文档库 最新最全的文档下载
当前位置:文档库 › 焊接相关计算

焊接相关计算

焊接相关计算
焊接相关计算

焊接的有关计算

第一章基本概念的有关计算

一、焊条药皮质量系数

概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。

式中:Kb——药皮质量系数(%);

——药皮质量(Kg);

m

o

——焊芯质量(Kg)。

m

l

二、焊条药皮厚度分类

(1)薄药皮焊条

(2)厚药皮焊条

(3)特厚药皮焊条

三、熔敷系数

熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。

——熔敷系数(g/Ah);

式中:

H

m——熔敷焊缝金属质量(g);

I——焊接电流(A);

t ——焊接时间(h )。

四、熔化系数

熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 式中 :p α——熔化系数(g/Ah );

o m ——焊芯原质量(g );

l m ——焊后剩下焊芯质量(g );

五、熔化速度

熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。

式中 p v —— 熔化速度(mm/min );

O L ——焊条原长(mm );

L ——余下焊条头长度(mm );

T ——焊接时间(min )。

例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。

解:O p L L

v t

-=

=(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。

六、熔敷速度

熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。

v——熔敷速度(kg/h);

式中:

p

M——焊后焊件的质量(kg);

m——焊前焊件的质量(kg);

t——焊接时间(h)。

七、热输入

热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。

式中:q——热输入(J/mm);

U——电弧电压(V);

I——焊接电流(A);

V——焊接速度(mm/s);

η——热效率(焊条电弧焊η=0.7~0.8;埋弧焊η=0.8~0.95;TIG焊η=0.5)。例1:用焊条电弧焊焊接Q390(原15MnTi)钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm。如果选择焊接电流为180A,电弧电压为28V,试计算焊接速度应为多少?

已知:I=180A;q=30kJ/cm;U=28V

求:v=?

解:由 q UI/v η= 取η=0.7

得:v=UI/q=0.728180/30000cm/s=0.118cm/s η??

答:应选用的焊接速度为0.118cm/s 。

例2:已知某钢材焊接过程中焊条电弧焊的电弧电压为26V ,焊接电流为200A ,焊接速度为0.2cm/s ,试求其焊接热输入(η取0.8)。

已知:I=200A ;v=0.2cm/s ;U=26V ;η=0.8

求:q=?

解:q UI/v=0.826200/0.2J/cm=20.8kJ/cm k η=??

答:焊接热输入为20.8kJ/cm 。

例3:某钢材在焊接过程中的最佳热输入为24kJ/cm ,如果采用焊条电弧焊,选用电弧电压为24V ,焊接速度为0.2cm/s ,其焊接电流应选用多少(η=0.8)?

已知:q=24 kJ/cm ;U=24V;v=0.2cm/s ;η=0.8

求:I=?

解:由 q UI/v η=

得 3I=qv/(U)=240.210/(0.824)250A η???=

答:电弧电压应是25V 。

八、熔合比

熔合比又称截面系数。熔合比指熔焊时,被熔化的母材部分在焊道金属中所占的比例(如下图焊缝截面)

式中:θ——熔合比(%);

——填充焊丝(焊条)所占面积;

A

A

A

——母材所占面积。

B

九、碳当量

碳当量即把钢中合金元素(包括碳)的含量按其作用换算成碳的相当含量。它可作为评定钢材焊接性的一种参考指标。

国际焊接学会推荐:

日本JIS标准所规定的:

CE主要适用于中高强度的非调质低合金高强度钢(σb=500~900Mpa)。

CE(JIS)主要适用于低碳调质低合金高强度钢(σb=500~1000Mpa)。

≥0.18%)。这类钢的化学成分(质上述两个公式都适用于含碳量偏高的钢种(ω

c

量分数)范围如下:

例如:已知30CrMnSiA钢的化学成分如下,求其碳当量。

解:11111

655515CE C Mn Cr Mo V Ni Cu ωωωωωωωω=++++++

=0.35%+1.1%/6+(1.1%+0+0)/5+(0.3%+0)/15=0.77%

答:30CrMnSiA 钢的碳当量为0.77%。

十、损失系数

损失系数指焊芯(或焊丝)在熔敷过程中的损失量与焊芯(或焊丝)原有质量的百分比。

式中:m ——熔化焊芯(或焊丝)质量(g );

m1——熔敷到焊缝金属中焊芯(或焊丝)金属质量(g );

vpav ——熔化电极金属平均熔化速度(g/h );

vhav ——熔化金属平均熔敷速度(g/h );

P α——熔化系数(g/Ah );

H α——熔敷系数(g/Ah )。

由上述可见,熔敷速度才是反映焊接生产率的指标。常用焊条的P α和H α见下

表 常用焊条的P α和H α

十一、负载持续率

负载持续率是表示焊接电源工作状态的参数,在选定的工作时间周期内(我国标准规定500A 以下的焊机工作时间周期为5min ),负载工作的持续时间与全周期时间的比值介于0~1之间,可用百分数表示。

式中:N DY ——负载持续率(%);

t ——选定工作时间内负载的时间(min );

T ——选定的工作时间周期(min )。

例 1 某焊机的额定焊接电流是300A ,额定负载持续率是60%,求在工作周期内焊机的连续负载时间。

已知:N N I 300A; DY =60%; T=5min =工作周期

求:连续负载时间t

解:N t

DY 100%T

=

?

答:在工作周期内连续负载时间为3min 。

不同实际负载持续率条件下,允许使用的输出电流可按下式计算:

式中:N DY ——额定负载持续率(%);

DY ——实际负载持续率(%)

; N I ——额定负载持续率时的额定焊接电流(A );

I ——实际负载持续率时允许使用的焊接电流(A )

。 例 2:某电焊机在额定负载持续率N DY =60%时的额定焊接电流N I 300A =。求实际负载持续率DY =80%时允许使用的焊接电流。

已知:N N I 300A; DY =60%; DY=80%=。

求:I

解:N 300A 259.8A == 答:当负载持续率为80%时,允许使用的焊接电流为259.8A 。

例 3:某电焊机在额定负载持续率N DY =60%时的额定焊接电流N I 300A =,求实际使用焊接电流为I=600A 时,实际负载持续率为多少?

已知:N N DY =60%; I 300A; I=600A =。

求;DY

解:由N 得 22

N N 22

I 300DY=DY =60%=15%I 600

? 答:实际负载持续率DY 为15%。

例 4:某电焊机额定负载持续率N DY =60%,而在实际负载持续率DY=15%时,允许使用的焊接电流I=600A ,求该焊机的额定焊接电流I N 。

已知:N DY =60%; DY =15%; I=600A 。

求:N I

解:由

N

得:N I

答:该焊机的额定焊接电流N I =300A 。

例 5 某电焊机额定焊接电流I N =300A ,当实际负载持续率DY=15%时,允许使用的焊接电流I=600A ,求该焊机的额定负载持续率N DY 。

已知:N DY=15% I=600A I 300A =;;。

求:N DY

解:由

N

22

N22

N

I600

DY=DY=15%=60%

I300

?

答:该焊机的额定负载持续率为60%。

例 6:已知某电焊机额定焊接电流I

N =300A,额定负载持续率

N

DY=60%,当实际负载

持续率DY=40%时,在5min周期内焊接电流可持续几分钟?

解:由

t

DY100%

T

=?

得t=TDY=5min40%=2min

?

答:在40%实际负载持续率下,焊接周期为5min时,焊接电流可持续2min。

第二章焊接基础的有关计算

一、熔池长度

熔化焊时,熔池的形成需要一定的时间,经过这个时间以后,就进入准稳定时期,这时的熔池形状、质量、尺寸等都不在发生变化。熔池的宽带与深度是沿x轴连续变化的。在一般情况下,随着焊接电流的增加、熔池最大深度增大,熔池的最大宽度相对减小,随着电弧电压升高,熔池最大深度减小,熔池最大宽度增加。

熔池长度L可由下式进行近似估算:

式中:L——熔池长度(mm);

C——比例常数(mm/kV);

P——电弧功率(kW);

U——电弧电压(V);

I——焊接电流(A)。

C与焊接方法及焊接电流有关,见下表

表 C与焊接方法及焊接电流的关系

例:埋弧焊时,U=28V,I=300A,试求埋弧焊熔池的长度(设C=4mm/kW)。

解:-3

=???=

L CUI=41028300mm33.6mm

答:熔池长度为33.6mm。

二、熔池在液态存在的最长时间t

max

式中:L——熔池的长度(cm);

v ——焊接速度(cm/s )。

例:不锈钢氩弧焊,焊接电流为100A ,电弧电压为23V ,焊接速度v=7.2m/h ,求熔池存在的最长时间(设C=2.27mm/kW )。

解:L=CUI=2.27×10-3×23×100mm=5.22mm

t max =L/v=5.22/(7.2×1000/3600)s=2.61s

答:熔池存在的最长时间为2.61s 。

三、熔池平均存在时间t av

熔池的质量大小、电弧电压、焊接速度、焊接电流以及熔池的几何形状及物理参量等,都将确定熔池平均存在时间t av ,熔池的几何形状及物理参量见下表

式中:p m ——熔池质量(g );

ρ——熔池液态金属的密度(g/cm 3)

; v ——焊接速度(cm/s );

w A ——焊缝的横截面积(cm 2)。

例:已知焊条电弧焊的熔池质量m p =3.2g ,焊缝横截面积aw=0.262cm 2

,焊接速度v=0.25m/s 。求熔池平均存在时间(设=7.8g/cm 3)。

解:p

av w

m 3.2

t s 6.27s vA 7.80.250.262

ρ=

=

=??

答:熔池平均存在时间为6.27s 。

四、传热及冷却

在钢板上进行单道全熔透焊接时,离焊缝熔合线x?远处峰值温度的计算公式:

——体积比热容(0.0044J/mm3×℃);

式中:c

ν

δ——焊接厚度(mm);

x——离焊缝熔合线的距离(mm);

t——焊件初始温度(℃);

q——焊接热输入(J/mm);

t——熔化温度(℃)。

m

1.求指定距离处峰值温度

=0.0044J/mm3·℃,例1:已知焊件δ=5mm,焊接参数为:电弧电压U=20V,体积比热容c

ν

=25℃,焊接热输焊接电流I=220A,焊接速度v=5mm/s,热效率h=0.9,板件初始温度T

入q=720J/mm,熔化温度T

=1510℃。求离熔合线2mm和3.5mm处的峰值温度。

m

解:①x=2mm处的峰值温度T

角焊缝及其计算

角焊缝及其计算 型式及分类 截面形式:普通型(等边凸形)、平坦型(不等边凹形)、凹面形 两焊脚边夹角:直角角焊缝、斜角角焊缝、焊缝长度与作用方向 1.侧面角焊缝(侧缝) 侧缝主要承受剪力,应力状态叫单纯,在弹性阶段,剪应力沿焊缝长度方向分布不均匀,两端大中间小,且焊缝越长越不均匀,但侧缝塑性好。 2.正面角焊缝(端缝) 端缝连接中传力线有较大的弯折,应力状态较复杂,正面角焊缝沿焊缝长度方向分布比较均匀,但焊脚及有效厚度面上存在严重的应力集中现象,所以其破坏属于正应力和剪应力的综合破坏,但正面角焊缝的刚度较大,变形较小,塑性较差,性质较脆。 3.斜向角焊缝 斜向角焊缝受力情况较复杂,其性能介于侧缝和端缝之间,常用于杆件倾斜相支的情况,也用在板件较宽,内力较大连接中。 4.周围角焊缝 主要为了增加焊缝的长度和使焊缝遍及板件全宽,而把板件交搭处的所有交搭线尽可能多的加以焊接,成为开口或封闭的周围角焊缝。构造及要求。 4.1.最小焊脚尺寸 4.2.最大焊脚尺寸贴边处满足

4.3.角焊缝最小长度 4.4.侧面角焊缝最大计算长度 4.5.板件端部仅有两条角焊缝时每条侧面角焊缝的计算长度 4.6.搭接连接中搭接长度应满足而且不宜采用一条正面角焊缝来传力。 4.7.在次要构件和焊缝连接中,允许采用断续角焊缝,各段间距满足以保证整体受力。 角焊缝连接计算 基本计算公式 轴心作用下的角焊缝计算 轴心作用下角钢的角焊缝计算 弯矩,剪力和轴心力共同作用下角焊缝计算(T形接头) 弯矩,剪力和轴心力共同作用下角焊缝计算(搭接形接头) 1. 端缝、侧缝在轴向力作用下的计算: (1)端缝 ——垂直于焊缝长度方向的应力; he ——角焊缝有效厚度; lw ——角焊缝计算长度,每条角焊缝取实际长度减10mm(每端减5mm);ffw ——角焊缝强度设计值;bf ——系数,对承受静力荷载和间接承受动力荷载的结构,bf =1.22,直接承受动力荷载bf =1.0。 (2)侧缝

焊接强度及结构

焊接工艺问答(强度及结构) 焊接工艺问答(强度及结构)
各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对 强度无影响。 其强度 强度 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图 29。继续加载,焊缝 的两端点达到屈服点 σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到 σs,故应力随加载继续上升,到达屈服点 的区域逐渐扩大,应力分布曲线变平,最后各点都达到 σs。如再加载,直至使焊缝全长同时达到强度 强度极限,最后导致破坏。 强度
什么是工作焊缝?什么是联系焊缝? 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用, 一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图 30a、图 30b,其应力称为工作应力。另一种焊缝与被连接的元件是 并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝, 见图 30c、图 30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度 强度,只计算工作焊缝的强度 强度。 强度 强度 举例说明对接接头爱拉(压)时的静载强度计算。 时的静载强度计算。 37 举例说明对接接头爱拉 时的静载强度计算 全焊透对接接头的各种受力情况 见图 31。图中 F 为接头所受的拉(压)力,Q 为切力,M1 为平面内弯矩, M2 为垂平面弯矩。

受拉时的强度 强度计算公式为 强度
F σt= ─── Lδ1 ≤〔σ′t 〕
F 强度计算公式为 σα= ─── ≤〔σ′α 〕 受压时的强度 强度 Lδ1
式中
F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt) 或受压(σα)时焊缝中所承受的应力(N/cm2)㈠
〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α 〕——焊缝受压时的许用应力(N/cm2) 强度。 计算例题 两块板厚为 5mm、宽为 500mm 的钢板对接焊在一起,两端受 28400N 的拉力,材料为 Q235-A 钢,试校核其焊缝强度 强度 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400
σt= ─── = ───── = 1136N/cm2<14200N/cm2 Lδ1 50×0.5

该对接接头焊缝强度 强度满足要求,结构工作安全。 强度
举例说明对接接头受剪切时的静载强度计算。 强度计算 38 举例说明对接接头受剪切时的静载强度计算。 强度计算公式为 受剪切时的强度 强度

焊接计算公式总结

角焊缝计算 基本公式 )63(22 -≤+??? ? ??w f f f f f τβσ )73(-≤= ∑w f f e w f f h l N βσ )83(-≤= ∑w f e w f f h l N τ 1承受轴心力作用时角焊缝连接计算(双盖板拼接) 侧面角焊缝 )83(-≤= ∑w f e w f f h l N τ 三面围焊角焊缝 )73(-≤= ∑w f f e w f f h l N βσ e w w f f h l f N ∑'='β w f e w f f h l N N ≤' -= ∑τ

角钢与节点板用侧面角焊缝连接 ) 153() 143(2 221 11-≤= -≤=∑∑w f e w f w f e w f f h l N f h l N ατατ 角钢与节点板用三面角焊缝连接 )193(33-=∑w f f e f bh N β ) 213(2) 203(23 22311--=-- =N N k N N N k N

) 63(22 -≤+??? ? ??= =∑∑w f f f f w e y f w e x f f l h N l h N τβστσ 4承受弯矩、轴心力或剪力联合作用的角焊缝连接计算

承受弯矩与剪力联合作用的角焊缝连接计界 ∑= -+?=-+?=w e VAy y x x TAy y x y TAx l h V I I r T I I r T τττ) 273()263( w f TAx f VAy TAy f ≤+??? ? ??+22 τβττ 对接焊缝计算 对接焊缝计算与构件截面的强度计算相同请自己总结

焊接强度计算知识.

各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称

为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕 Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm);

σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=─── =───── =1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。 受剪切时的强度计算公式为 Q τ= ───≤〔τ′〕 Lδ1 式中Q——接头所受的切力(N); L——焊缝长度(cm);

焊接线能量的范围与计算方法

焊接线能量的范围与计算方法 q = IU/υ式中:I电弧电压V υ线能量 J/cm 例如,板厚12mm,进行双面开Ⅰ形坡口埋弧焊,焊丝 ф4mm,I=650A,U=38V,υ=0、9cm/s。,则焊接线能量q为: q= IU/υ=65038/0、9 =27444 J/cm 线能量综合了焊接电流、电弧电压和焊接速度三大焊接工艺参数对焊接热循环的影响。线能量增大时,热影响区的宽度增大,加热到高温的区域增宽,在高温的停留时间增长,同时冷却速度减慢,决定焊接线能量的主要参数就是焊接速度,焊接电流,和电弧电压,所以从这个意义上讲,只要你确定了合理的焊接规范参数,就已经确定了合理的焊接线能量,所以并没有一个专门的定量的的焊接线能量的测定,除非有特别要求,工程技术上也不可能给一个线能量的具体数值来控制,而是由焊接规范控制的,不过焊接线能量可以通过电流和电压和焊速来计算。但是没一种焊接方法,还有根据实际应用情况线能量都不同,所以这种计算必要性不大,只要你利用合理的焊接规范,一般就没什么问题个人认为理论上应该乘以热效率系数,但是从工程上来说这些都不是实用的东西焊接线能量熔焊时,由焊接热源输入给单位长度焊缝的能量。焊接线能量的计算过程如下:有效热功率:P=ηPo=ηUI其中:Po电弧功率(J/s)U电弧电压(V)I焊接电流(A)η 功率有效系数,焊条电弧焊为0、74~0、

87、埋弧焊为0、77~0、 90、交流钨极氩弧焊为0、68~0、 85、直流钨极氩弧焊为0、78~0、85。无特别说明时,取中间值。焊接线能量:E=P/v其中:v焊接速度(cm/min)列: Q345E板焊接线能量经验数值小于等于39J/cm。当今,他们在计算熔焊热输入时,不管电极是摆动还是不摆动,都使用同一公式,这是不适宜的。在摆动焊时,焊道宽、焊速慢,用传统公式计算出的线能量就会比实际值大。建议在计算摆动焊接的线能量时添加折减系数;或者,重新定义热输入。

钢结构计算题(焊接)

*、某节点钢板厚12mm ,用对接和角接组合焊缝焊于端板上,承受静力荷载标准值F k =250kN ,其中20%为永久荷载,80%为可变荷载,如下图所示。采用Q235钢,手工焊,焊条为E43型,焊缝强度设计值为2185/w t f N mm =,未用引弧板施焊。试验算此焊缝强度是否满足设计要求。 解:(组合焊缝的计算和对接焊缝的一样) 拉力设计值 1.20.2250 1.40.8250340G GK Q QK F F F kN γγ???=?=+=+ 该拉力为偏心力,与x 轴的间距为偏心距e=100,焊缝所受的弯矩为 353401010034010M Fe N mm ==??=?? 焊缝的有效厚度为节点板厚t ; 由于未用引弧板,焊缝有效长度为l w =b -2t 节点板和焊缝所受的力是轴向力+弯矩,焊缝应力分布如下图所示。 最大正应力(拉)为 max 2 35 2 2 /6 340103401012(400212)12(400212)/675.4120.2195.6185/w w w t F M F M A W tl tl f N mm σ=+=+??=+?-??-?=+=>= 焊缝强度不满足要求。 端板

*、某节点钢板用角焊缝焊于端板上,承受静力荷载设计值F =340kN ,。采用Q235钢,手工焊,焊条为E43型,焊脚厚度h f =10mm ,焊缝强度设计值为2160/w f f N mm =。试验算此焊缝强度是否满足设计要求。 解: 偏心拉力与x 轴的间距为偏心距e=100,焊缝所受的弯矩为 353401010034010M Fe N mm ==??=?? 焊缝有两条,每条焊缝的有效厚度为0.7h f ; 由于焊缝两端都无绕角焊,每条焊缝有效长度为l w =b -2h f 。 节点板和焊缝所受的力是轴向力+弯矩,焊缝应力分布如下图所示。 最大正应力(拉)为 max 23522 20.720.7/6 340103401020.710(40020)20.710(40020)/663.9100.9164.8 1.22160195.2/f w f w w f f F M A W F M h l h l f N mm σβ= +=+????=+ ???-???-=+=<=?= 焊缝强度满足要求。

焊缝计算公式

一、箱形柱的现场拼接焊缝(等壁厚箱形柱对接) C=4tan +?+βt b A1=βtan 212t ? ;A2=e C ??3 2 ;A3=b t ? A=A1+A2+A3=3 22tan 2e C t b t ?+?+?β 二、箱形柱的现场拼接焊缝(不等壁厚箱形柱对接) C=4tan 1+?+βt b A=ββcot 2 1 32tan 212211b e C t b t +?+?+?

三、人孔补强板与柱的现场焊接 C=()4tan 2+-+βt b A =()Ce t b t 3 2tan 221 2+-+?β 四、 工字形梁翼缘的现场焊接 C=42 tan )(2+-+β p t b =?-+15tan )2(214t A=e C t t b ?+??????-?+?3 2 2tan ) 2(2 1 22 β =e C t t ?+-+3 2 2tan )2(10β

L1=(t-2)/3×tan60°+2 L2=2(t-2)/3×tan45°+2 C1= 442 2 1 +?? ? ??+t L C2= 442 2 2+?? ? ??+t L A1=t ×b A2=? ???? ??-?60tan 32212 t A3=4 211t L ?? A4=e C ??134 A5=? ??? ? ??-?45tan 3)2(2212 t A6=4212t L ?? A7=e C ??234 A= A1+ A2+ A3+ A4+ A5+ A6+ A7

C=42 tan 222+?-? +β t b =()62 tan 2+?-β t A=e b t b t ???+?? ????? ????? ??-??+?C 32 22tan 22142β =()e t t ??+-+C 3 42tan 221 22β 七、 工字型柱翼缘的现场焊接 C=()4tan 2+-+βt b =βtan )2(9-+t A = e C t t b ?+-+?32 tan )2(212β =Ce t t 32tan )2(2152+-+β

焊接结构习题库

焊接结构 一、焊接结构的特点 焊接结构的特点包括: (1)焊接结构的应力集中变化范围比铆接结构大。 因为焊接结构中焊缝与基本金属组成一个整体,并在外力作用下与它一起变形。因此焊缝的形状和布置必然影响应力的分布,使应力集中在较大的范围内变化。从而严重影响结构的脆断和疲劳。 (2)焊接结构有较大的残余应力和变形 绝大多数焊接方法采用局部加热,故不可避免会产生内应力和变形。焊接应力和变形不但容易引起工艺缺陷,而且影响结构的承载能力,此外还影响结构的加工精度和尺寸稳定性。 (3)焊接结构具有较大的性能不稳定性 由于焊缝金属的成分和组织与基本金属不同,以及焊接接头所经受的不同热循环和热塑性应变循环,焊接接头不同区域具有不同性能,形成一个不均匀体。(4)焊接接头的整体性 这是区别于铆接结构的一个重要特性,一方面赋予焊接结构高密封性和高刚度,另一方面由带来了问题,例如止裂性能差。 二、影响脆性断裂的因素 (一)应力状态的影响 (1)不同的应力状态:如果最大正应力首先达到正断抗力,则发生脆性断裂,如果剪应力先达到屈服极限,则产生塑性变形,形成塑性断裂,达到剪断抗力时,产生剪断。 (2)不同材料同一应力状态。 (3)缺口效应:虽然整个结构件处于单轴拉伸状态,但由于其局部设计不佳或存在缺陷导致出现三轴应力状态的缺口效应。 (二)温度的影响 随着温度的降低,出现脆性断裂的倾向变大。脆性转变温度越低,可使用温度范围越大,材料抗脆断能力好。 (三)加载速率的影响 提高加载速率会促使材料脆性破坏。当有缺口时,由于缺口处有应力、应变集中,缺口扩展速率增大,导致脆性断裂的发生。 (四)材料状态的影响 (1)厚度的影响:厚度增大,脆断倾向增大。 原因:a、厚板在缺口处易形成三轴拉应力,因为厚度方向的收缩和变形受到限制,形成所谓的平面应变状态,使材料变脆。 b、冶金因素:厚板轧制次数少,终轧温度高,组织疏松,内外层均匀性差。 (2)晶粒度影响:晶粒越细,脆性—延性转变温度越低。 (3)晶格结构:面心立方晶格较好。 (4)化学成分:C、N、O、H、S、P增加脆性,Mn、Ni、Cr、V适量加入有助于减少脆性。

焊接计算

焊接工艺问答(强度及结构) 2008-01-10文字选择: 各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,

其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t 〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕

Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t 〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t 〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计算为 F 28400 σt=─── =───── =1136N/cm2<14200N/cm2 Lδ1 50×0.5 ∴该对接接头焊缝强度满足要求,结构工作安全。 38 举例说明对接接头受剪切时的静载强度计算。

钢结构计算题(焊接、螺栓连接、稳定性)

Q235 用。由于翼缘处的剪应力很小,假定剪力全部由腹板的竖向焊缝均匀承受,而弯矩由整个T 形焊缝截面承受。分别计算a 点与b 点的弯矩应力、腹板焊缝的剪应力及b 点的折算应力,按照各自应满足的强度条件,可以得到相应情况下焊缝能承受的力F i ,最后,取其最小的F 值即为所求。 1.确定对接焊缝计算截面的几何特性 (1)确定中和轴的位置 ()()()()80 10 102401020160)10115(1010240510201601≈?-+?-+??-+??-= y mm 160802402=-=y mm (2)焊缝计算截面的几何特性 ()6232 31068.22)160115(230101014012 151602301014023010121mm I x ?=-??+??++-??+??= 腹板焊缝计算截面的面积: 230010230=?=w A mm 2 2.确定焊缝所能承受的最大荷载设计值F 。 将力F 向焊缝截面形心简化得: F Fe M 160==(KN·mm) F V =(KN )

查表得:215=w c f N/mm 2,185=w t f N/mm 2,125=w v f N/mm 2 点a 的拉应力M a σ,且要求M a σ≤w t f 18552.010 226880101604 31===???==w t x M a f F F I My σ N/mm 2 解得:278≈F KN 点b 的压应力M b σ,且要求M b σ≤w c f 215129.110 2268160101604 32===???==w c x M b f F F I My σ N/mm 2 解得:5.190≈F KN 由F V =产生的剪应力V τ,且要求V τ≤w V f 125435.010 23102 3===??=w V V f F F τ N/mm 2 解得:7.290≈F KN 点b 的折算应力,且要求起步大于1.1w t f () ()()w t V M b f F F 1.1435.03129.132 22 2=?+= +τσ 解得:168≈F KN

焊接相关计算

焊接的有关计算 第一章 基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 b l m K 100%m = ? 式中:Kb ——药皮质量系数(%); m o ——药皮质量(Kg ); m l ——焊芯质量(Kg )。 二、焊条药皮厚度分类 (1)薄药皮焊条 1.2≤焊条直径焊芯直径 (2)厚药皮焊条 1.2 1.5<≤焊条直径焊芯直径 (3)特厚药皮焊条 1.8<焊条直径 焊芯直径 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 H o l p m It m m It αα= -= 式中:H α——熔敷系数(g/Ah ); m ——熔敷焊缝金属质量(g ); I ——焊接电流(A ); t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 o l p m m It α-= 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。

O p L L v t -= 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ) ; L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度 熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 p m m v t -= 式中:p v ——熔敷速度(kg/h ); M ——焊后焊件的质量(kg ); 0m ——焊前焊件的质量(kg ) ; t ——焊接时间(h )。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 q U I /v η= 式中:q ——热输入(J/mm ); U ——电弧电压(V ); I ——焊接电流(A ); V ——焊接速度(mm/s ); η——热效率(焊条电弧焊η=0.7~0.8;埋弧焊η=0.8~0.95;TIG 焊η=0.5)。 例1:用焊条电弧焊焊接Q390(原15MnTi )钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm 。如果选择焊接电流为180A,电弧电压为28V ,试计算焊接速度应为多少? 已知:I=180A ;q=30kJ/cm ;U=28V 求:v=? 解:由 q UI/v η= 取η=0.7 得:v=UI/q=0.728180/30000cm/s=0.118cm/s η?? 答:应选用的焊接速度为0.118cm/s 。 例2:已知某钢材焊接过程中焊条电弧焊的电弧电压为26V ,焊接电流为200A ,焊接速度为0.2cm/s ,试求其焊接热输入(η取0.8)。 已知:I=200A ;v=0.2cm/s ;U=26V ;η=0.8

焊接变形计算公式

焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。 为了给设计人员提供一定的参考,贴几个公式: 1、单V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值 e= x=板厚 2、script id=text173432>双V对接焊缝横向收缩近似值及公式: y = *e^() y=收缩近似值

e= x=板厚 3、 4、

5、 6、

1、预热处理是为了防止裂纹,同时兼有一定改善接头性能的作用,但是预热也恶化劳动条件,延长生产周期,增加制造成本。过高预热温度反会使接头韧性下降。 预热温度确定取决于钢材的化学成分、焊件结构形状、约束度、环境温度和焊后热处理等。随着钢材碳当量、板厚、结构约束度增大和环境温度下降,焊前预热温度也需相应提高。焊后进行热处理的可以不预热或降低预热温度。 Q345焊接的预热温度板厚≤40mm,可不预热; 板厚>40mm,预热温度≥100度(以上为理论参考)2、焊接变形收缩始终是一个比较复杂的问题,对接焊缝的收缩变形与对接焊缝的坡口形式、对接间隙、焊接线的能量、钢板的厚度和焊缝的横截面积等因素有关,坡口大、对接间隙大,焊缝截面积大,焊接能量也大,则变形也大。具体经验公式见附件! 3、低合金钢接头焊接区的清理是一项不可忽视的工作,是建立低氢环境的主要环节之一。 若直接在焊件切割边缘和切割坡口上的焊接接头,则焊前必须清理干净切割面得氧化皮盒熔化金属的毛刺,必要时可用砂轮打磨。

焊接知识问答(焊接强度及焊接结构)

焊接知识问答(焊接强度及焊接结构) 各种焊接接头都有不同程度的应力集中,当母材具有足够的塑性时,结构在静开车破坏之前就有显著的塑性变形,应力集中对其强度无影响。 例如,侧面搭接接头在加载时,如果母材和焊缝金属都有较好的塑性,其切应力的分布是不均匀的,见图29。继续加载,焊缝的两端点达到屈服点σs,则该处应力停止上升,而焊缝中段各点的应力因尚未达到σs,故应力随加载继续上升,到达屈服点的区域逐渐扩大,应力分布曲线变平,最后各点都达到σs。如再加载,直至使焊缝全长同时达到强度极限,最后导致破坏。 36 什么是工作焊缝?什么是联系焊缝? 焊接结构上的焊缝,根据其载荷的传递情况,可分为两种:一种焊缝与被连接的元件是串联的,承担着传递全部载荷的作用,一旦断裂,结构就立即失效,这种焊缝称为工作焊缝,见图30a、图30b,其应力称为工作应力。另一种焊缝与被连接的元件是并联的,仅传递很小的载荷,主要起元件之间相互联系的作用,焊缝一旦断裂,结构不会立即失效,这种焊缝称为联系焊缝,见图30c、图30d,其应力称为联系应力。设计时,不需计算联系焊缝的强度,

只计算工作焊缝的强度。 37 举例说明对接接头爱拉(压)时的静载强度计算。 全焊透对接接头的各种受力情况见图31。图中F为接头所受的拉(压)力,Q为切力,M 1为平面内弯矩,M2为垂平面弯矩。 受拉时的强度计算公式为 F σt=───≤〔σ′t〕 Lδ1 F 受压时的强度计算公式为σα=───≤〔σ′α 〕 Lδ1 式中F——接头所受的拉力或压力(N); L——焊缝长度(cm); δ1——接头中较薄板的厚度(cm); σ——接头受拉(σt)或受压(σα)时焊缝中所承受的应力(N/cm2)㈠ 〔σ′t〕——焊缝受拉时的许用应力(N/cm2) 〔σ′α〕——焊缝受压时的许用应力(N/cm2) 计算例题两块板厚为5mm、宽为500mm的钢板对接焊在一起,两端受28400N的拉力,材料为Q235-A钢,试校核其焊缝强度。 解:查表得〔σ′t〕=14200 N/cm2。 根据已知条件,在上述公式中,F=28400N,L=500mm=50cm,δ1=5mm=0.5cm,代入计

焊接结构强度计算题jieda

1、如图搭接接头上板厚10mm ,下板厚15mm ,已知许用应力[σ][τ]分别为15000N/cm2和10000N/cm2,构件受力Q 为60000N ,采用等腰角焊缝。根据焊缝和载荷的几何关系确定搭接焊缝的类型及单边焊缝长度,并判定该长度下焊缝结构是否合理。 答:不等厚板搭接接头,角焊缝焊脚尺寸以薄板计算,本题中取10mm ,焊缝为搭接接头上的侧面角焊缝。 设单边焊缝长度为L ,搭接焊缝为双缝结构,焊缝总长度为2L ,角焊缝按照许用切应力计算。 则有][7.027.0ττ≤??==∑kL Q kL Q ,计算所得L 至少大于42.8mm,取整为43mm 。 按照规定侧面角焊缝的长度不大于50K ,因此根据计算判定,结构合格。 2、一丁字接头,如下图,已知焊缝金属的许用切应力[τ']=100MPa ,试设计角焊缝的焊角尺寸K ,并求焊缝最大承载能力。 τm = (3PL)/0.7Kh 2

已知:P=75kN,L=200mm,h=300mm,代入上式得: τm =(3×75000×200)/0.7×K ×3002=500/0.7K τQ=F/(1.4Kh),将数代入公式: τQ =75000/(1.4K ×300)=250/(1.4K ×300 ) =250/(1.4×K) 3、分析下图构件的焊缝的类型,若要保证结构安全,则焊缝间距有什么要求?若已知该结构的许用应力[σ][τ]分别16000N 为/cm2和10000N/ cm2,构件受力P 为75000N ,单条焊缝长度为50mm ,板料厚度均为10mm ,试通过计算判定其使用时是否安全。 答:焊缝间距不小于4倍板厚 (1)角焊缝按照切应力进行校核。 当]'[7.0ττ≤?=∑K L Q ,则结构安全。 式中Q =75000N ,δ=10mm , L=50mm,设焊脚尺寸K 与板厚δ相同,K =10mm ; 代入上式得: τ=75000/(2×50×0.7×10)=1071N/cm 2<]'[τ=10000N/cm 2 因此,判定结构不合格。(1分) 4、如图一偏心受载的搭接接头,已知焊缝长h=400mm ,l 0=100mm ,采用等腰焊缝,焊角尺寸K=10mm ,外加载荷F=30000N ,梁长L=100cm ,焊缝的许用切应

焊接相关计算

焊接的有关计算 第一章基本概念的有关计算 一、焊条药皮质量系数 概念:焊条药皮质量系数即焊条与药芯(不包括无药皮的夹持端)的质量比。 式中:Kb——药皮质量系数(%); ——药皮质量(Kg); m o ——焊芯质量(Kg)。 m l 二、焊条药皮厚度分类 (1)薄药皮焊条 (2)厚药皮焊条 (3)特厚药皮焊条 三、熔敷系数 熔敷系数指熔焊过程中,单位电流、单位时间内,焊芯(或焊丝)熔敷在焊件上的金属量。 ——熔敷系数(g/Ah); 式中: H m——熔敷焊缝金属质量(g); I——焊接电流(A);

t ——焊接时间(h )。 四、熔化系数 熔化系数指熔焊过程中,单位电流,单位时间内,焊芯(或焊丝)的熔化量。 式中 :p α——熔化系数(g/Ah ); o m ——焊芯原质量(g ); l m ——焊后剩下焊芯质量(g ); 五、熔化速度 熔化速度指熔焊过程中,熔化电极在单位时间内熔化的长度或质量。 式中 p v —— 熔化速度(mm/min ); O L ——焊条原长(mm ); L ——余下焊条头长度(mm ); T ——焊接时间(min )。 例:某焊条长320mm ,经过5min 的焊接,剩下40mm 的焊条头,求该焊条的熔化速度。 解:O p L L v t -= =(320mm-40mm )/5min=56mm/min 答:该焊条的熔化速度为56mm/min 。 六、熔敷速度

熔敷速度指熔焊过程中,单位时间内熔敷在焊件上的金属量。 v——熔敷速度(kg/h); 式中: p M——焊后焊件的质量(kg); m——焊前焊件的质量(kg); t——焊接时间(h)。 七、热输入 热输入指熔焊时,由焊接能源输入给单位长度焊缝上的热能。 式中:q——热输入(J/mm); U——电弧电压(V); I——焊接电流(A); V——焊接速度(mm/s); η——热效率(焊条电弧焊η=~;埋弧焊η=~;TIG焊η=)。 例1:用焊条电弧焊焊接Q390(原15MnTi)钢时,为防止和减小焊接热影响区的过热区脆化倾向,要求焊接时热输入不超过30kj/cm。如果选择焊接电流为180A,电弧电压为28V,试计算焊接速度应为多少? 已知:I=180A;q=30kJ/cm;U=28V 求:v=?

钢结构计算题答案

n 第四章轴心受力构件 4.1 验算由2∟63 5 组成的水平放置的轴心拉杆的强度和长细比。轴心拉力的设计值为 270KN ,只承受静力作用,计算长度为3m 。杆端有一排直径为20mm 的孔眼(图 4.37 ),钢材为Q235 钢。如截面尺寸不够,应改用什么角钢? 注:计算时忽略连接偏心和杆件自重的影响。 解:(1 )强度查表得∟63 5 的面积A=6.14cm 2,i min i x 1.94cm , A 2 ( A d t) 2 (614 20 5) 1028mm2 ,N=270KN N 270 103 A n 1028 262.6Mpa f 215Mpa ,强度不满足, N 所需净截面面积为A n f 270 103 215 1256 1256 mm2 , 2 所需截面积为 A A n d t 20 5 728mm , 2 选63 6 ,面积A=7.29cm 2729 m m2728mm2(2 )长细比 l o i min 3000 154.6 350 19.4 4.2 一块- 400 20 的钢板用两块拼接板- 400 12 进行拼接。螺栓孔径为22mm ,排列如图4.38 所示。钢板轴心受拉,N=1350KN (设计值)。钢材为Q235 钢,解答下列问题; (1))钢板1-1 截面的强度够否? (2))是否需要验算2-2 截面的强度?假定N 力在13 个螺栓中平均分配,2-2 截面应如何验算?

2 (3) )拼接板的强度够否? 解:( 1 )钢板 1-1 截面强度验算: A n1 (b 3 d 0 ) t min (400 3 22) 20 6680mm , N=1350KN N A n1 1350 103 6680 202.1Mpa f 205Mpa ,强度满足。 (2) )钢板 2-2 截面强度验算: (a ),种情况,( a )是最危险的。 A (l 5 d ) t (400 80 80 2 80 2 5 22) 20 6463mm 2 , N=1350KN n 2 ( a ) N A n2 1350 103 6463 208.9Mpa f 205Mpa ,但不超过 5% ,强度满足。 对应图( d )的验算: A (l 5 d ) t (400 5 22) 20 5800mm 2 , n 2 (d )

焊接结构习题 已配图

焊接结构实验指导书 实验一:焊接变形动态过程测量 一.实验目的: 1.掌握焊接变形产生的原理,观察焊接变形的动态过程。 2.了解施焊次序对焊接变形的影响。 3.认识一种测量焊接变形的方法。 二.实验内容: 对悬臂支承的长板条一侧进行堆焊,同时测量并记录长板条端点A的挠度变化过程如图所示。 三.实验仪器及设备: 1.焊接电源、电缆、焊把、焊条、试板、试板支架。 2.焊接参数测量仪表:电流表、电压表、秒表、直尺、分流器。 3.位移传感器及支座、放大器、函数记录仪、标定用的百分表。 四.实验设备: 1.位移传感器是将位移量转换成电信号的传感元件,位移传感器和相应的放大器、记 录仪组成位移的测量记录系统,实验前需事先确定实际位移量和记录仪输出量的对应关系,即进行标定。 2.支好试板和传感器,选择焊接规范、调整记录仪和零点。 五.实验方法(任选其一): 方法Ⅰ:用相同规范在板条上侧进行两次堆焊,分别记录A点挠度-时间(△-t)曲线及其它参数U、I、t、L1、L2、B、h。并计算线能量Q=UI/V。

方法Ⅱ:第一次堆焊后(板条翻转)在板条另一侧堆焊,其余方法同Ⅰ。 六.实验报告要求: 1.简述第一次堆焊时△-t曲线成因。 2.定性绘出第一次堆焊后长板条内纵向残余应力分布的简图。 3.比较两次堆焊△-t曲线的异同,并讨论第一次堆焊后的残余应力对第二次堆焊时△ -t曲线的影响。 4.两次堆焊后的残余应力分布形态有无本质不同。 5.对于方法Ⅰ,第二次堆焊所形成的最终挠度变量在总的挠变量中占得比例是多少? 对于方法Ⅱ,两次堆焊后的总挠变量是否为零?通过以上两点,分别可以得出什么结论(与采用不同实验方法的其他组实验结果进行对照比较)? 实验二:焊接接头工作应力分布 一.实验目的: 1.掌握了解焊接接头横截面上由于工艺缺陷如未焊透等原因引起的工作应力分 布不均匀性和应力集中现象。 2.了解焊缝截面几何形状的改变对于接头工作应力分布的影响。 3.复习电测应力的原理和方法,以及有关仪器的使用。 二.确定接头截面上工作应力分布的基本方法简介: 确定接头截面上工作应力分布的基本方法可大致分为三类:弹性力学方法、数值分析方法和试验应力分析方法。弹性力学方法是确定焊接接头横截面上应力分布不均匀性的精确方法,原则上可以求解任意截面形状的应力分布问题,但是当截面形状较复杂时,偏微分方程的求解变得十分困难,因此弹性力学方法在实际应上受到限制,只有在截面几何形状比较复杂时才容易求得精确解。数值分析方法是随着电子计算机技术的发

焊接接头强度与韧性的计算

焊接接头强度匹配和焊缝韧性指标综述 1 焊接接头的强度匹配 长期以来,焊接结构的传统设计原则基本上是强度设计。在实际的焊接结构中,焊缝与母材在强度上的配合关系有三种:焊缝强度等于母材(等强匹配),焊缝强度超出母材(超强匹配,也叫高强匹配)及焊缝强度低于母材(低强匹配)。从结构的安全可靠性考虑,一般都要求焊缝强度至少与母材强度相等,即所谓“等强”设计原则。但实际生产中,多数是按照熔敷金属强度来选择焊接材料,而熔敷金属强度并非是实际的焊缝强度。熔敷金属不等同于焊缝金属,特别是低合金高强度钢用焊接材料,其焊缝金属的强度往往比熔敷金属的强度高出许多。所以,就会出现名义“等强”而实际“超强”的结果。超强匹配是否一定安全可靠,认识上并不一致,并且有所质疑。九江长江大桥设计中就限制焊缝的“超强值”不大于98MPa;美国的学者Pellini则提出〔1〕,为了达到保守的结构完整性目标,可采用在强度方面与母材相当的焊缝或比母材低137MPa的焊缝(即低强匹配);根据日本学者佑藤邦彦等的研究结果〔2〕,低强匹配也是可行的,并已在工程上得到应用。但张玉凤等人的研究指出〔3〕,超强匹配应该是有利的。显然,涉及焊接结构安全可靠的有关焊缝强度匹配的设计原则,还缺乏充分的理论和实践的依据,未有统一的认识。为了确定焊接接头更合理的设计原则和为正确选用焊接材料提供依据,清华大学陈伯蠡教授等人承接了国家自然科学基金研究项目“高强钢焊缝强韧性匹配理论研究”。课题的研究内容有:490MPa级低屈强比高强钢接头的断裂强度,690~780MPa级高屈强比高强钢接头的断裂强度,无缺口焊接接头的抗拉强度,深缺口试样缺口顶端的变形行为,焊接接头的NDT试验等。大量试验结果表明: (1)对于抗拉强度490MPa级的低屈强比高强钢,选用具备一定韧性而适当超强的焊接材料是有利的。如果综合焊接工艺性和使用适应性等因素,选用具备一定韧性而实际“等强”的焊接材料应更为合理。该类钢焊接接头的断裂强度和断裂行为取决于焊接材料的强度和韧塑性的综合作用。因此,仅考虑强度而不考虑韧性进行的焊接结构设计,并不能可靠地保证其使用的安全性。 (2)对于抗拉强度690~780MPa级的高屈强比高强钢,其焊接接头的断裂性能不仅与焊缝的强度、韧性和塑性有关,而且受焊接接头的不均质性所制约,焊缝过分超强或过分低强均不理想,而接近等强匹配的接头具有最佳的断裂性能,按照实际等强原则设计焊接接头是合理的。因此,焊缝强度应有上限和下限的限定。

钢结构计算题-答案完整

《钢结构设计原理计算题》 ,厚度t=10mm 。 。 kN 5. N f l h N w f w f 521472160)6200(67.047.011=?-???=∑= 最大承载力kN N N 4.10131013376521472491904==+= 【变化】若取消端焊缝,问?=N 解:上题中令03=N ,622001?-=w l ,得kN N N 344.5051==

解:上题中令03=N ,622501?-=w l ,得kN N 96.456= 已知F =V f =τM f σ 可以解得:mm h f 68.6≥,取mm h f 7=。 mm h h mm h f f f 4.14122.16.5145.1max min =?=<<==,可以。 【变化】上题条件如改为已知mm h f 8=,试求该连接能承受的最大荷载?=N

已知h f =N f σ M f = σ=σ, 2 , v V V 4 4 ⑵一个螺栓的承压承载力设计值: kN f t d N b c b c 4.851030514203 =???=?∑=- (因为mm t mm t 201022141=?=<=,故公式中取14=∑t ) ⑶最大承载力 kN nN N b 2.6834.858min =?== ⑷净截面强度验算: 223 3/215/9.2173136 102.68314)5.214310(102.683mm N f mm N A N n =>=?=??-?==σ 不满足要求。最大承载力由净截面强度控制: kN f A N n 24.6741021531363 =??==- 【变化】上题条件如改为已知N=600kN ,试验算该连接是否安全?

相关文档