文档库 最新最全的文档下载
当前位置:文档库 › 概率论基本知识(通俗易懂)

概率论基本知识(通俗易懂)

概率论基本知识(通俗易懂)
概率论基本知识(通俗易懂)

第一章概率论的基本概论

确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等

随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。

由此产生的概念有:随机现象,随机事件,随机试验。

例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。

例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。

随机现象的结果(随机事件)的随机度如何解释或如何量化呢?

这就要引入”概率”的概念。

概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验

以上试验的共同特点是:

1.试验可以在相同的条件下重复进行;

2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。

我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。

§1.2样本空间与随机事件

(一) 样本空间与基本事件

E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。

例:§1.1中试验 E 1--- E 7

E 1:S 1={H,T}

E 2:S 2={ HHH,HHT,HTH,THH,

HTT,THT,TTH,TTT }

E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0

≥t }

E 7:S 7={()y x ,

10T y x T ≤≤≤}

(二) 随机事件

我们把试验 E 的全部可能结果中某一确定的部分称为随机事件。记为

D C B A ,,,

事件是由基本事件组成的,事件是样本空间的子集。

在一次试验中,事件A 发生的含义是,当且仅当A 中的某一个基本事件发生。事件A 发生也称为事件A 出现。 必然事件:S 不可能事件:φ

例1.(P4) 在E 2中事件A 1:”第一次出现是的H ”, 即:

(三) 事件的关系与运算

设E 的S ,A ,B ,A A A n

,,,2

1

1.B A ?

2.A B B A B A ???=且

3.

""都发生与B A B A AB =?=

4.""""发生发生或至少发生一个与B A B A B A ==?

5.

""不发生发生而B A B A =-

"

""", .6互不相容与互斥或与称为不能同时发生与即若B A B A B A AB φ= 7.

对立与称且若B A S B A AB ,=?=φ。

A

A S A A

B B A -≠-===1,或。

(常用的关系) 补充 1.()B B A B A AB A B A -?==-=-

2.AB B A B A B A B B A A B A ??=?=?=?

3.B A AB A ?=

吸收律 若

B A ?,则A AB B B A ==?,

特别注意:φφ=====A A AS A AA S S A A A A ,,,,

德·莫根律(对偶公式)

B A AB B A B A ==,

推广: n

i i

n i i

A A 1

1

===, n

i i

n i i

A A 1

1

===。

例2:P6,在例1中…. 其它例子: 例3:

3E :设=A {甲中},=B {乙中},问AB 与B A 各表示什

么事件?是否是相等事件? 留为练习

例4:一射手向目标射击3发子弹,

i

A

表示第i 次射击打中目标

)

3,2,1(=i 。试用

2

1

,A A 及3

A 其运算表示下列事件:

(1)“三发子弹都打中目标”; (2)“三发子弹都未打中目标”; (3)“三发子弹至少有一发打中目标”; (4)“三发子弹恰好有一发打中目标”; (5)“三发子弹至多有一发打中目标”. 留为练习

§1.3 概率与频率 (一)

事件的频率及其稳定性

设某试验

E 的样本空间为S ,A 为E 的一个事件。把试验E 重复进行了

n 次,在这n 次试验中,A 发生的次数A n 称为A 的频数。称

n n A

为事件A 在

n 次试验中发生的频率,记作: n

n A f A

n =

)(。

频率的基本性质 (1) 对任意事件A ,有1)(0≤≤A f n ;

(2)

1)(=S f n ,0)(=φn f ;

(3) 若n A A A ,,,21 是互不相容的,则)()(1

1

∑===n

k k n

n k k

n

A f

A f ,

推论:对任一事件A ,有)(1)(A f A f n n -=。

实践证明:当试验次数n 很大时,事件A 的频率)(*A p 几乎稳定地接近一

个常数p 。频率的这种性质称为频率的稳定性,它是事件本身所固有的。书上p8—9页例1,2.

概率的频率定义

定义1.1 在一组不变的条件下,重复作n 次试验,记m 是n 次试验中事

件A 发生的次数。当试验次数n 很大时,如果频率

n

m

稳定地在某数值p 附近

摆动,而且一般地说,随着试验次数的增加,这种摆动的幅度越来越小,则称数值p 为事件A 在这一组不变的条件下发生的概率,记作=)(A P p 。

补充:概率的几种度量方法

事件A 的概率,记为P(A),表示该事件发生的可能性大小,是事件的一个非负实值函数,满足某种概率进行代数运算的公理。

对概率P(A)有几种不同的度量方法:

前面给出了用频率度量概率的方法,也称为古典概率度量。还是二种度量方法。 1. 几何概率度量

的测度

的测度Ω=g g A P )(

g A 表示”在区域Ω中随机取一点,而该点落在区域g 中”这一事件。

例:

这时, 可以是整个园:测度为面积;也可以是整个园周:测度为长度。

2.主观概率度量

对事件A的信念度称为这一事件的概率P(A).

主观概率(信念度)是通过相对似然的概念来运算的。

例如:见朱手稿。。。

现通过例子说明此方法:

例1:事件A”明天下午3点深圳市区有雨”,

求P(A): 即求A的主观概率;

现有一大转盘,标有红色区域,事件B:”指针落在红色区域”。

让你选择A发生还是B发生的可能性大,为了迫使你选择,有这样的将励机制,。。。选择对的话,将10万元。。。

如果开始时,红色区域充满整个园,你当然要选B发生的可能性大,逐步调节红色区域的大小,渐渐缩小,。。。等到选A或B都一样时停止,这时,可以由B的几何概率作为A的主观概率。

当你对选A或B谁发生的可能性大没有偏好时,。。。

例2. 假如你面临以下两种选择:1.如果事件A发生,你将得到少量的报酬R;否则没有报酬。2.参加抽奖,你赢得一份小报酬R的概率为P,但是你输或者说你得不到报酬的概率为1-P。

如果你对1,2两种选择没有偏好,那么你判断事件A发生的概率为P.(主观)

(二) 概率的公理化定义

概率的公理化定义

定义1.2 设试验E 的样本空间为S ,如果对每一个事件A 都有一个实数

)(A P 与之对应,且满足下面三条公理:

公理1(非负性):对任一事件A ,有0)(≥A P ;

公理2(规范性):对必然事件S ,有1)(=S P ;

公理3(完全可加性)若可列无穷多个事件

,,,,2

1

i

A A A 互不相容,

则∑∞

=∞

==1

1

)()(k k

k k

A P A P ,那么称)(A P 为事件A 的概率。

概率的性质 (1)

0)(=φP ;

(2)有限可加性: 若

n

A A A ,,,21 互不相容,则

∑===n

k k n k k A P A P 1

1

)()( ;

(3)对事件A,都有)(1)(A P A P -=;

(4) 若

B A ?,则 ①)()()(A P B P A B P -=-;

)()(B P A P ≤;

特别的,对任何事件A ,都有

1)(≤A P ;

(5) 对任何两个事件A,B ,都有

)()()()(AB P B P A P B A P -+=?;

(6) 对任何n 个事件

n A A A ,,,21 ,都有

)

()1()

()

1()()()(1

1

11

11

1

12

1

2

211

n

k k

n n

k k k k k m k n

k k k n

k k

n

k k

A P A A A P A A P A P A P m m

=-≤≤≤≤-≤<≤==-+-++-=∑∑∑

例10---12为第一版上的例子。

例10: A,B 是E 中二个事件,已知

3.0)(=B P ,6.0)(=B A P ,求?)(=B A P

解:)()()()

(AB P A P AB A P B A P -=-=

6.0)()()()(=-+=AB P B P A P B A P

例11:在某城市的居民中订购报纸的情况是:订购A 报的占45%,订购B 报的占35%;订购C 报的占30%,同时订购A,B 的占10%,同时订购A,C 的占8%,同时订购B,C 的占5%,同时订购A,B,C 的占3%。求下列事件的概率(百分率) (1){只订购A 报纸的};(2){至少订一种报纸的}。

例12:在所有的两位数(即从10至99)中, 任取一个数,求这个数能被2或者3整除的概率。

§1.4 等可能概型(古典概型)

一、古典概率

1.古典概型与计算公式 E 满足:

① S 中基本事件ω个数是有限的n ; ② 每个基本事件发生是等可能的. 称E 为古典概型。

E 中事件A 包含k 个基本事件,则A 发生的概率为n

k

记P(A).

2.古典概率的基本性质 设E 是古典概型,其样本空间为{}ωωωn S ,,,21 =,

A ,A 1

,A 2

,…,

A n 是E 中事件:

①.0≤P (A )≤1 ②.P (S )=1,P (

φ

)=0

③.若A 1,A 2,…,A n 是互不相容的事件,则有P ∑===n

i i

n i i

A P A 1

1

)()( ;

推论: P (A )=1- P (A )。

例1. P13,将一枚硬币掷三次,。。。。

P14---17 例2—7.照书上讲。。。

以下例4---9为第一版上的例子:

例4:E 1中求任取一球的号码为偶数的概率。 解:设A={所取的球的号码为偶数}={ ω2,ω4,ω6 }

即A 中基本事件数k=3,于是P (A )=

2

1

63=.

例5:(1.10)在一袋中有10 个相同的球,分别标有号码

10,,2,1 。每

次任取一个球,记录其号码后放回袋中,再任取下一个。这种取法叫做“有放回抽取”。今有放回抽取3个球,求这3个球的号码均为偶数的概率。

例6:(1.11) 在一袋中有10 个相同的球,分别标有号码

10,,2,1 。

每次任取一个球,记录其号码后不放回袋中,再任取下一个。这种取法叫做“不放回抽取”。今不放回抽取3个球,求这3个球的号码均为偶数的概率。

例7:盒中有a 个红球,b 个白球(a ≥2 , b ≥1),

每次从中任取一球,不放回地连取三次,求下列事件的概率: (1) “ 取出的三个球依次为红,白,红色球 ”记A ; (2)“ 取出的三个球有两个是红色球 ”记B .

例:(1.13) 在一袋中有10 个相同的球,分别标有号码

10,,2,1 。

今任取两个球,求取得的第一个球号码为奇数,第二个球号码为偶数的概率。

例8:(1.14)设一批同类型的产品共有N 件,其中次品有M 件。今从中任取n (假定M N n -≤)件,求次品恰有m 件的概率()()n M m ,min 0≤≤

例9:一箱内装有同类产品六件(其中4件是正品,二件是次品)。从中每次取一件,连取两次。求下列事件的概率: (1)“ 取到的两件产品的质量是相同的 ”

记A ;

(2)“取到的两件产品至少有一件是正品”记B .

§1.5条

(一) 条件概率

例1 将一枚硬币抛掷两次,观察其出现正反面的情况,设事件A 为”到少有一次为H ”, 事件B 为”两次掷出同一面”。现在来求已知事件A 已经发生的条件下事件B 发生的概率。

解:样本空间为S={HH,HT,TH,TT},

A={HH,HT,TH}, B={HH,TT}

于是在A 发生的条件下B 发生的概率(记为P(B/A))为:

P(B/A)=1/3

注意到:

3

1)/(42)(=≠=A B P B P 易知:

41)(,43)(==AB P A P 4/34/131)/(=

=A B P

1.

定义:设A,B 为E 中的二个事件,且0)(>A P ,则在事件A 已发生的条

件下,事件B

发生的条件概率定义为:)

()

()|(A P BA P A B P =

.同样若

0)(>B P ,则)()

()

()|(B P B P AB P B A P A 记=

。 2.

性质(定理)

如果

0)(>A P ,则)|(A B P 是概率.

)()

()

()()()|(C P AB P ABC P B P BC P B C P AB A A A ===

3.

计算方法

法一:公式计算法; 法二:直接计算法.

不难验证,条件概率P(·/A)符合概率定义中的三个条件: 1.非负性 2.完全性 3.可加性 P19

例2 P19,。

下面的例11--13为第一版。

例11:甲乙二厂同生产一种零件,分放在二个箱内,它们产品的情况如下:

从中任取一件产品,求下列事件的概率:

(1)“取得的一件产品是甲厂产品”=A;

(2)“取得的一件产品是次品”=B;

(3)“取得的一件产品是甲厂生产的次品”;

(4)已知取得的一件产品是甲厂生产的,求它是次品的概率。

例12:在标号依此为

15

,

,2,1

的15个同类球

中,任取一球。易算出下列事件的概率和条件概率。

(1)取得“标号为偶数”(事件A)的概率;

(2)取得“标号小于6”(事件B)的概率;

(3)取得“标号既为偶数,又小于6”(事件AB)的概率;

(4)若已知“所取球的标号小于6”(即在B已发生的条件下),则“球的

标号为偶数”(即A再发生)的概率。

例13:(书例1.20) 设有100件同类型的产品,其中80件一等品,15件二等

品,5件次品。从中任取一件,已知“取得的是非次品”(事件B ),求“它是一等品”(事件A )的概率。

(二)概率的乘法公式 定义: 设两个事件

B A ,,且0)(>B P ,由条件概率公式得

)

|()()(B A P B P AB P =,

)(>A P ,有

)|()()(A B P A P AB P =称为概率的乘法公式(定理).

例3,4,P21---22;

例14—16为第一版:

例14: (书例1.21) 10件同类型产品,其中8件正品,2件次品。今不放回抽取两次,每次取一件,求“两件均为正品”(事件A )的概率。 推广:对n 个事件

n

A A A ,,,21 ,且0)(1

>= n

k k

A P ,则有

)|()|()()(1

1

1

1

2

1

-===n i i

n

n

k k

A A P A A P A P A P 。

例15: (书例1. 22) 一城市位于甲,乙两河的汇合处,当两河流至少有一泛滥时,该市就会被淹,已知在指定的时间内,甲,乙两河泛滥的概率均为0.01,又当甲河泛滥时引起乙河泛滥的概率为0.5。求在指定的时间内该市被淹的概率。

例: 已知

α=)(A P ,β=)(B P ,γ=)|(A B P ,且10<<α,

10<<β。求:①)(B A P ; ②)|(B A P 。

例16:十个人抓一张电影票,问每个人抓到电影票的概率与抽签的次序是否有关? 条件概率

()()()0>B P B A P 与()()B P AB P ,有如下的一般关系

()()()

B P AB P B A P = ()16.1

(三)全概率公式

例17(第一版):口袋中有16个球,其中白球10个,红球6个。每次取一球,取后不放回,连取两次。求下列事件的概率: (1)“第一次,第二次取的都是白球”; (2)“第二次才取到白球”; (3)“第二次取到白球”. 思考:①三个事件有什么不同?

②第(3)个事件有何特点?难点在哪?怎么解决问题?

定理1.1(全概率公式) 若事件组n B B B ,,,21

满足:

概率论重要知识点总结

概率论重要知识点总结 概率论重要知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点: (1)可重复性 (2)多结果性 (3)不确定性的试验或观察称为随机试验,简称为试验,常用表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事不可能事件:在试验中不可能出现的事情,记为。必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω.样本空间:所有样本点组成的集合称为样本空间.样本空间用Ω表示.一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件发生必然导致事件B发生,则称B 包含A,记为,则称事件A与事件B 相等,记为A=B。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 事件的积:称事件“事件A与事件B 都发生”为A 或AB。事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为A-B。用交并补可以表示为互斥事件:如果A,B两事件不

能同时发生,即AB=Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时可记为A+B。对立事件:称事件“A不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质:事件运算律:设A,B,C为事件,则有: (1)交换律:AB=BA,AB=BA A(BC)=(AB)C=ABC (3)分配律:A(BC)=(AB)(AC)ABAC (4)对偶律(摩根律): 第二节事件的概率 概率的公理化体系:第三节古典概率模型1、设试验E 是古典概型,其样本空间Ω个样本点组成.则定义事件A 的概率为的某个区域,它的面积为μ(A),则向区域上随机投掷一点,该点落在区域假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可.第四节条件概率条件概率:在事件B 发生的条件下,事件A 发生的概率称为条件概率,记作乘法公式: P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设第五节事件的独立性两个事件的相互独立:若两事件A、B 满足P(AB)=相互独立.三个事件的相互独立:对于三个事件A、B、C,若P(AB)=相互独立三个事件的两两独立:对于三个事件A、B、C,若P(AB)=两两独立独立的性质:若A 均相互独立总结: 1.条件概率是概率论中的重要概念,其与独立性有密切的关系,在不具有独立性的场合,它将扮演主要的角色。 2.乘法公式、全概公式、贝叶斯公式在概率论的计算中经常使用,应

第一章 概率统计基础知识(2)概率的古典定义与统计定义

二、概率的古典定义与统计定义 二、概率的古典定义与统计定义(p5-11) 确定一个事件的概率有几种方法,这里介绍其中两种最主要的方法,在历史上,这两种方法分别被称为概率的两种定义,即概率的古典定义及统计定义。 (一) 概率的古典定义 用概率的古典定义确定概率的方法的要点如下: (1)所涉及的随机现象只有有限个样本点,设共有n个样本点; (2)每个样本点出现的可能性相同(等可能性); 若事件含有k个样本点,则事件的概率为: (1.1-1) [例1.1-3] [例1.1-3]掷两颗骰子,其样本点可用数组(x , y)表示,其中,x与y分别表示第一与第二颗骰子出现的点数。这一随机现象的样本空间为: 它共含36个样本点,并且每个样本点出现的可能性都相同。参见教材6页图。这个图很多同学看不懂!其实就是x+y=?在坐标系反映出来的问题。 (二)排列与组合 (二)排列与组合 用古典方法求概率,经常需要用到排列与组合的公式。现简要介绍如下: 排列与组合是两类计数公式,它们的获得都基于如下两条计数原理。 (1)乘法原理: 如果做某件事需经k步才能完成,其中做第一步有m1种方法,做第二步m2种方法,做第k步有m k种方法,那么完成这件事共有m1×m2×…×m k种方法。 例如, 甲城到乙城有3条旅游线路,由乙城到丙城有2条旅游

线路,那么从甲城经乙城去丙城共有3×2=6 条旅游线路。 (2) 加法原理: 如果做某件事可由k类不同方法之一去完成,其中在第一类方法中又有m1种完成方法, 在第二类方法中又有m2种完成方法,在第k类方法中又有m k种完成方法, 那么完成这件事共有m1+m2+…+m k种方法。 例如,由甲城到乙城去旅游有三类交通工具: 汽车、火车和飞机,而汽车有5个班次,火车有3个班次,飞机有2个班次,那么从甲城到乙城共有5+3+2=10 个班次供旅游选择。 排列与组合 排列与组合的定义及其计算公式如下: ①排列:从n个不同元素中任取)个元素排成一列称为一个排列。按乘法原理,此种排列共有n×(n1) ×…×(n-r+1) 个,记为。若r=n, 称为全排列,全排列数共有n!个,记为,即:= n×(n-1) ×…×(n-r+1), = n! ②重复排列:从n个不同元素中每次取出一个作记录后放回,再取下一个,如此连续取r次所得的排列称为重复排列。按乘法原理,此种重复排列共有个。注意,这里的r允许大于n。 例如,从10个产品中每次取一个做检验,放回后再取下一个,如此连续抽取4次,所得重复排列数为。假如上述抽取不允许放回,则所得排列数为10×9×8×7=5040 。 ③组合: 从n个不同元素中任取x个元素并成一组 (不考虑他们之间的排列顺序)称为一个组合,此种组合数为: .特别的规定0!=1,因而。另外,在组合中,r个元素"一个接一个取出"与"同时取出"是等同的。例如,从10个产品中任取4个做检验,所有可能取法是从10个中任取4个的组合数,则不同取法的种数为: 这是因为取出的任意一组中的4个产品的全排列有4!=24 种。而这24种排列在组合中只算一种。所以。 注意:排列与组合都是计算"从n个不同元素中任取r个元素"的取法总数公式,他们的主要差别在于: 如果讲究取出元素间的次序,则用排列公式;如果不讲究取出元素间的次序,则用组合公式。至于是否讲究次序,应从具体问题背景加以辨别。 [例1.1-4] [例1.1-4] 一批产品共有个,其中不合格品有个,现从中随机取出n个,问:事

概率论知识点总结

概率论总结 目录 一、前五章总结 第一章随机事件和概率 (1) 第二章随机变量及其分布 (5) 第三章多维随机变量及其分布 (10) 第四章随机变量的数字特征 (13) 第五章极限定理 (18) 二、学习概率论这门课的心得体会 (20) 一、前五章总结 第一章随机事件和概率 第一节:1.、将一切具有下面三个特点:(1)可重复性(2)多结 果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E表示。 在一次试验中,可能出现也可能不出现的事情(结果)称为随 机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为S或Ω。 2、我们把随机试验的每个基本结果称为样本点,记作e 或ω. 全体 样本点的集合称为样本空间. 样本空间用S或Ω表示.

一个随机事件就是样本空间的一个子集。 基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件间的关系及运算,就是集合间的关系和运算。 3、定义:事件的包含与相等 若事件A发生必然导致事件B发生,则称B包含A,记为B?A 或A?B。 若A?B且A?B则称事件A与事件B相等,记为A=B。 定义:和事件 “事件A与事件B至少有一个发生”是一事件,称此事件为事件 A与事件B的和事件。记为A∪B。用集合表示为: A∪B={e|e∈A,或e∈B}。 定义:积事件 称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB,用集合表示为AB={e|e∈A且e∈B}。 定义:差事件 称“事件A发生而事件B不发生,这一事件为事件A与事件B的差 事件,记为A-B,用集合表示为 A-B={e|e∈A,e?B} 。 定义:互不相容事件或互斥事件 如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件 B是互不相容事件或互斥事件。 定义6:逆事件/对立事件 称事件“A不发生”为事件A的逆事件,记为ā。A与ā满足:A ∪ā= S,且Aā=Φ。

概率论知识点总结

概率论知识点总结 基本概念随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω、样本空间:所有样本点组成的集合称为样本空间、样本空间用Ω表示、一个随机事件就是样本空间的一个子集。基本事件多点集一个随机事件发生,当且仅当该事件所包含的一个样本点出现。事件的关系与运算(就是集合的关系和运算)包含关系:若事件A 发生必然导致事件B发生,则称B包含A,记为或。 相等关系:若且,则称事件A与事件B相等,记为A=B。事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为A∪B。事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。事件的差:称事件“事件A发生而事件B不发生”为事件A 与事件B的差事件,记为 A-B。用交并补可以表示为。互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时可记为A+B。对立事

件:称事件“A不发生”为事件A的对立事件(逆事件),记为。对立事件的性质:。事件运算律:设A,B,C为事件,则有(1)交换律:A∪B=B∪A,AB=BA(2)结合律: A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC(3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC(4)对偶律(摩根律): 第二节事件的概率概率的公理化体系:(1)非负性: P(A)≥0;(2)规范性:P(Ω)=1(3)可数可加性:两两不相容时概率的性质:(1)P(Φ)=0(2)有限可加性:两两不相容时当AB=Φ时P(A∪B)=P(A)+P(B)(3)(4)P(A-B)=P(A)- P(AB)(5)P(A∪B)=P(A)+P(B)-P(AB)第三节古典概率模型 1、设试验E是古典概型, 其样本空间Ω由n个样本点组成,事件A由k个样本点组成、则定义事件A的概率为 2、几何概率:设事件A是Ω的某个区域,它的面积为 μ(A),则向区域Ω上随机投掷一点,该点落在区域 A 的概率为假如样本空间Ω可用一线段,或空间中某个区域表示,则事件A 的概率仍可用上式确定,只不过把μ理解为长度或体积即可、第四节条件概率条件概率:在事件B发生的条件下,事件A发生的概率称为条件概率,记作 P(A|B)、乘法公式:P(AB)=P(B)P(A|B)=P(A)P(B|A)全概率公式:设是一个完备事件组,则

概率论知识点总结

概率论知识点总结 第一章 随机事件及其概率 第一节 基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。 事件的和:“事件A 与事件B 至少有一个发生”是一事件,称此事件为事件A 与事件B 的和事件。记为 A ∪B 。 事件的积:称事件“事件A 与事件B 都发生”为A 与B 的积事件,记为A∩ B 或AB 。 事件的差:称事件“事件A 发生而事件B 不发生”为事件A 与事件B 的差事件,记为 A -B 。 用交并补可以表示为B A B A =-。 互斥事件:如果A ,B 两事件不能同时发生,即AB =Φ,则称事件A 与事件B 是互不相容事件或互斥事件。互斥时B A ?可记为A +B 。 对立事件:称事件“A 不发生”为事件A 的对立事件(逆事件),记为A 。对立事件的性质: Ω=?Φ=?B A B A ,。 事件运算律:设A ,B ,C 为事件,则有 (1)交换律:A ∪B=B ∪A ,AB=BA (2)结合律:A ∪(B ∪C)=(A ∪B)∪C=A ∪B ∪C A(BC)=(AB)C=ABC (3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C) A(B ∪C)=(A∩B)∪(A∩C)= AB ∪AC (4)对偶律(摩根律):B A B A ?=? B A B A ?=? 第二节 事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时

概率论基本知识(通俗易懂)

第一章概率论的基本概论 确定现象:在一定条件下必然发生的现象,如向上抛一石子必然下落,等 随机现象:称某一现象是“随机的”,如果该现象(事件或试验)的结果是不能确切地预测的。 由此产生的概念有:随机现象,随机事件,随机试验。 例:有一位科学家,他通晓现有的所有学科,如果对一项试验(比如:掷硬币),该万能科学家也无法确切地预测该实验的结果(是正面朝上还是反面朝上),这一实验就是随机实验,其结果是“随机的”----为一随机事件。 例:明天下午三点钟”深圳市区下雨”这一现象是随机的,其结果为随机事件。 随机现象的结果(随机事件)的随机度如何解释或如何量化呢? 这就要引入”概率”的概念。 概率的描述性定义:对于一随机事件A,用一个数P(A)来表示该事件发生的可能性大小,这个数P(A)就称为随机事件A发生的概率。

§1.1随机试验 以上试验的共同特点是: 1.试验可以在相同的条件下重复进行; 2.试验的全部可能结果不止一个,并且在试验之前能明确知道所有的可能结果;3.每次试验必发生全部可能结果中的一个且仅发生一个,但某一次试验究竟发

生哪一个可能结果在试验之前不能预言。 我们把对随机现象进行一次观察和实验统称为随机试验,它一定满足以上三个条件。我们把满足上述三个条件的试验叫随机试验,简称试验,记E 。 §1.2样本空间与随机事件 (一) 样本空间与基本事件 E 的一个可能结果称为E 的一个基本事件,记为ω,e 等。 E 的基本事件全体构成的集,称为E 的样本空间,记为S 或Ω, 即:S={ω|ω为E 的基本事件},Ω={e}. 注意:ω的完备性,互斥性特点。 例:§1.1中试验 E 1--- E 7 E 1:S 1={H,T} E 2:S 2={ HHH,HHT,HTH,THH, HTT,THT,TTH,TTT } E 3:S 3={0,1,2,3} E 4:S 4={1,2,3,4,5,6} E 5: S 5={0,1,2,3,…} E 6:S 5={t 0 ≥t } E 7:S 7={()y x , 10T y x T ≤≤≤} (二) 随机事件

自考概率论与数理统计基础知识.

一、《概率论与数理统计(经管类)》考试题型分析: 题型大致包括以下五种题型,各题型及所占分值如下: 由各题型分值分布我们可以看出,单项选择题、填空题占试卷的50%,考查的是基本的知识点,难度不大,考生要把该记忆的概念、性质和公式记到位。计算题和综合题主要是对前四章基本理论与基本方法的考查,要求考生不仅要牢记重要的公式,而且要能够灵活运用。应用题主要是对第七、八章内容的考查,要求考生记住解题程序和公式。结合历年真题来练习,就会很容易的掌握解题思路。总之,只要抓住考查的重点,记住解题的方法步骤,勤加练习,就能够百分百达到过关的要求。二、《概率论与数理统计(经管类)》考试重点说明:我们将知识点按考查几率及重要性分为三个等级,即一级重点、二级重点、三级重点,其中,一级重点为必考点,本次考试考查频率高;二级重点为次重点,考查频率较高;三级重点为预测考点,考查频率一般,但有可能考查的知识点。第一章随机事件与概率 1.随机事件的关系与计算 P3-5 (一级重点)填空、简答事件的包含与相等、和事件、积事件、互不相容、对立事件的概念 2.古典概型中概率的计算 P9 (二级重点)选择、填空、计算记住古典概型事件概率的计算公式 3. 利用概率的性质计算概率 P11-12 (一级重点)选择、填空 ,(考得多)等,要能灵活运用。 4. 条件概率的定义 P14 (一级重点)选择、填空记住条件概率的定义和公式: 5. 全概率公式与贝叶斯公式 P15-16 (二级重点)计算记住全概率公式和贝叶斯公式,并能够运用它们。一般说来,如果若干因素(也就是事件)对某个事件的发生产生了影响,求这个事件发生的概率时要用到全概率公式;如果这个事件发生了,要去追究原因,即求另一个事件发生的概率时,要用到贝叶斯公式,这个公式也叫逆概公式。 6. 事件的独立性(概念与性质) P18-20(一级重点)选择、填空定义:若,则称A与B 相互独立。结论:若A与B相互独立,则A与,与B 与都相互独立。 7. n重贝努利试验中事件A恰好发生k次的概率公式 P21(一级重点)选择、填空在重贝努利试验中,设每次试验中事件的概率为(),则事件A恰好发生。第二章随机变量及其概率分布 8.离散型随机变量的分布律及相关的概率计算 P29,P31(一级重点)选择、填空、计算、综合。记住分布律中,所有概率加起来为1,求概率时,先找到符合条件的随机点,让后把对应的概率相加。求分布律就需要找到随机变量所有可能取的值,和每个值对应的概率。 9. 常见几种离散型分布函数及其分布律 P32-P33(一级重点)选择题、填空题以二项分布和泊松分布为主,记住分布律是关键。本考点基本上每次考试都考。 10. 随机变量的分布函数 P35-P37(一级重点)选择、填空、计算题记住分布函数的定义和性质是关键。要能判别什么样的函数能充当分布函数,记住利用分布函数计算概率的公式:①;②其中;③。 11. 连续型随机变量及其概率密度 P39(一级重点)选择、填空重点记忆它的性质与相关的计算,如①;;反之,满足以上两条性质的函数一定是某个连续型随机变量的概率密度。③;④ 设为的

高中数学概率统计知识点总结

高中数学概率统计知识 点总结 标准化工作室编码[XX968T-XX89628-XJ668-XT689N]

高中数学概率统计知识点总结 一、抽样方法 1.简单随机抽样 2.简单随机抽样常用的方法:(1)抽签法;⑵随机数表法。 3.系统抽样:K (抽样距离)=N (总体规模)/n (样本规模) 4.分层抽样: 二、样本估计总体的方式 1、用样本的频率分布估计总体分布 (1)频率分布直方图的画法;(2)频率的算法;(3)频率分布折线图;(4)总体密度曲线;(5)茎叶图。 茎叶图又称“枝叶图”,它的思路是将数组中的数按位数进行比较,将数的大小基本不变或变化不大的位作为一个主干(茎),将变化大的位的数作为分枝(叶),列在主干的后面,这样就可以清楚地看到每个主干后面的几个数,每个数具体是多少。 2、用样本的数字特征估计总体的数字特征 (1)众数、中位数、平均数的算法;(2)标准差、方差公式。 3、样本均值:n x x x x n +++= 21 4、.样本标准差:n x x x x x x s s n 2 22212)()()(-++-+-== 三、两个变量的线性相关 1、正相关 2、负相关 正相关:自变量增加,因变量也同时增加(即单调递增) 负相关:自变量增长,因变量减少(即单调递减) 四、概率的基本概念 (1)必然事件(2)不可能事件(3)确定事件(4)随机事件 (5)频数与频率(6)频率与概率的区别与联系 必然事件和不可能事件统称为确定事件 1他们都是统计系统各元件发生的可能性大小; 2、频率一般是大概统计数据经验值,概率是系统固有的准确值; 3频率是近似值,概率是准确值

概率论和数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率论与数理统计知识点总结材料(详细)78662

《概率论与数理统计》 第一章概率论的基本概念 (2) §2.样本空间、随机事件 (2) §4等可能概型(古典概型) (3) §5.条件概率 (3) §6.独立性 (3) 第二章随机变量及其分布 (3) §1随机变量 (3) §2离散性随机变量及其分布律 (3) §3随机变量的分布函数 (3) §4连续性随机变量及其概率密度 (3) §5随机变量的函数的分布 (3) 第三章多维随机变量 (3) §1二维随机变量 (3) §2边缘分布 (3) §3条件分布 (3) §4相互独立的随机变量 (3) §5两个随机变量的函数的分布 (3) 第四章随机变量的数字特征 (3) §1.数学期望 (3) §2方差 (3)

§3协方差及相关系数 (3) 第五章 大数定律与中心极限定理 (3) §1. 大数定律 ........................................................................................ 3 §2中心极限定理 (3) 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=??

概率论与数理统计期末复习重要知识点

概率论与数理统计期末复习重要知识点 第二章知识点: 1.离散型随机变量:设X 是一个随机变量,如果它全部可能的取值只有有限个或可数无穷个,则称X 为一个离散随机变量。 2.常用离散型分布: (1)两点分布(0-1分布): 若一个随机变量X 只有两个可能取值,且其分布为 12{},{}1(01) P X x p P X x p p ====-<<, 则称X 服从 12 ,x x 处参数为p 的两点分布。 两点分布的概率分布:12{},{}1(01) P X x p P X x p p ====-<< 两点分布的期望:()E X p =;两点分布的方差:()(1)D X p p =- (2)二项分布: 若一个随机变量X 的概率分布由式 {}(1),0,1,...,. k k n k n P x k C p p k n -==-= 给出,则称X 服从参数为n,p 的二项分布。记为X~b(n,p)(或B(n,p)). 两点分布的概率分布:{}(1),0,1,...,. k k n k n P x k C p p k n -==-= 二项分布的期望:()E X np =;二项分布的方差:()(1)D X np p =- (3)泊松分布: 若一个随机变量X 的概率分布为{},0,0,1,2,... ! k P X k e k k λ λλ-==>=,则称X 服从参 数为λ的泊松分布,记为X~P (λ) 泊松分布的概率分布:{},0,0,1,2,... ! k P X k e k k λ λλ-==>= 泊松分布的期望: ()E X λ=;泊松分布的方差:()D X λ= 4.连续型随机变量: 如果对随机变量X 的分布函数F(x),存在非负可积函数 ()f x ,使得对于任意实数x ,有 (){}()x F x P X x f t dt -∞ =≤=? ,则称X 为连续型随机变量,称 ()f x 为X 的概率密度函数, 简称为概率密度函数。 5.常用的连续型分布:

最新概率论与数理统计知识点总结(免费超详细版)

最新概率论与数理统计知识点总结(免费超详细 版) 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

概率统计知识点归纳

概率统计知识点归纳 平均数、众数和中位数 平均数、众数和中位数.要描述一组数据的集中趋势,最重要也是最常见的方法就是用这“三数”来说明. 一、正确理解平均数、众数和中位数的概念 1.平均数 平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化. 2.众数 在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个(或几个)数据就可以了.当一组数据中有数据多次重复出现时,它的众数也就是我们所要关心的一种集中趋势. 3.中位数 中位数就是将一组数据按大小顺序排列后,处在最中间的一个数(或处在最中间的两个数的平均数).一组数据中的中位数是唯一的. 二、注意区别平均数、众数和中位数三者之间的关系 平均数、众数和中位数都是描述一组数据的集中趋势的量,但它们描述的角度和适用的范围又不尽相同.在具体问题中采用哪种量来描述一组数据的集中趋势,那得看数据的特点和要关注的问题. 三、能正确选用平均数、众数和中位数来解决实际问题 由于平均数、众数和中位数都是描述一组数据的集中趋势的量,所以利用平均数、众数和中位数可以来解决现实生活中的问题. 极差、方差、标准差 极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量. 一、极差 一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,差是最简单的一种度量数据波动情况的量,它受极端值的影响较大. 二、方差 方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,则该组数据方差的计算公式为: ])()()[(12 22212 x x x x x x n S n -++-+-= . 三、标准差 在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差. 即标准差=方差. 四、极差、方差、标准差的关系 方差和标准差都是用来描述一组数据波动情况的量,常用来比较两组数据的波动大小.两组

概率论与数理统计知识点汇总(免费超详细版)

概率论与数理统计知识点汇总(免费超详细版)

————————————————————————————————作者:————————————————————————————————日期:

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=?? 徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事 件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P

考研资料——概率论基础知识4

概率论基础知识(4) 第四章 随机变量的数字特征 一 数学期望 §4.1.1离散型随机变量的数学期望 例1:全班40名同学,其年龄与人数统计如下: 该班同学的平均年龄为: 若令x 表示从该班同学中任选一同学的年龄,则x 的分布律为 于是,x 取值的平均值,即该班同学年龄的平均值为 定义1:设x 为离散型随机变量,其分布律为 如果级 数 绝对收敛,则此级数为x 的数学期望(或均值)既为 E(X),即 E(X)= 意义:E(X)表示X 取值的(加权)平均值 例2:甲、乙射手进行射击比赛,设甲中的环数位X1,乙中的环数为X2,已知X1和X2的分布律分别为: 问谁的平均中环数高? 解:甲的平均中环数为 E(X 1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均中环数为 E(X 2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X 1)> E(X 2),即甲的平均中环数高于乙的平均中环数。 例3:设 ,求E(X) 解:由于 ,其分布律为 ,k=0,1,2…,所以

例4:一无线电台发出呼唤信号被另一电台收到的概率为0.2,发方每隔5秒拍发一次呼唤信号,直到收到对方的回答信号为止,发出信号到收到回答信号之间需经16秒钟,求双方取得联系时,发方发出呼唤信号的平均数? 解:令X 表示双方取得联系时,发方发出呼唤信号的次数。X 的分布律为 于是,双方取得联系时,发方发出的呼唤信号的平均数为 由于 ,求导数 将x=0.8代如上式,便得 将此结果代入原式便得: (次) §4.1.2连续型随机变量的数学期望 绝对收敛,则称此积 分为X 的数学期望,记为E(X),即 ,

概率论知识点总结归纳

欢迎共阅 概率论知识点总结 第一章随机事件及其概率 第一节基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件 样本点样本空间包含关系相等关系事件的和记为A ∪事件的积事件的差 互斥事件对立事件=?B A (1(2(3)分配律:A ∪(B∩C)=(A ∪B)∩(A ∪C)A(B ∪C)=(A∩B)∪(A∩C)=AB ∪AC (4)对偶律(摩根律):B A B A ?=?B A B A ?=? 第二节事件的概率 概率的公理化体系: (1)非负性:P(A)≥0; (2)规范性:P(Ω)=1 (3)可数可加性: ????n A A A 21两两不相容时 概率的性质:

(1)P(Φ)=0 (2)有限可加性:n A A A ??? 21两两不相容时 当AB=Φ时P(A ∪B)=P(A)+P(B) (3))(1)(A P A P -= (4)P(A -B)=P(A)-P(AB) (5)P (A ∪B )=P(A)+P(B)-P(AB) 第三节古典概率模型 1、设试验E 是古典概型,其样本空间Ω由n 个样本点组成,事件A 由k 个样本点组成.则定义事件A 的概率为 2落在区域把μ相互独立. 总结:1.3.独立性是概率论中的最重要概念之一,应正确理解并应用于概率的计算。 第二章一维随机变量及其分布 第二节分布函数 分布函数:设X 是一个随机变量,x 为一个任意实数,称函数}{)(x X P x F ≤=为X 的分布函数。如果将X 看作数轴上随机点的坐标,那么分布函数F(x)的值就表示X 落在区间],(x -∞内的概率 分布函数的性质:(1)单调不减;(2)右连续;(3)1)(,0)(=+∞=-∞F F 第三节离散型随机变量

概率论知识点总结

概率论知识点总结 第一章 随机事件及其概率 第一节 基本概念 随机实验:将一切具有下面三个特点:(1)可重复性(2)多结果性(3)不确定性的试验或观察称为随机试验,简称为试验,常用 E 表示。 随机事件:在一次试验中,可能出现也可能不出现的事情(结果)称为随机事件,简称为事件。 不可能事件:在试验中不可能出现的事情,记为Ф。 必然事件:在试验中必然出现的事情,记为Ω。 样本点:随机试验的每个基本结果称为样本点,记作ω. 样本空间:所有样本点组成的集合称为样本空间. 样本空间用Ω表示. 一个随机事件就是样本空间的一个子集。基本事件—单点集,复合事件—多点集 一个随机事件发生,当且仅当该事件所包含的一个样本点出现。 事件的关系与运算(就是集合的关系和运算) 包含关系:若事件 A 发生必然导致事件B 发生,则称B 包含A ,记为A B ?或B A ?。 相等关系:若A B ?且B A ?,则称事件A 与事件B 相等,记为A =B 。

事件的和:“事件A与事件B至少有一个发生”是一事件,称此事件为事件A与事件B的和事件。记为 A∪B。 事件的积:称事件“事件A与事件B都发生”为A与B的积事件,记为A∩ B或AB。 事件的差:称事件“事件A发生而事件B不发生”为事件A与事件B的差事件,记为 A-B。用交并补可以表示为B A= -。 B A 互斥事件:如果A,B两事件不能同时发生,即AB=Φ,则称事件A与事件B是互不相容事件或互斥事件。互斥时B A?可记为A+B。 对立事件:称事件“A不发生”为事件A的对立事件(逆事件),记为A。对立事件的性质:?B = B A,。 A Ω Φ = ? 事件运算律:设A,B,C为事件,则有 (1)交换律:A∪B=B∪A,AB=BA (2)结合律:A∪(B∪C)=(A∪B)∪C=A∪B∪C A(BC)=(AB)C=ABC (3)分配律:A∪(B∩C)=(A∪B)∩(A∪C) A(B∪C)=(A∩B)∪(A∩C)= AB∪AC (4)对偶律(摩根律):B A? B A ? = B ?B A? A = 第二节事件的概率 概率的公理化体系: (1)非负性:P(A)≥0;

概率论与数理统计知识点总结(超详细版)

《概率论与数理统计》 第一章 概率论的基本概念 §2.样本空间、随机事件 1.事件间的关系 B A ?则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生 B }x x x { ∈∈=?或A B A 称为事件A 与事件B 的和事件,指当且仅 当A ,B 中至少有一个发生时,事件B A ?发生 B }x x x { ∈∈=?且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ?发生 B }x x x { ?∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅 当A 发生、B 不发生时,事件B A —发生 φ=?B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事 件B 不能同时发生,基本事件是两两互不相容的 且S =?B A φ=?B A ,则称事件A 与事件B 互为逆事件,又称事件 A 与事件 B 互为对立事件 2.运算规则 交换律A B B A A B B A ?=??=? 结合律)()( )()(C B A C B A C B A C B A ?=???=?? 分配律 )()B (C A A C B A ???=??)( ))(()( C A B A C B A ??=??

徳摩根律B A B A A B A ?=??=? B — §3.频率与概率 定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率 概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件: (1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P (3)可列可加性:设n A A A ,,,21Λ是两两互不相容的事件,有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞) 2.概率的一些重要性质: (i ) 0)(=φP (ii )若n A A A ,,,21Λ是两两互不相容的事件,则有∑===n k k n k k A P A P 1 1 )()( Y (n 可以取∞) (iii )设A ,B 是两个事件若B A ?,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P (v ))(1)(A P A P -= (逆事件的概率)

概率论基础知识归纳

概率论基础知识 第四章 随机变量的数字特征 一 数学期望 §4.1.1离散型随机变量的数学期望 例1:全班40名同学,其年龄与人数统计如下: 该班同学的平均年龄为: 若令x 表示从该班同学中任选一同学的年龄,则x 的分布律为 于是,x 取值的平均值,即该班同学年龄的平均值为 定义1:设x 为离散型随机变量,其分布律为 如果级 数 绝对收敛,则此级数为x 的数学期望(或均值)既为 E(X),即 E(X)= 意义:E(X)表示X 取值的(加权)平均值 例2:甲、乙射手进行射击比赛,设甲中的环数位X1,乙中的环数为X2,已知X1和X2的分布律分别为: 问谁的平均中环数高? 解:甲的平均中环数为 E(X 1)=8 0.3+9 0.1+10 0.6=9.3 乙的平均中环数为 E(X 2)=8 0.2+9 0.5+10 0.3=9.1 可见E(X 1)> E(X 2),即甲的平均中环数高于乙的平均中环数。 例3:设 ,求E(X) 解:由于 ,其分布律为 ,k=0,1,2…,所以 例4:一无线电台发出呼唤信号被另一电台收到的概率为0.2,发方每隔5秒拍发一次呼唤信号,直到收到对方的回答信号为止,发出信号到收到回答信号之间需经16秒钟,求双方取得联系时,发方发出呼唤信号的平均数?

解:令X 表示双方取得联系时,发方发出呼唤信号的次数。X 的分布律为 于是,双方取得联系时,发方发出的呼唤信号的平均数为 由于 ,求导数 将x=0.8代如上式,便得 将此结果代入原式便得: (次) §4.1.2连续型随机变量的数学期望 绝对收敛,则称此积 分为X 的数学期望,记为E(X),即 , 例7:设风速V 是一个随机变量,且V~U[0,a],又设飞机的机翼上所受的压力W 是风速V 的函数: 这里a,k 均为已知正数。试求飞机机翼上所受的平均压力E(W)。

相关文档