。 A级——全面覆盖着氧化皮而几乎没有铁锈的钢材表面; B级——已发生锈蚀,且部分氧化皮已经剥落的钢材表面; C级——氧化皮已因锈蚀而剥落或者可以刮除,且有少量点蚀的钢材表面;D级——氧化皮已因锈蚀而全面剥离,且已普遍发生点蚀的钢材表面。 (二)钢材表面除锈质量等级 钢材表面除锈质量等级分St2、St3、Sal、Sa2、Sa2.5五级。 St2——彻底的手工和动力工具除锈。钢材表面无可见的油脂和污垢,且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。可保留粘附在钢材表面且不能被钝油灰刀剥掉的氧化皮、锈和旧涂层。 St3——非常彻底的手工和动力工具除锈。钢材表面无可见的油脂和污垢,且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。除锈应比St:更为彻底,底材显露部分的表面应具有金属光泽。 Sa1——轻度的喷射或抛射除锈。钢材表面无可见的油脂和污垢,且没有附着不牢的氧化皮、铁锈和油漆涂层等附着物。· sa2——彻底的喷射或抛射除锈。钢材表面无可见的油脂和污垢,且氧化皮、铁锈和油漆涂层等附着物已基本清除,其残留物应是牢固附着的。 Sa2.5——非常彻底的喷射或抛射除锈。钢材表面无可见的油脂、污垢、氧化皮、铁锈和油漆涂层等附着物,任何残留的痕迹仅是点状或条纹状的轻微色斑。 (三)金属表面处理方法 为了使钢材表面与涂层之间有较好的附着力,并能更好地起到防腐作用,涂层前应对金属表面进行处理。 钢材的表面处理方法主要有:手工方法、机械方法和化学方法三种。目前,常用机械方法中的喷砂处理。 1.手工方法 手工方法适用于一些较小的物件表面及没有条件用机械方法进行表面处理的设备表面。即用砂皮、钢丝刷子或废砂轮将物体表面的氧化层除去,然后再用有机溶剂如汽油、丙酮、苯等,将浮锈和油污洗净,即可涂覆。 2.机械方法 机械方法适用于大型金属表面的处理。它有干喷砂法、湿喷砂法、密闭喷砂法、抛丸法、滚磨法和高压水流除锈法等。 (1)干喷砂法是目前广泛采用的方法。用于清除物件表面的锈蚀、氧化皮及各种污物,使金属表面呈现一层较均匀而粗糙的表面,以增加漆膜的附着力。 干喷砂法的主要优点是:效率高、质量好、设备简单。但操作时灰尘弥漫,劳动条件差,严重影响工人的健康,且影响到喷砂区附近机械设备的生产和保养。 (2)湿喷砂法分为水砂混合压出式和水砂分路混合压出式。

金属的腐蚀与防护知识点总结

第三单元金属的腐蚀与防护 知能定位 1.了解金属腐蚀的原因,能辨别金属发生腐蚀的类型。 2.了解金属电化学腐蚀的原因及反应原理。 3.了解金属防护的一般方法及金属的电化学防护的原理。 情景切入 铁生锈的现象随处可见,为什么铁在潮湿的环境中容易生锈?采取什么措施可以防止铁生锈呢? 自主研习 一、金属的电化学腐蚀 1.金属腐蚀 (1)定义 金属或合金与周围环境中的物质发生化学反应而腐蚀损耗的现象。 (2)实质 金属失去电子被氧化。 (3)类型 ①化学腐蚀:指金属与其他物质直接接触发生氧化还原反应而引起的腐蚀。腐蚀过程中无电流产生。 ②电化学腐蚀:指不纯的金属或合金发生原电池反应,使较活泼的金属失去电子被氧化而引起的腐蚀。 2.电化学腐蚀 (1)吸氧腐蚀:钢铁表面吸附的水膜酸性很弱或呈中性时,氧气参加电极反应,发生吸氧腐蚀。 负极: 2Fe==4e-+2Fe2+; 正极: 2H2O+O2+4e-==4OH-; 总反应: 2Fe+O2+2H2O==2Fe(OH) 2。 最终生成铁锈(主要成分为Fe2O3·xH2O),反应如下: 4Fe(OH) 2+O2+2H2O==4Fe(OH) 3; 2Fe(OH) 3==Fe2O3·xH2O+(3-x)H2O。 (2)析氢腐蚀:金属表面的电解质溶液酸性较强,腐蚀过程中不断有H2放出。 负极: Fe==Fe2++2e-; 正极: 2H++2e-==H2↑; 总反应:Fe+2H+==Fe2++H2↑。 二、金属的电化学防护 1.金属的防护 (1)本质:阻止金属发生氧化反应。 (2)方法 ①改变金属内部结构,如制成合金等。 ②加防护层,如在金属表面喷油漆、涂油脂、电镀等。 ③电化学防护 2.电化学防护

金属防腐处理方法

金属防腐处理方法 一、金属的防护及保护方法 (一)金属的防护 针对金属腐蚀的原因采取适当的方法防止金属腐蚀,常用的方法有: 1.改变金属的内部组织结构 例如制造各种耐腐蚀的合金,如在普通钢铁中加入铬、镍等制成不锈钢。 2.保护层法 在金属表面覆盖保护层,使金属制品与周围腐蚀介质隔离,从而防止腐蚀。如: (1)在钢铁制件表面涂上机油、凡士林、油漆或覆盖搪瓷、塑料等耐腐蚀的非金属材料。 (2)用电镀、热镀、喷镀等方法,在钢铁表面镀上一层不易被腐蚀的金属,如锌、锡、铬、镍等。这些金属常因氧化而形成一层致密的氧化物薄膜,从而阻止水和空气等对钢铁的腐蚀。 (3)用化学方法使钢铁表面生成一层细密稳定的氧化膜。如在机器零件、枪炮等钢铁制件表面形成一层细密的黑色四氧化三铁薄膜等。 3.电化学保护法

利用原电池原理进行金属的保护,设法消除引起电化腐蚀的原电池反应。电化学保护法分为阳极保护和阴极保护两大类。应用较多的是阴极保护法。 4.对腐蚀介质进行处理 消除腐蚀介质,如经常揩净金属器材、在精密仪器中放置干燥剂和在腐蚀介质中加入少量能减慢腐蚀速度的缓蚀剂等。 (二)电化学保护 将被保护的金属作为腐蚀电池的阴极,使其不受到腐蚀,所以也叫阴极保护法。这种方法主要有以下两种: 1.牺牲阳极保护法 此法是将活泼金属(如锌或锌的合金)连接在被保护的金属上,当发生电化腐蚀时,这种活泼金属作为负极发生氧化反应,因而减小或防止被保护金属的腐蚀。这种方法常用于保护水中的钢桩和海轮外壳等例如水中钢铁闸门的保护,通常在轮船的外壳水线以下处或在靠近螺旋浆的舵上焊上若干块锌块,来防止船壳等的腐蚀。 2.外加电流的保护法 将被保护的金属和电源的负极连接,另选一块能导电的惰性材料接电源正极。通电后,使金属表面产生负电荷(电子)的聚积,因而抑制了金属失电子而达到保护目的。此法主要用于防止在土壤、海水及河水中的金属设备受到腐蚀。电化学保护的的另一种方法叫阳极保护法,即通过外加电压,使阳极在一定的电位范围内发生钝化的过程。可有效地阻滞或防止金属设备在酸、碱、盐类中腐蚀。

表面处理标准对照表

附录A SSPC表面处理标准 ? SP-1 溶剂清洗 ? SP-2 手工工具处理 ? SP-3 机动工具处理 ? SP-4 燃烧处理 ? SP-5 彻底喷砂(白金属) ? SP-6 中度喷砂(商用) ? SP-7 轻度喷砂(普通) ? SP-8 浸酸(化学处理) ? SP-9 风化后再以钢丝刷打磨 ? SP-10 彻底喷砂(接白) ? SP-11 机动工具处理至金属表层完全光泽暴露? SP-12 高压水喷射 ? SP-13 混凝土表面处理 ? SP-14 工业喷砂 附录B 表面处理等级 起始锈蚀程度:(图示从左至右分别为B、C、D)? 等级A 氧化层紧密附着于表面 ? 等级B 氧化层开始锈蚀 ? 等级C 氧化层已经锈蚀 ? 等级D 氧化层严重锈蚀,出现麻点

轻度喷砂: 商用喷砂: 近白喷砂: 白金属喷砂: 附录C 国际通用表面处理标准对比

钢结构油漆委员会Steel Structure Painting Council (SSPC) 国家防腐工程师协会National Association of Corrosion Engineers (NACE) 英国标准ISO 8501-1 / BSI BS 7079 瑞典标准Swedish Standard 国标GB-3092 / GB-8923-88

关于表面处理等级 1994年10月,NACE和SSPC发布了用于磨料清理的联合表面处理标准(这些标准大约相当于由最初的瑞典标准发展而来的ISO标准ISO8501-1SO-公布于1988年: NACE NO.I/SSPC-SP5“金属出白级喷砂” 相当于—Sa3“喷砂至可见清洁金属” NACE NO.2/SSPC-SP10“金属近于出白级喷砂” 相当于—Sa21/2“非常彻底的喷砂清理” NACE NO.3/SSPC-SP6“工业级喷砂” 相当于—Sa2“彻底的喷砂清理” NACE NO.4/SSPC-SP7“刷除锈级喷砂” 相当于—Sa1“轻喷砂清理” SSPC-SP1“溶剂清理” SSPC-SP2“手动工具清理” SSPC-SP11 “动力工具清理至裸钢” SSPC-SP8“酸洗” SSPC-SP3“动力工具清理” SSPC-SP11R “动力工具清理维修保养” 一、金属 (1) 新表面 A.钢铁 1.喷砂处理 实践证明,无论是在施工现场还是在装配车间,喷砂处理都是除去锻痕的最有效方法。这是成功使用各种高性能油漆系统的必要处理手段。喷砂处理的清洁程度必须规定一个通用标准,最好有标准图片参考,并且在操作过程中规定并控制表面粗糙度。表面粗糙度取决于几方面的因素,但主要受到所使用的磨料种类及其粒径和施力方法(如高压气流和离心力)的影响。对于高压气流,喷嘴的高压程及其对工件的角度是表面粗糙度的决定因素;而对于离心力或机械喷射方法来说,喷射操作中的速率是非常重要的。喷砂处理完成后必须立即上底漆。所有油脂及污染物必须在上漆前清除。 2.湿喷砂或砂洗 这种方法是使用砂浆及高压水来除去旧漆、锻痕及蚀物。使用这种方法,极大程度上克服了普通喷砂处理中粉尘对健康的危害。同样,表面粗糙度及清洁效率取决于水压及砂浆中磨料的浓度。 这种处理方法的一个主要缺点是清洁好的钢铁表面将立即开始生锈,因此与普通喷砂处理比较,表现出一种较次的表面。要在水中加入阻锈剂但必须十分小心,因为有些阻锈剂会影响随后漆膜的性能。 3.车间预上底钢结构 在车间经过自动喷砂处理并在装配前预上底漆的钢结构,在施以最后的保护性油漆系统前,通常需要进行特殊处理。所有损伤区域,会继续生锈,这些区域必须被重新喷砂处理,或用手工方法彻底清洁至可接受的标准。在施以高性能油漆体系前,通常需要重新喷砂处理,这需要在所有可能的场合做具体的规定。这种处理方法也通常用于焊接及焊接前无法上底漆的钢结构连接部分。 4.酸洗清洁酸洗清洁 是一种古老的车间处理方法,用于除去钢铁的锻痕。目前仍有几个步骤在被使用,通常为一个双重体系包括酸腐蚀及酸钝化。

金属腐蚀与防护

第一章绪论 腐蚀:由于材料与其介质相互作用(化学与电化学)而导致的变质和破坏。 腐蚀控制的方法: 1)、改换材料 2)、表面涂漆/覆盖层 3)、改变腐蚀介质和环境 4)、合理的结构设计 5)、电化学保护 均匀腐蚀速率的评定方法: 失重法和增重法;深度法; 容量法(析氢腐蚀);电流密度; 机械性能(晶间腐蚀);电阻性. 第二章电化学腐蚀热力学 热力学第零定律状态函数(温度) 热力学第一定律(能量守恒定律) 状态函数(内能) 热力学第二定律状态函数(熵) 热力学第三定律绝对零度不可能达到 2.1、腐蚀的倾向性的热力学原理 腐蚀反应自发性及倾向性的判据: ?G:反应自发进行 < ?G:反应达到平衡 = ?G:反应不能自发进行 > 注:ΔG的负值的绝对值越大,该腐蚀的自发倾向性越大. 热力学上不稳定金属,也有许多在适当条件下能发生钝化而变得耐蚀. 2.2、腐蚀电池 2.2.1、电化学腐蚀现象与腐蚀电池 电化学腐蚀:即金属材料与电解质接触时,由于腐蚀电池作用而引起金属材料腐蚀破坏. 腐蚀电池(或腐蚀原电池):即只能导致金属材料破坏而不能对外做工的短路原电 池. 注:1)、通过直接接触也能形成原电池而不一定要有导线的连接; 2)、一块金属不与其他金属接触,在电解质溶液中也会产生腐蚀电池. 丹尼尔电池:(只要有电势差存在) a)、电极反应具有热力学上的可逆性; b)、电极反应在无限接近电化学平衡条件下进行; c)、电池中进行的其它过程也必须是可逆的. 电极电势略高者为阴极 电极电势略低者为阳极 电化学不均匀性微观阴、阳极微观、亚微观腐蚀电池均匀腐蚀

2.2.2、金属腐蚀的电化学历程 腐蚀电池: 四个部分:阴极、阳极、电解质溶液、连接两极的电子导体(即电路) 三个环节:阴极过程、阳极过程、电荷转移过程(即电子流动) 1)、阳极过程氧化反应 ++ - M n M →ne 金属变为金属离子进入电解液,电子通过电路向阴极转移. 2)、阴极过程还原反应 []- -? D D ne +ne → 电解液中能接受电子的物质捕获电子生成新物质. (即去极化剂) 3)、金属的腐蚀将集中出现在阳极区,阴极区不发生可察觉的金属损失,只起到了传递电荷的作用 金属电化学腐蚀能够持续进行的条件是溶液中存在可使金属氧化的去极化剂,而且这些去极化剂的阳极还原反应的电极电位比金属阴极氧化反应的电位高2.2.3、电化学腐蚀的次生过程 难溶性产物称二次产物或次生物质由于扩散作用形成,且形成于一次产物相遇的地方 阳极——[]+n M(金属阳离子浓度)高 扩散作用难溶性物质(形成致密对金属起保护作用) 阴极——pH高 2.3、腐蚀电池类型 宏观腐蚀电池、微观腐蚀电池、超微观腐蚀电池 2.3.1、宏观腐蚀电池 特点:a)、阴、阳极用肉眼可看到; b)、阴、阳极区能长时间保持稳定; c)、产生明显的局部腐蚀 1)、异金属(电偶)腐蚀电池——保护电位低的阴极区域 2)浓差电池由于同一金属的不同部位所接触的介质浓度不同所致 a、氧浓差电池——与富氧溶液接触的金属表面电位高而成为阳极区 eg:水线腐蚀——靠近水线的下部区域极易腐蚀 b、盐浓差电池——稀溶液中的金属电位低成为阴极区 c、温差电池——不同材料在不同温度下电位不同 eg:碳钢——高温阳极低温阴极 铜——高温阴极低温阳极 2.3.2、微观腐蚀电池 特点:a)、电极尺寸与晶粒尺寸相近(0.1mm-0.1μm); b)、阴、阳极区能长时间保持稳定; c)、引起微观局部腐蚀(如孔蚀、晶间腐蚀)