文档库 最新最全的文档下载
当前位置:文档库 › 一元函数的最值模型

一元函数的最值模型

一元函数的最值模型
一元函数的最值模型

探索求一元函数极值和最值方法

“探索求一元函数极值和最值方法”的学习报告 一、前言 函数的极值、最值不仅在实际问题中占有重要地位,而且也是函数形态的重要特征。因此,通过学习、掌握确定极值点和最值点,并求出极值和最值的方法是十分重要的。 二、学习内容和过程 1.探索可能的极值点 (1)回顾相关定义、定理 a.极值定义:若函数f在点x0的领域U(x0)内对一切x∈U(x0)有f(x0)≥(≤)f(x),则称函数f在点x0确取得极大(小)值。称x0为极大(小)值点。 b.费马定理:设函数f在点x0的某领域内有定义,且在点x0可导。若点x0为f的极值点,则必有f’ (x0)=0。且称这样的点为稳定点。 (2)思考并回答下列问题。进一步分析可能的极值点类型。 a.可导点成为极值点一定是稳定点吗?(是。通过费马定理可证明) b.函数的不可导点也能称为极值点吗?(能。例如y=| x|在x=0处取极小值) c.函数的稳定点一定是极值点吗?(不一定。例如y=x3,x=0为稳定点,但非极值点) d.函数的不可导点一定是极值点吗?(不一定。例如y=1/x,在x=0处不可导,但不是极值点) e.函数在点x0处不可导,它包含了哪几种情况?(①连续不可导②不连续) f.除此之外,还有没有其他类型的点极值点?(没有) 稳定点,例如y=x2,x=0处 (3)由上面的问题得到极值点的范围 连续不可导,例如y=| x|,x=0处 不可导点2x≠0 不连续点,例如y= -1 x=0 2.探索确定极值点的方法 由极值点的范围可知极值点分为连续点和间断点。对于剪短点,只要满足在x0某领域内始终有f(x0)≥f(x)或者f(x0)≤f(x),至于连续部分函数任意,这样间断点x0就为极大或极小值点,即判断间断点是否为极值点,只需要根据极值定义即可。下面主要讨论连续点能否成为极值点的判断。 (1)a.考察函数y=x2,y=x3,y=x1/3易知在x=0处连续,在U0(x)可导,且有 ①y=x2x<0时,f’ (x)<0,函数严格递减 x>0时,f’ (x)>0,函数严格递增 ②y=x3 f’ (x) ≥0函数单调递增 仅在x=0时,f’ (x)=0 ③y=x1/3 f’ (x)>0.函数严格递增且x=0处不可导 由y=x2在x=0处连续以及两边领域内的增减性可知y=x2在x=0处取得极小值,而y=x3以及y=x1/3由f(x)的增减性可知在x=0处不取极值。 b.启发得到定理:设f在点x0连续,在某领域U0(x0)内可导则 Ⅰ若当x∈U+0(x0),f’ (x) ≤0,当x∈U—0(x0),f’ (x) ≥0,则f在点x0处取得极大值Ⅱ若当x∈U+0(x0),f’ (x) ≥0,当x∈U—0(x0),f’ (x) ≤0,则f在点x0处取得极小值

一元三次方程实例

一元三次方程实例 (一) 现有曲线的参数方程,试将其写成y=f(x)形式 )2.( (27000) )1( (100033) t y t t x =-= 由(2)将3133027000y t y t ==代入(1) 得1000 270003031y y x -= 令Z y =31 得32730Z Z x -= 即 x Z Z -=30273 解这个Z 的一元三次方程 x Z Z 27 127303-= 令b a Z -= x b a b a 27 1)(2730)(3--=- x b a b ab b a a 271)(2730333223--=-+- x ab b a x b a b a ab b a x b a ab b a b a 271)27303)(( (27) 1)(2730)(327 1)(273033332233-+-=--+-=---+ -=- 令027 303=+ab x b a 27 133-=- 两边同乘327a )271(27)(273333x a b a a - =- x a b a a 27 127)2727(273333-=-这是327a 的一元二次方程 令3 27a T =得 T x T b T 272732-=-

x b T b x T T T b x T T x T b T -==-+==-+=+-33323227027 2700)27 (27027 27 3 2727 272727333 333x b x b a x b a -=-=-= 将其代入,原假设 027303=+ ab 即b a 2710-= 3 9292393233236336333 1000)54(543 1000)54(5403 100027)()(273100027310003 272710-±=-±==+--=--=--=-x x b x x b b x b xb b x b b x b b 代入 b a 2710- = 3923 1000)54(54127 10 -±-=x x a 3923923 1000)54(5431000)54(54127 10 -±--±-=-=x x x x b a Z 31y Z =

二元函数的极值与最值

二元函数的极值与最值 二元函数的极值与最值问题已成为近年考研的重点,现对二元函数的极值与最值的求法总结如下: 1.二元函数的无条件极值 (1) 二元函数的极值一定在驻点和不可导点取得。对于不可导点,难以判断是否是极值点;对于驻点可用极值的充分条件判定。 (2)二元函数取得极值的必要条件: 设),(y x f z =在点),(00y x 处可微分且在点),(00y x 处有极值,则0),('00=y x f x ,0),('00=y x f y ,即),(00y x 是驻点。 (3) 二元函数取得极值的充分条件:设),(y x f z =在),(00y x 的某个领域内有连续上二阶偏导数,且=),('00y x f x 0),('00=y x f y ,令A y x f xx =),('00, B y x f xy =),('00,C y x f yy =),('00,则 当02<-AC B 且 A<0时,f ),(00y x 为极大值; 当02<-AC B 且A>0,f ),(00y x 为极小值; 02 >-AC B 时,),(00y x 不是极值点。 注意: 当B 2-AC = 0时,函数z = f (x , y )在点),(00y x 可能有极值,也可能没有极值,需另行讨论 例1 求函数z = x 3 + y 2 -2xy 的极值. 【分析】可能极值点是两个一阶偏导数为零的点,先求出一阶偏导,再令其为零确定极值点即可,然后用二阶偏导确定是极大值还是极小值,并求出相应的极值. 【解】先求函数的一、二阶偏导数: y x x z 232 -=??, x y y z 22-=??. x x z 62 2 =??, 22 -=???y x z , 2 2 2 =??y z . 再求函数的驻点.令x z ??= 0,y z ??= 0,得方程组???=-=-. 022,0232x y y x 求得驻点(0,0)、),(3 2 32. 利用定理2对驻点进行讨论:

利用Excel电子表格解一元三次方程

利用Excel电子表格如何解一元三次方程? 比如有一个一元三次方程X3-2.35X2-10262=0,可以通过迭代法,即可以设定步长和迭代值小于一定的数值来求方程的解。请问在Excel电子表格使用的是什么函数,在单元格中设置怎么样的公式? 这类问题可以使用Excel内置的“单变量求解”模块来完成,操作步骤如下: 1、打开一个空白工作表; 2、A1单元格留空,在A2单元格里输入如下公式—— =A1^3-2.35*A1^2-10262 3、点击菜单“工具”-》“单变量求解”; 4、在弹出的设置对话框里输入: “目标单元格”:A2 “目标值”:0 “可变单元格”:A1 点确定后就大功告成了~~ 5、如果还没有得到你想要的解,在上次计算的基础上再重复步骤4应该就可以了。 一元方程线性拟合 1,选中需拟合的数据,点“插入”“图表”“XY散点图”“下一步” X、Y轴的数据区域,“完成”。 2,在出现的散点图中选择一个散点,右击“添加趋势线”。 3,若是一元一次线性方程,选“线性(L)”。 4,若是一元多次方程,选“多项式(P)”并在“阶数”栏选择相应的阶数。 5,“选项”“显示公式”“显示R平方值”处勾选,确定。 excel计算方法: 在科普园地,有人出了一道一元三次方程3x^3-82x^2-11x+70 =0,说是允许用计算器或计算机,我想了想,很快就用excel的计算功能求出了5位小数。 1、打开excel(含一个已打开的新excel文件),在B1格(即第1行第B列对应的格子)输入“=3*A1^3-82*A1^2-11*A1+70”(只输入引号内的部分,不含引号),把鼠标的光标移到这个格子右下角的黑点上,按着左键往下拉它200多行备用(也可以先拉几十格,后面要用了再拉)。 2、粗略估计,x不可能小于-100,不可能大于100,所以值的范围肯定在这个范围;在A1格输入-100,A2格输入-90,用鼠标选中A1、A2格,再往下拉A2格右下角的黑点到A21格,这样就得到了-100~100的整10的x值,B列得到对应的3*x^3-82*x^2-11*x+70的值。 3、从函数y=3x^3-82x^2-11x+70,基本上可以肯定函数值是连续的,从计算的函数值(B1~B21格的数值)可以看出,函数在(-10,0)、(0,10)、(20,30)三个定义域中各有一个值为0。 4、用第2步的操作方法在A24~A44中分别填入-10~10,在A46~A56中分别填入20~30。 5、从新的函数值可以看出,三个值在(-1,0)、(0,1)、(27,28)内,所以,在A列填入-1~1、27~28的带一位小数的所有数…… 经过几次,就可以求得三个x值分别在(-0.97496,-0.97495)、(0.87231,0.87232)、(27.43597,27.43598)定义域中。 (研究了一下,excel最多可以表示15位有效数字)

函数极值与最值研究毕业论文

函数极值与最值研究 摘要:在实际问题中, 往往会遇到一元函数.二元函数,以及二元以上的多元函数的最值问题和极值问题等诸多函数常见问题。求一元函数的极值,主要方法有:均值等式法,配方法,求导法等。求一元函数的最值,主要方法有:函数的单调性法,配方法,判别式法,复数法,导数法,换元法等。求二元函数极值,主要方法有:条件极值拉格朗日乘数法,偏导数法等。求二元函数最值,主要方法有:均值不等式法,换元法,偏导数法等。对于多元函数,由于自变量个数的增加, 从而使该问题更具复杂性,求多元函数极值方法主要有:条件极值拉格朗日法, 等,对于多元函数最值问题与一元函数类似可以用极值来求函数的最值问题.主要方法有:向量法,均值不等式法,换元法,消元法,柯西不等式法,数形结合法等, 关键词:函数,极值,最值,极值点,方法技巧. Abstract: in practical problems,often encounter a unary function. The function of two variables, and multiplefunctions of two yuan more than the most value questionand extremum problems and many other functions of common problems. Extremum seeking a binary function,the main methods are: inequality extremum method,distribution method, derivation etc.. The value for theelement function, the main methods are: monotone method, function method, the discriminant method,complex method, derivative method, substitution methodetc.. For two yuan value function, the main methods are:conditional extremum of Lagrange multiplier method etc..Ask two yuan to the value function, the main methods are:mean inequality method, substitution method, partial derivative method etc.. For multivariate function, due to the increased number of

函数的极值与导数教学设计一等奖

函数的极值与导数 作者单位:宁夏西吉中学作者姓名:蒙彦强联系电话: 一.教材分析 本节课选自高中数学人教A版选修2-2教材函数的极值与导数,就本册教材而言本节既是前面所学导数的概念、导数的几何意义、导数的计算、函数的单调性与导数等内容的延续和深化,又为下节课最值的学习奠定了知识与方法的基础,起着承上启下的作用.就整个高中教学而言,函数是高中数学主要研究的内容之一,而导数又是研究函数的主要工具,同时导数在化学、物理中都有所涉及可见它的重要性. 二.教学目标 1. 了解极大值、极小值的概念,体会极值是函数的局部性质; 2. 了解函数在某点取得极值的必要条件与充分条件; 3. 会用导数求函数的极值; 4. 培养学生观察、分析、探究、推理得出数学概念和规律的学习能力; 5. 感受导数在研究函数性质中的一般性和有效性,体会导数的工具作用.三.重点与难点 重点是会用导数求函数的极值. 难点是导函数的零点是函数极值点的必要不充分条件的理解. 四.学情分析 基于本班学生基础较差,思维水平参差不齐,所以备课上既要考虑到薄弱同学的理解与接受,又要考虑到其他同学视野的拓展,因此在本节课中我设置了许多的问题,来引导学生怎样学,以问答的方式来激发学生的学习兴趣,同时让更多的学生参与到教学中来.学生已经学习了函数的单调性与导数的关系,学生已经初步具备了运用导数研究函数的能力,为了进一步培养学生的这种能力,体会导数的工具作用,本节进一步研究函数的极值与导数. 五.教具教法 多媒体、展台,问题引导、归纳、类比、合作探究发现式教学 六.学法分析 借助多媒体辅助教学,通过观察函数图像分析极值的特征后,得出极值的定义;通过函数图像上极值点及两侧附近导数符号规律的探究,归纳出极值与导数的关系;通过求极值的问题归纳用导数求函数极值的方法与步骤. 七.教学过程 1.引入 让学生观察庐山连绵起伏的图片思考“山势有什么特点”并结合诗句“横看成岭侧成峰,远近高低各不同”,由此联想庐山的连绵起伏形成好多的“峰点”与“谷点”,这就是数学上研究的函数的极值引出课题. 【设计意图】从庐山美景出发并结合学生熟悉的诗句来激发学生学习兴趣,让学生在愉快中知道学什么.

专题09 一元二次函数的三种表示方式(解析版)

专题09 一元二次函数的三种表示方式 一、知识点精讲 通过上一小节的学习,我们知道,一元二次函数可以表示成以下三种形式: 1.一般式:y=ax2+bx+c(a≠0); 2.顶点式:y=a(x+h)2+k (a≠0),其中顶点坐标是(-h,k). 除了上述两种表示方法外,它还可以用另一种形式来表示.为了研究另一种表示方式, 我们先来研究二次函数y=ax2+bx+c(a≠0)的图象与x轴交点个数. 当抛物线y=ax2+bx+c(a≠0)与x轴相交时,其函数值为零,于是有ax2+bx+c=0.① 并且方程①的解就是抛物线y=ax2+bx+c(a≠0)与x轴交点的横坐标(纵坐标为零),于是,不难发现,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与方程①的解的个数有关,而方程①的解的个数又与方程①的根的判别式Δ=b2-4ac有关,由此可知,抛物线y=ax2+bx+c(a≠0)与x轴交点个数与根的判别式Δ=b2-4ac 存在下列关系: (1)当Δ>0时,抛物线y=ax2+bx+c(a≠0)与x轴有两个交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点,则Δ>0也成立. (2)当Δ=0时,抛物线y=ax2+bx+c(a≠0)与x轴有一个交点(抛物线的顶点);反过来,若抛物线y=ax2+bx+c(a≠0)与x轴有一个交点,则Δ=0也成立. (3)当Δ<0时,抛物线y=ax2+bx+c(a≠0)与x轴没有交点;反过来,若抛物线y=ax2+bx+c(a≠0)与x 轴没有交点,则Δ<0也成立.于是,若抛物线y=ax2+bx+c(a≠0)与x轴有两个交点A(x1,0),B(x2,0), 则x1,x2是方程ax2+bx+c=0的两根,所以x1+x2= b a -,x1x2= c a ,即 b a =-(x1+x2), c a =x1x2.所 以,y=ax2+bx+c=a(2b c x x a a ++) = a[x2-(x1+x2)x+x1x2]=a(x-x1) (x-x2).由上面的推导过程可以得到下面结论: 若抛物线y=ax2+bx+c(a≠0)与x轴交于A(x1,0),B(x2,0)两点,则其函数关系式可以表示为y=a(x-x1) (x-x2) (a≠0).这样,也就得到了表示二次函数的第三种方法: 3.交点式:y=a(x-x1) (x-x2) (a≠0),其中x1,x2是二次函数图象与x轴交点的横坐标. 今后,在求二次函数的表达式时,我们可以根据题目所提供的条件,选用一般式、顶点式、交点式这三种表达形式中的某一形式来解题. 二、典例精析 【典例1】已知某一元二次函数的最大值为2,图像的顶点在直线y=x+1上,并且图象经过点(3,-1),

C语言求任意1元3次方程的根



程序代码如下: 程序代码如下:
/* 本程序只能求解 1 元 3 次方程 ax3+bx2+cx+k=0 的根 采用弦截法求根 Author: Reader Yan */
#include #include
float a=1.0; float b=-5.0; float c=16.0; float k=-80.0;
void main() { float f(float x);
/*主函数
*/
/*声明 f 函数
*/
float xpoint(float x1,float x2); float root(float x1,float x2); float x1,x2,f1,f2,x;
/*声明 xpoint 函数 */ /*声明 root 函数 */
// printf("Equation is: %6.4f*x*x*x+%6.4f*x*x+%6.4f*x+%6.4f=0\n",a,b,c,k); do {

printf("Input x1,x2:\n"); scanf("%f,%f",&x1,&x2); f1=f(x1); f2=f(x2); } while(f1*f2>=0); x=root(x1,x2); printf("A root of equation is:%8.4f\n",x); }
float f(float x) { float y; y=a*x*x*x+b*x*x+c*x+k; return(y); }
/*定义 f 函数,实现 f(x)=ax3+bx2+cx+k */
float xpoint(float x1,float x2) { float f(float x); float x; x=(x1*f(x2)-x2*f(x1))/(f(x2)-f(x1)); return(x); }
/*定义 xpoint 函数,求出弦与 x 轴交点 */

导数与函数极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试卷难度考查较大. 【方法点评】 类型一利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解读】

试卷分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞ 【答案】B 【解读】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解读】 试卷分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

一元二次函数知识点梳理及练习

1、y=mx m2+3m+2是二次函数,则m 的值为( ) A 、0,-3 B 、0,3 C 、0 D 、-3 2、函数y=2x 2-x+3经过的象限是( ) A 、一、二、三象限 B 、一、二象限 C 、三、四象限 D 、一、二、四象限 3、已知抛物线y=ax 2+bx,当a>0,b<0时,它的图象经过( ) A 、一、二、三象限 B 、一、二、四象限 C 、一、三、四象限 D 、一、二、三、四象限 4、y=x 2-1可由下列( )的图象向右平移1个单位,下平移2个单位得到 A 、y=(x-1) 2+1 B 、y=(x+1) 2+1 C 、y=(x-1) 2-3 D 、y=(x+1) 2+3 5、把抛物线y=x 2+bx+c 的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是 y=x 2-3x+5,则有( ) A ,3=b ,7=c B ,9-=b ,15-=c C ,3=b ,3=c D ,9-=b ,21=c 6、函数y=-x 2+4x+1图象顶点坐标是( ) A 、(2,3) B 、(-2,3) C 、(2,1) D 、(2,5) 7、形状与抛物线22--=x y 相同,对称轴是2-=x ,且过点(0,3)的抛物线是( ) A 、342++=x x y B 、342+--=x x y C 、342++-=x x y D 、342++=x x y 或342+--=x x y 8、已知二次函数的图像与y 轴的交点坐标为(0,a ),与x 轴的交点坐标为(b ,0)和(b -,0),若a >0,则函数解析式为( ) A 、a x b a y +=22 B 、a x b a y +-=22 C 、a x b a y --=22 D 、a x b a y -=22 9. 已知一元二次方程20(0)ax bx c a ++= >的两个实数根1x 、2x 满足124x x +=和123x x =,那么二次函数 2(0)y ax bx c a =++ >的图象有可能是( )

高中数知识讲解_函数的极值与最值提高

导数的应用二------函数的极值与最值 【学习目标】 1. 理解极值的概念和极值点的意义。 2. 会用导数求函数的极大值、极小值。 3. 会求闭区间上函数的最大值、最小值。 4. 掌握函数极值与最值的简单应用。 【要点梳理】 要点一、函数的极值 (一)函数的极值的定义: 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 由函数的极值定义可知: (1)在函数的极值定义中,一定要明确函数y=f(x)在x=x 0及其附近有定义,否则无从比较. (2)函数的极值是就函数在某一点附近的小区间而言的,是一个局部概念;在函数的整个定义域内可能有多个极值,也可能无极值.由定义,极值只是某个点的函数值与它附近点的函数值比较是最大或最小,并不意味着它在函数的整个的定义域内最大或最小. (3)极大值与极小值之间无确定的大小关系.即一个函数的极大值未必大于极小值.极小值不一定是整个定义区间上的最小值. (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.而使函数取得最大值、最小值的点可能在区间的内部,也可能在区间的端点. (二)用导数求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f ';

一元三次函数性质与图象探索

一元三次函数性质与图象探索 高中部宋润生 我们已经学习了一次函数,知道图象是单调递增或单调递减,在整个定义域上不存在最大值与最小值,在某一区间 取得最大值与最小值.那么,是什么决定函数的单调性呢?利用已学过的知识得出:当k>0时函数单调递增;当k<0时函数单调递增;b决定函数与y轴相交的位置. 接着,我们同样学习了二次函数,图象大致如下: 图1 图2 利用已学知识归纳得出:当时(如图1),在对称轴的左侧单调递减、右侧单调递增,对称轴上取得最小值;当时(图2),在对称轴的左侧单调递增、右侧单调递减,对

称轴上取得最大值.在某一区间取得最大值与最小值.其中a决定函数的开口方向,a、b同时决定对称轴,c决定函数与y轴相交的位置. 三次函数的图象有六类.如图: 图3 图4

图5 图6 图7 图8 分析:由图3函数有哪些特点呢?归纳:解析式是,整个定义域上函数单调递增,在图4中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值,函数必经过原点.单调性又与什么知识相关呢?导数,现在求出函数的导数是 ,验证与0的关系,当时,即 的图象在是单调递增;当时,即 的图象在是单调递减相一致.当 ,根据图象知道,在处不是函数f(x)的极值点.所以 的根是函数取得极值的必要不充分条件.现在思考并验证函数 与函数图象有什么关系?经过验证得 出:函数与相同,当

时函数图象是图象向上平移|d|个单位;当时函数图象是图象向下平移|d|个单位;函数的导数都是. 在图5中解析式是,整个定义域上函数单调递增.在图6中解析式是,整个定义域上函数单调递增减.整个定义域上不存在极值.函数的导数,经过验证在图5中因为即,所以的图象在是单调递增;在图6中因为即,所以 的图象在是单调递减;函数都不存在极大值或极小值.为什么在图5中a>0、,在图6中a<0、呢?a>0、 或a<0、是又有什么结果呢?因为导数是二次函数,当a>0、或a<0、时判别式,导数函数不小于0,方程有一个根.当a>0、或a<0、时 ,方程有两个根.那么函数图象有什么特点呢?猜想如果,那么有两根,函数f(x)应有增也有减,我们来验证一下图7、图8: 在图7中解析式是,在或 上函数单调递增,在上函数单调递减;在处取得极大值,在处取得极小值;在图8中解析式是 ,在或上函数单调递减,在上函数单调递增;在处取得极小值,在处取得极

函数的极值和最值(讲解)

函数的极值和最值 【考纲要求】 1.掌握函数极值的定义。 2.了解函数的极值点的必要条件和充分条件. 3.会用导数求不超过三次的多项式函数的极大值和极小值 4.会求给定闭区间上函数的最值。 【知识网络】 【考点梳理】 要点一、函数的极值 函数的极值的定义 一般地,设函数)(x f 在点0x x =及其附近有定义, (1)若对于0x 附近的所有点,都有)()(0x f x f <,则)(0x f 是函数)(x f 的一个极大值,记作 )(0x f y =极大值; (2)若对0x 附近的所有点,都有)()(0x f x f >,则)(0x f 是函数)(x f 的一个极小值,记作 )(0x f y =极小值. 极大值与极小值统称极值. 在定义中,取得极值的点称为极值点,极值点是自变量的值,极值指的是函数值. 要点诠释: 求函数极值的的基本步骤: ①确定函数的定义域; ②求导数)(x f '; ③求方程0)(='x f 的根; ④检查'()f x 在方程根左右的值的符号,如果左正右负,则f(x)在这个根处取得极大值;如果左负右正,则f(x)在这个根处取得极小值.(最好通过列表法) 要点二、函数的最值 1.函数的最大值与最小值定理 若函数()y f x =在闭区间],[b a 上连续,则)(x f 在],[b a 上必有最大值和最小值;在开区间),(b a 内连 函数的极值和最值 函数在闭区间上的最大值和最小值 函数的极值 函数极值的定义 函数极值点条件 求函数极值

续的函数)(x f 不一定有最大值与最小值.如1 ()(0)f x x x = >. 要点诠释: ①函数的最值点必在函数的极值点或者区间的端点处取得。 ②函数的极值可以有多个,但最值只有一个。 2.通过导数求函数最值的的基本步骤: 若函数()y f x =在闭区间],[b a 有定义,在开区间(,)a b 内有导数,则求函数()y f x =在],[b a 上的最大值和最小值的步骤如下: (1)求函数)(x f 在),(b a 内的导数)(x f '; (2)求方程0)(='x f 在),(b a 内的根; (3)求在),(b a 内使0)(='x f 的所有点的函数值和)(x f 在闭区间端点处的函数值)(a f ,)(b f ; (4)比较上面所求的值,其中最大者为函数()y f x =在闭区间],[b a 上的最大值,最小者为函数 ()y f x =在闭区间],[b a 上的最小值. 【典型例题】 类型一:利用导数解决函数的极值等问题 例1.已知函数.,33)(23R m x x mx x f ∈-+=若函数1)(-=x x f 在处取得极值,试求m 的值,并求 )(x f 在点))1(,1(f M 处的切线方程; 【解析】2'()363,.f x mx x m R =+-∈ 因为1)(-=x x f 在处取得极值 所以'(1)3630f m -=--= 所以3m =。 又(1)3,'(1)12f f == 所以)(x f 在点))1(,1(f M 处的切线方程312(1)y x -=- 即1290x y --=. 举一反三: 【变式1】设a 为实数,函数()22,x f x e x a x =-+∈R . (1)求()f x 的单调区间与极值;

高等数学(上册)教案15 函数的极值与最值

第3章 导数的应用 函数的极值与最值 【教学目的】: 1. 理解函数的极值的概念; 2. 掌握求函数的极值的方法; 3. 了解最大值和最小值的定义; 4. 掌握求函数的最值的方法; 5. 会求简单实际问题中的最值。 【教学重点】: 1. 函数极值的第一充分条件,第二充分条件; 2. 导数不存在情况下极值的判定; 3. 函数最值的求解方法; 4. 函数的最值的应用。 【教学难点】: 1. 导数不存在情况下极值的判定; 2. 区分函数的驻点、拐点、极值点以及最值点; 3. 区分极值点与极值,最值点与最值; 4. 函数的最值的应用。 【教学时数】:2学时 【教学过程】: 3.3.1函数的极值 从图3-7可以看出,函数)(x f y =在点2x 、5x 处的函数值2y 、5y 比它们近旁各点的函数值都大;在点1x 、4x 、6x 处的函数值1y 、4y 、6y 比它们近旁各点的函数值都小,因此,给出函数极值的如下定义: 一般地, 设函数)(x f y =在0x 的某邻域内有定义,若对 于0x 邻域内不同于0x 的所有x ,均有)()(0x f x f <,则称)(0x f 是函数)(x f y =的一个极大值,0x 称为极大值点;若对于0x 邻域内不同于0x 的所有x ,均有 )()(0x f x f >,则称)(0x f 是函数)(x f y =的一个极小值,0x 称为极小值点. 函数的极大值与极小值统称为极值,极大值点和极小值点统称为极值点. 注意 可导函数的极值点必是它的驻点,但反过来是不成立的,即可导函数的驻点不一定是它的极值点. 极值的第一充分条件 设函数)(x f y =在点0x 的邻域内可导且0)(0='x f ,则 (1)如果当x 取0x 左侧邻近的值时,0)(0>'x f ;当x 取0x 右侧邻近的值时, 图3-7 y O x a 1 x 2 x 3x 4x 5 x b

一元二次函数知识点汇总

姓名二次函数总复习(知识点) 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a 时)],坐标为(h ,k )。 6.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ?+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故: ①0=b 时,对称轴为y 轴;②0>a b 时,对称轴在y 轴左侧;③0c ,与y 轴交于正半轴;③0

一元二次函数知识点汇总

姓名 二次函数总复习(知识点) 1.定义:一般地,如果c b a c bx ax y ,,(2 ++=是常数,)0≠a ,那么y 叫做x 的一元二次函数. 2.二次函数2 ax y =的性质 (1)抛物线2 ax y =)(0≠a 的顶点是原点,对称轴是y 轴. (2)函数2 ax y =的图像与a 的符号关系: ①当0>a 时?抛物线开口向上?顶点为其最低点;②当0a 时,开口向上;当0a 时)],坐标为(h ,k )。 6.求抛物线的顶点、对称轴的方法 (1)公式法:a b ac a b x a c bx ax y 44222 2 -+ ??? ? ? +=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线a b x 2-=. (2)配方法:运用配方法将抛物线的解析式化为()k h x a y +-=2 的形式,得到顶点为(h ,k ),对称轴是h x =. (3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以抛物线上纵坐标相等的两个点连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点. ★用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失★ 7.抛物线c bx ax y ++=2 中,c b a ,,的作用 (1)a 决定开口方向及开口大小,这与2 ax y =中的a 完全一样. (2)b 和a 共同决定抛物线对称轴的位置.由于抛物线c bx ax y ++=2 的对称轴是直线a b x 2- =,故: ①0=b 时,对称轴为y 轴;②0>a b 时,对称轴在y 轴左侧;③0

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

相关文档
相关文档 最新文档