文档库 最新最全的文档下载
当前位置:文档库 › GIS APPLICATIONS FOR KNOWLEDGE AND PRESERVATION OF HIERAPOLIS OF

GIS APPLICATIONS FOR KNOWLEDGE AND PRESERVATION OF HIERAPOLIS OF

GIS APPLICATIONS FOR KNOWLEDGE AND PRESERVATION OF HIERAPOLIS OF

PHRYGIA SITE.

A.Spanò (*),

B. Astori(*),

C. Bonfanti (*), F. Chiabrando (*)

(*)DINSE, Politecnico di Torino, II Facoltà di Architettura, viale Mattioli 39 – 10125 Torino – Italy

antonia.spano,bruno.astori,cristina.bonfanti,filiberto.chiabrando@polito.it

KEYWORDS: GIS, Documentation, Archiving, Conservation, Surveying, Mapping, DBMS.

ABSTRACT

Lately, Geographic Information Systems are increasingly exploited in archaeological studies or, generally, in projects aimed to the preservation of cultural heritage. Among the large number of reasons that make GIS a suitable tool to manage this kind of programs, at once it’s possible to identify two main topics for this achievement.

The first one concerns the high capacities of GIS to enable advanced storage, representation and management of spatial data, connecting them to collections of different nature data (archaeological, architectural, historical, etc.); these archives can be suitably set and managed in several semantic levels with a spatial reference, overlaying topogaphic maps. The second order of reasons is connected with present development of geographic mapping: the improvements in acquisition, processing, management and digital representation metodologies request proper tools, in order to make new mapping products usable and widespread.

The recent growth of satellite images analyses and aerial photograms interpretation have in fact substantial role in cultural heritage documentation, supporting objectives of modern Archaeology in spotting areas of probable location of archaeological sites or finds. The designed GIS of Hierapolis, whose carrying out is going on, can based itself on a huge amount of metric data relating monuments and diggings, collected during the last years thanks to topographic and photogrammetric surveys. Besides close range surveys aimed to document architectural structures and ruins, always originating vectorial representation, a complete digital site map at the urban scale 1:1000 has been accomplished.

The purpose to offer the chance of global data managing of city environment and architectural structures (scientists of different disciplines register and store data covering the most diverse aspects of research) have to be founded upon very precise choices about (geo)graphical database organization, mainly applied to proper arrangements of multiscale and multidisciplinary data.

This paper mostly presents our efforts and experiences to achieve this last object.

1. INTRODUCTION

For many years they used to produce ancient cities and archaeological site plans in which buildings location were represented along with their urban system into the point of view of town planning.

Nowadays the most common trend is replacing archaeological site plans with maps in which anthropic elements representation doesn’t prevail over territorial ones, since there is a spreading trend of analysing the signs of an ancient civilization and the human organization in relation with the environment and the territory on which they developed.

Since the representation of environment and its features is increasingly felt as a need to study and interpret the human and urban settlements, the GIS turn out to be the proper instruments through which the different kinds of spatial data should be managed and connected or compared to by other data having a spatial reference. This kind of condition manifests itself in all branches of study operating in an archaeological mission. Another interesting reason about GIS is the fact that traditional cartography, and often its corresponding vectorial products, photograph a temporal static situation when an archaeological site land, frequently subjected to fast transformations due to excavations and restorations, needs a system of documentation and representation which manages and ensures a continuous flow of information (from the point of view of the updating needs here the requests are many than in high urbanization areas).

We can say that structuring this GIS the main features that have been held into account could be sumarized in this way:

? the multiscale trait of GIS, which is one of the most important characteristics to satisfy the needs of study

ranging from the archaeological findings to the

architectonic structures and to the town and territory;

? the second important feature is the peculiar organization of the system arranged to aid a continuous updating of

spatial data (about new excavated areas, stratification of

metric information produced by excavations and

restorations, in short keeping traces of any trasformation) This last aspect is supported by the realization of a relational database (based on serverDBMS) archiving data about topographic points and their landmarks on earth. This archive, on one side, ensures the possibility to use the plano-altimetric known coordinates of a great amount of points distributed on the territory of the city to working groups of each branches for detailed surveys, and, on the other side, the relational database structure and its continuous implementation, constitute a first step for a future retrieval of spatial information and other data collections in the World Wide Web.

2. DATA ORGANIZATION

One of the basic concepts used to plan the GIS is the consciousness that the reading capability and data thematization, and, moreover, the interrogation and institution of relationships between different classes, depend on primary data organization: it means that the real system ability to develop complex and advanced analysis and data managements, is entirely due to the primary structuring of arrangement.

At the moment the multiscale organization of the global system is mostly evidenced by the presence of spatial datasets at

different scale; quality control procedures according to spatial data quality evaluation components, are used to validate data. Next step of project will be the fulfilment of a multiusers GIS which could allow to gain access to a map server, enabling retrieval of spatial information and other nature data; this is the reason why we chose to organize datasets into a geodatabase format, which, at the moment is configurated as a simple datasets collection with closely linked attributes.

As one of the most important things to use spatial data correctly is knowing their nature, characters, boundaries in which to use them, etc., an access database having quite a simplified scheme of metadata has been devised; knowing data about data is a necessary condition in order to permit to any operative unit working at the archaeological Mission to access to spatial data and to use them consciously.

2.1 Spatial database of the city of Hierapolis

The spatial database of the ancient city of Hierapolis is mainly built in agreement with standards set for largest scale numeric cartography, meanwhile showing the evident specificities related to the requirements of an archaeological site. For example, the data grouping regarding territorial and anthropical elements has peculiar reasons within archaeological sites where, no doubt, the updating needs are marked by time in a different way; this aspect is more emphasized because the generation processes of these two data types are completely different on the map of Hierapolis.

The map of Hierapolis was born by an integration of a 1:1000 scale plan built through a topographical survey and, moreover, that land features have been extracted from a traditional map (taken over by dated photograms) first rasterized and then vectorialized (Spanò, 2002; Astori, Spanò, 2003); these two elements provided together are the information which the users learns from the first metadata form describing map.

This form includes a list of data types come together in the map; highlighting their lineage heterogeneity (adding to the previous data types, users have to know that a small number of ancient building plans have been vectorized from traditional surveys, and than registration processes based on control points constraints led their positional accuraty to tolerance range.) Outstanding important to the users is the main information about the reference system: every user, (geologists, archaeologists and all other researchers) usually need to know if map is referenced or not to national cartography reference system.

Figure 1 shows an hardcopy sheet of site map and a mask of metadata database: while the first one, as usual, refer schematically the definition of local and geographic reference system, for planimetric and altimetric data, the second one is much more richer, showing to users also details concerning elaboration process of map.

Even datasets metadata scheme has been simplified in comparison with standards; lineage, positional accuracy, temporal accuracy and tematic consistency have been endowed upon other parameters. It is a central aspect in such GIS a proper updating of these metadata parameters concerning buildings, ruins and diggings datasets.

Afterwards we try to synthesize main topics about cartografic items organization, highlighting the geometric object type of corresponding to datasets (points, lines, polygons).

A dataset of lines and one of polygons have been arranged to group ancient city elements; the former means to represent and communicate the basic planimetric structure of ancient buildings whose thematization recalls the generical temporal periodization of the city suggested by the founder of the Italian Mission (Verzone 1977). (Fig. 2)

On the other hand polygons dataset contains objects which coincide with the buildings profiles at earth level (it is the same for the excavated streets); it has the main role to associate historical-architectonic and archaeological information in any format and photographic documentation of each building to a single identification code, and also the function to visualize and effectively point out the presence of the ancient structure. (Fig. 3)

The terrain objects are grouped in lines and polygons classes; there are the edges and the boundaries of slopes and also of excavated areas but great attention has been dedicated to the limestone trenches which are a clear sign of the water overrunning on the urban area, at first in a regulated way and then, as a sign of the city decadence, in a frean uncontrolled stream (Pamukkale is the theatre of one of the greatest natural

Figure 1. Comparison between essential metadata provided in sheet legend and deeper information included in map description metadata form. In the bottom the enlargement of

GPS general network and a planimetric accuracy control scheme of the referencing of altimetric data to GPS network.

Figure 2. An example of ancient city dataset thematization in a zoom-in view of digital map, spotting the Agorà.

.

Figure 3: HTML pages are linked to objects representing buildings to visualize catalogues of images 1

Figure 4: Limestone trenches in the western area of the city. events in the world, the formation of limestone basins; even in the ancient time the city of Hierapolis was presumably very rich in water and trying to walk along its distribution today could add new information to reconstruct the city history).

About altimetry, all contours vectorized from Turkish map, has been arranged in a dataset; moreover a point objects dataset comprise altimetric points measured with various topographical 1Photos acquired from aerostatic ballon. Cassanelli (University of Pisa), 1997

Figure 5. The Necropolis vector data overlaying rasterized and georeferenced Turkish map sheets. The rich presence of elevation points is a useful dataset stored in GIS.

Figure 6. This selection by attributes highlights contours subset deriving from elevation points of rasterized sheets; points have been vectorized in a part of the map where there were lack of altimetric informations.

methods. This last layer contains all the plano-altimetric points belonging to three orders of networks (the main network measured with GPS survey, the second order networks and a third connection network between the two previous ones). Secondly, another large set of plano-altimetric points comprises the ground control points used to weld terrain relief data, belonging to Turkish map and measured by topographical intersections, to the GPS network. Finally numerous points measured by detailed surveys are included because their elevation is considerable in relationship with ancient structures. Obviously, attributes concerning different measurement metodologies and than points value, enable to perform thematization or any kind of query to select them.

A layers group contains all the Turkish map rasterized sheets; the raster format of this map at the scale 1:500 has been subordinated to warping processing to recover the irregular and

Figure 7. The whole digital map displaying a possible visualization.Figure 8 (a,b) 3D scenes showing volumetric relationship

between

theatre

structures

and

hill

slope.

strong original deformation due to wrong reproduction; their georeferencing has been possible thank to a very accurate recognition aimed to discover their marks on terrain and to the above-mentioned topographical intersections.

One of the functions of raster data is the documentation of some elements existing in the past, as the hotels occupying some areas of the site and now destroyed; another important role is the ability to provide altimetric data through dense aerophotogrammetrical elevation points which constitute an important and useful archive in case of need. (Fig 5)

Another important layer is the TIN, generated by contours; the jointly thematisms of each dataset produce a final visualization observable in the image of Figure 7.

2.2 TIN creation and 3D visualization

One of the main effects of innovation in cartography, that has led to the development of digital mapping, has been the advanced use of altimetric data; the natural consequence has been an increasing request and production of 3D mapping.

TIN creating is a very important topic within the actual researches in Geomathics, primary for the high requirements of three-dimensional reconstruction of land surface; but it also is important to perform advanced spatial analysis employing altimetric data, which can assume different shapes (vectorial formats: surface, dtm, contours; or raster formats: elevationgrid, slopgrid).

The TIN creation of central territory of Hierapolis has been realized using contours; polygons of ancient buildings and ruins and land natural objects have been used as the break-lines.

The TIN west limit, towards the declivity of the limestone basins, has been intentionally interrupted on the last contour available at 1:1000 scale, while the lack of informations interrupts the TIN in the other directions. Generally, modelling ancient buildings or their ruins require more articulated needs in comparison with the usual extrusion of the outline of built up areas in 3D urban cartography; thinking to the important valences of the representation of the reconstructive hypotheses concerning buildings, a suitable ancient city modelling would have developed using a more appropriate environment software (CAD). Anyway, a schematic volume modelling of the buildings in a Geographic Information System can highlight the relationship between built up structures and land. We propose an exemplification considering the theatres of the city: the theatre of Flavian age, under restoration in the last 30 years of Mission activities, and the more ancient hellenistic one.

Figure 8 emphasizes the deep difference between roman and ellenistic theatres: while the more ancient ones take more advantages by peculiar terrain orography, the roman building tecniques evolution lead to the use of impressive retaining walls.

3 MAP UPDATING, MULTISCALE GIS AND

TOPOGRAPHIC POINTS DATABASE.

We have just suggested that topographic points relational database is related to map updating and to the plannig of next Web GIS configuration

Before explaining archive structure we want to expound the reasons why we decided to start from topographic data as the ones to assign first to web sharing (it would be a sharing limited to italian mission working groups).

Archaeological and architectural survey demand critical reading of building structures; they need also a wide acquiring and suitable collecting of tematic and metric data that will come together in the final representation performing a very closed

integration. Then final representation is a result of objective data and detailed interpretation of the object of interest that also become graphical elements; this knowledge process is set at a very large scale, 1:20÷1:100

Contemporary it is necessary to use a smaller analysis scale to read and than visualize and comunicate the relations between case study and the environment where it lies.

The city vector plan, that has been accomplished before the site map and that has become a main part of it, arise mostly from large scale acquisition processes applied on monumental remainigs and diggings. A great deal of a low order of total station traverses were set to encompass buildings, excavation areas or other areas of interest, these networks, largely spread on ancient city territory, have the role to base topographic detailed surveys on architectural structures and ruins.

If updating of urban maps generally need aerophotogrammetric flies every 5-10 years, in a archaeological site it is interest-bearing to perform updating deriving them from large scale surveys, that are produced in any case.

Stratigraphic survey is the typical operative approach of modern Archaeology and it requires a continual assistance by topographic measurements. Since in Hierapolis every working group manages its own detailed surveys, the chance to implement a relational database, storing data useful for searching points on terrain and for using known coordinates, become clear.

After carrying out large scale surveys, typical topographic measures and processes, together with accuracy data control procedures evaluating nominal scale change, enable to achieve data integration in general map.

MySQL is the DataBaseManagementSystem used to manage data storage, while data entry web interface is based on PHP language

For istance, if in a certain city sector a new digging opening is decided, measurements operators will look points up in geodatabase graphic interface. If they find any, the server database connection will allow access to data, regarding precise location, precision index of points coordinates, etc.. The query result is a set of alphanumeric and photographic data visualized in a HTML page. (Fig. 9a)

Another important utility is the chance to select topographic points with criteria connected with their location which is obviously a typical ability of GIS. Many points are located on ancient structures, and a considerable number of them are located in buildings corners. The first topographic points feature is selectable through a typical selection by location while the second one is an esplicit attribute that data entry mask interface require to fill. (Fig. 9 b-c)

This selection of selection raise to a remarkable role: if the registration of aerial or satellite images is needed, selected points can be used as high precision ground control points, to be managed in warping tecniques.

4. PERSPECTIVES

One of the most important perspective of developement is the systematics organization of data concerning each building and excavation area. The implementation of spatial datasets characterized by a larger nominal scale in comparison with the datasets which costitute the 1:1000 map, is easily reliable such as the forced visualization among a fixed range scale.

Figure 9. (a) Main topographic points query. (b) Data entry mask, with building corner attribute highlighed. (c)

Topographic points over buildings spatial query.

(a)

(b)

(c)

Figure 10. Different limestone trenches spatial distribution in

diverse city areas.

(a)

(b)

Figure 11. Slopegrid (a) and elevationgrid (b) are raster data useful for further advanced spatial analyses: they will be exploited to study water flow and aspests related to hills relief

of streets net.

The interesting and deeper work we desire to develop on datasets at 1:100 scale and larger, is to choose geometric type classes to assign to dataset features (point, lines, polygons), in order to effectively connect existing relational database, regarding archaeological data of digging documentation or the analysis and the interpretation of collapsed walls. (D’Andria 1997, D’Andria 2003).

At the end of this first project phase, GIS managing shows that a considerable range of utilities can be directed to favour and strengthen Conservation and Valorization of archaeological site. Such map can improve potentialities of more linked works among different research branches; digital map also constitute the basic tool for proper design of tourist routes crossing the site, which will be probably set soon.

At the moment we are working on two types of spatial analyses that probable will give a contribution to some investigation sector of general researche on the site. The first one concerns the study of spatial distribution of limestone trenches crossing

whole city areas, sometimes coming after contours and sometimes approssimatively following streets net.

Trenches vectorial dataset, overlaying slopegrid, derived from TIN, are the imput data to establish, through spatial anlysis, a possible setting of water flow.

In a similar way, we expect that another application, using streets vector dataset and elevationgrid, will be able to provide some data about possible connection between roads width and their directions (West-East climbing the hill, North-South coming after contours).

5. REFERENCES

Billen R., 2000. Introduction of 3D information in urban GIS: a conceptual view, XIX ISPRS Congress , International Archives of Photogrammetry and Remote Sensing , Amsterdam, The Netherlands ,

D’andria F. (a cura di), 1997, Metodologie di catalogazione dei beni archeologici , Beni archeologici – Conoscenza e Tecnologie, quaderno 1.1, Lecce Bari.

D’andria F. Semeraro G., 2003. Applicazioni GIS alla ricerca archeologica. Modelli di formalizzazione dei dati, in I modelli nella ricerca archeologica , Accademia Nazionale dei Lincei, Roma.

De Bernardi Ferrero D. (a cura di), 2002. Hierapolis scavi e ricerche IV– Saggi in onore di Paolo Verzone , Giorgio Bretschneider editore, Roma.

Pamukkale National Park: Master Plan for Protection and Use by Project Team, Ankara, 1969.

Spalla A., 2003. La dimensione tempo nella cartografia e nei rilevamenti terrestri, invited relation to 7° National Conference ASITA , Verona.

Spanò A., Astori B., Bonora V., Integrated and multiscale spatial data to base a GIS for the ancient city of Hierapolis in Phrygi a , proceedings of ISPRS international workshop , Ancona, 2003

.Spanò A, Le ragioni dell’intervento di natura topografica a Hierapolis - 1999, in Hierapolis scavi e ricerche – Saggi in onore di Paolo Verzone , Roma, 2002

Verzone P., L’urbanistica di Hierapolis di Frigia. Tracciato viario e monumenti rimessi alla luce dal 1957 al 1972, in L’Architettura in Grecia , Atti del XVI Congresso di Storia dell’Architettura, Atene, 1977, pp. 402-413.

6.ACKNOWLEDGEMENTS

This work has been developed with the project “Hierapolis of Phrygia: archaeological excavation and restoration metodologies” financed by Italian Ministry of University and Research in 2001. (National Coordinator: G. Ciotta; Responsible of local unit: B. Astori)

Turkish traditional map has been provided by Turkish Ministry of Culture through the interest of Francesco D’Andria, director of the Italian Archaeological Mission.

燃气智慧管网地理信息系统

燃气智慧管网地理信息系统 解决方案

目录 目录 (2) 一、概述 (3) 二、系统关键技术及特点 (4) 三、系统总体设计 (5) 四、系统功能 (7) 五、运行环境及系统配置 (14)

燃气管网地理信息系统基于动态和静态燃气管网电子地图,采用GIS和空间数据库技术,实现对管线、阀门、调压站、门站等燃气设施的统一管理。其目标是实现燃气设施管理的自动化和科学化,及时提供燃气企业管理所需的各类信息资源和分析决策依据,达到用户受益、企业受益的目的。 一、概述 燃气管网地理信息系统是数字城市基础设施资源管理平台系统产品之一,系统采用先进的体系架构技术、空间数据库建库技术、网络技术,具有可扩展性强、运行效率高、容易使用和维护的特点,能够满足国内大中型燃气企业信息的需求。 燃气管网地理信息系统是建立在以动态和静态的燃气管网电子地图基础上,对管线及各种设施进行定位、查询统计、分析等;对各类统计结果打印输出;管网事故发生后,能在短时间内提供关阀方案、用户停气通知单,发生新情况后能迅速调整方案;实现燃气管网图文一体化的现代化管理,提供管网数据动态更新机制,准确高效,为燃气规划、设计、调度、抢修和突击资料管理提供强有力的科学决策依据,实现分析决策的全计算机操作过程,从而提高燃气公司的生产效率和社会服务水平。 燃气管网地理信息系统提供了丰富的外部系统接口,可方便实现与公司其他子系统的无缝集成,实现数据的共享交换和共享,最终融入到城市燃气信息化建设中,发挥其应有作用。

二、系统关键技术及特点 1、燃气信息一体化思想 燃气企业的信息化建设,不再是单一孤立的,需要燃气管网管理系统、营业管理系统、调度系统它们之间相互协作,信息共享与集成。 燃气管网信息管理系统与调度系统实现数据集成,能够实时显示管网中测压点或者流量计的动态监测数据,同时可以根据实时数据绘制全区等压线; 燃气管网信息管理系统与营业收费系统实现数据集成,能够将用户和管网进行关联,并实现用户和管网图形的互动查询,同时查询制定区域内的用气量。关阀搜索时能够搜索出受影响的用户。 调度系统中,实现燃气管网地理信息和营业系统信息在管网建模中的集成,能够合理提取城市主干网和用户用气量,为管网动态模型的建立提供了坚实的物质基础为管网运行调度提供良好的辅助决策 信息。 2、全组件开发,模块化强 采用组件化开发技术,可以根据用户单位管理的实际需求方便调整,业务管理流程与新功能开发功能组合性强; 业务功能模块化强,积累全国多家燃气公司管网管理的实践经验,并经过了分析提取,符合行业管理规范,能够全面满足用户单位燃气管网管理和燃气业务的要求。 3、海量数据存储管理 燃气管网信息系统具有对海量图形数据的存储和管理功能(>

城镇燃气管网

城镇燃气管网 城镇燃气输配系统一般由门站、高中低压管网系统、储配站、调压站、监控系统和调度中心等组成。城镇燃气输配系统设计,应符合城镇燃气总体规划,在可行性研究的基础上,做到远、近期结合,以近期为主,经技术经济比较后确定合理的方案。 一、城镇燃气管网的分类 燃气管网可按用途、敷设方式、输气压力、管网形状、压力级制等加以分类。 1. 按用途分类 ⑴长距离输气管线连接产量巨大的天然气田或人工燃气与用气地区的输气管线,其干管及支管的末端连接城镇或大型工业企业,作为该供气区的气源点。 (2) 城镇燃气管道 ①分配管道在供气地区将燃气分配给工业企业用户、商业用户和居民用户的管道,包括街区和庭院的燃气分配管道。 ②用户引入管将燃气从分配管道引到用户室内引入口处总阀门前的管道。 ③室内燃气管道通过用户管道引入口的总阀门将燃气引向室内,并分配到每个燃气用具的管道。 (3) 工业企业燃气管道 ①工厂引入管和厂区燃气管道将燃气从城镇燃气管道引入工厂,分送到各用气车间。 ②车间燃气管道从车间的管道引入口将燃气送到车间内各个用气设备(如窑炉)。车间燃气管道包括干管和支管。 ③炉前燃气管道从支管将燃气分送给炉上各个燃烧设备。 2. 按敷设方式分类 (1) 埋地管道城市中燃气管道一般采用埋地敷设,当燃气管段需要穿越铁路、公路时,有时需加设套管或管沟,因此有直接埋设及间接埋设两种。 (2) 架空管道工厂厂区内或管道跨越障碍物以及建筑物内的燃气管道时,常采用架空敷设。 3. 按设计压力分类 燃气管道与其他管道相比,有特别严格的要求,因为管道漏气可能导致火灾、爆炸、中毒等事故。燃气管道中的压力越高,管道接头脱开、管道本身出现裂缝的可能性就越大。管道内燃气压力不同时,对管材、安装质量、检验标准及运行管理等要求也不相同。 我国城镇燃气管道按燃气设计压力P(MPa)分为七级。

燃气地理信息系统

燃气地理信息系统 随着城市发展、燃气用户的不断增加,燃气管网的科学化现代化管理已经引起高度重视,山东正元公司结合工程实际和燃气管网的业务流程及用户的需求,利用先进的计算机和GIS技术,在建立管网基础信息库的基础上,组织开发出《燃气地理信息系统(Gas-GIS)》。燃气地理信息系统(Gas-GIS)意在为用户提供一套管理燃气管网信息资料、实现资料信息的检索查询和分析、可以有效进行紧急事故处理与辅助设计的决策系统。 系统功能结构: 系统特点: ○数据输入方式灵活多样。 ○地图、数据信息一目了然,地图数据录入快捷简便,查询统计方式灵活多样,图文并茂,信息表达适合各种需要。 ○强大的事故分析处理能力可使抢修人员在最短时间内得到合理抢修方案。 ○专业的管网分析处理功能可使管理人员随时了解管网供气状况、各节点压力负荷等。 ○翔实的图文信息为管网的规划设计提供了有力工具。 ○符合行业规范,遵循行业习惯,进行数据分类及数据库设计。 ○系统结构标准、开放,为进入城市地理信息系统提供开放的接口。 ○实现埋地管线的腐蚀与防护的动态信息管理。

地形、管网图文管理 实现地形、管线空间及属性海量数据的一体化管理。包括文件管理、空间数据管理、专业属性数据管理、查询统计、创建专题地图、显示打印等。 管网事故紧急处理 包括事故地点确定、事故分析及处理方案的形成、事故的影响分析(需要关闭的阀门和停气用户)及打印抢修单、用户停气通知等。快速形成处理方案,为事故解决处理赢得宝贵时间。

管网运行管理 应用管网平差原理模拟管网运行状态及进行供气状况分析,并提供与实时监控系统(如SCADA等)的接口,显示管网动态运行数据。可以判定供气的方向和进行管网运行的负荷分析。 专业的管网分 在图上分析管网流向、供气路径、连通性以及最短路径、纵横断面显示和三维立体显示。并能进行小区的隔离分析、多级关阀分析等。还可结合管网分析,提出更新改造规划。 腐蚀与防腐动态信息管理 可进行埋地管线的腐蚀与防护的动态综合评价,预测管线防腐层的变化趋势,实现埋地管线的腐蚀与防护信息的动态管理、管道故障抢修方案的制定与技术经济分析、管线运行年限的预测等。

燃气管网地理信息系统

1概述 1.1建设背景 燃气管网地理信息系统是城市生存、发展的基础,燃气事业的发展与城市的社会经济发展息息相关,其服务质量的好坏不仅关系到燃气企业自身的利益,也直接影响到社会的稳定和政府形象。 随着国家信息化建设的推进,尤其是“十一五”期间,国家印发了《2006-2020年国家信息化发展战略》,“高起点的规划、高标准的建设、高效率的管理、高质量的服务”已经成为城市燃气规划、建设管理与服务的“四高要求”。采用现代化的技术和管理手段来进行燃气管网规划和管理,使燃气管网的管理工作步入定量化、科学化、自动化、现代化的轨道,已成为燃气企业当前十分紧迫的任务,同时也是“数字城市”、“智慧城市”建设的重要组成部分,及城市可持续发展的迫切要求。 随着市城市建设的发展,市地下燃气管网日益庞杂,采用传统的管理手段已不能满足燃气管网管理的需要。燃气管网的规划、管理、维护、应急均与城市地形的空间形态和空间分布密切相关。近十年来,采用基于GIS(地理信息系统)的燃气管网信息系统来管理城市燃气管网已经达成行业共识,许多燃气企业纷纷将燃气管网信息系统建设作为整个燃气信息化工作的重点,显著提升了燃气企业管理效率和用户服务水平,为燃气企业带来了巨大的经济效益和社会效益。 因此,利用GIS技术,构建高效、合理、实用的市燃气管网信息系统,增强对燃气管网的运营和监管的能力,实现城市燃气管网智慧运作,提高燃气管网管理与服务的水平,已成为燃气企业发展的必然选择。 1.2建设必要性 随着城市建设步伐的加快,现有燃气管网管理模式已远远不能满足城市社会经济发展的需要。燃气企业目前面临的具体问题有: 1)基于图件和表册来表示城市燃气管网以及它们的设施已无法反映管网之 间复杂的网络关系,很难展现这个城市燃气管网的总体特征,很难查寻

燃气智慧管网地理信息系统

燃气智慧管网地理信息系统本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

燃气智慧管网地理信息系统 解决方案

目录 目录....................................................................... 错误!未定义书签。 一、概述 ............................................................... 错误!未定义书签。 二、系统关键技术及特点..................................... 错误!未定义书签。 三、系统总体设计 ................................................ 错误!未定义书签。 四、系统功能........................................................ 错误!未定义书签。 五、运行环境及系统配置..................................... 错误!未定义书签。

燃气管网地理信息系统基于动态和静态燃气管网电子地图,采用GIS和空间数据库技术,实现对管线、阀门、调压站、门站等燃气设施的统一管理。其目标是实现燃气设施管理的自动化和科学化,及时提供燃气企业管理所需的各类信息资源和分析决策依据,达到用户受益、企业受益的目的。 一、概述 燃气管网地理信息系统是数字城市基础设施资源管理平台系统产品之一,系统采用先进的体系架构技术、空间数据库建库技术、网络技术,具有可扩展性强、运行效率高、容易使用和维护的特点,能够满足国内大中型燃气企业信息的需求。 燃气管网地理信息系统是建立在以动态和静态的燃气管网电子地图基础上,对管线及各种设施进行定位、查询统计、分析等;对各类统计结果打印输出;管网事故发生后,能在短时间内提供关阀方案、用户停气通知单,发生新情况后能迅速调整方案;实现燃气管网图文一体化的现代化管理,提供管网数据动态更新机制,准确高效,为燃气规划、设计、调度、抢修和突击资料管理提供强有力的科学决策依据,实现分析决策的全计算机操作过程,从而提高燃气公司的生产效率和社会服务水平。 燃气管网地理信息系统提供了丰富的外部系统接口,可方便实现与公司其他子系统的无缝集成,实现数据的共享交换和共享,最终融入到城市燃气信息化建设中,发挥其应有作用。

城市燃气管网数据采集处理规程

昆仑燃气有限公司 城市燃气管网地理数据采集处理规程

目录 1. 适用范围 (3) 2. 一般要求 (3) 3. 准备工作 (4) 4. 数据采集内容 (5) 5. 数据采集方法 (7) 5.1已有系统数据 (7) 5.2竣工数据文件 (8) 5.3竣工图纸数字化 (10) 5.4外业测绘 (11) 6. 质量控制 (13) 7. 提交成果内容 (17) 附表1: (18) 附表2: (75)

1.适用范围 本规程适用于《中石油昆仑燃气有限公司城市燃气管网风险管理数据库建设项目》燃气管网地理数据采集处理工作,内容涵盖规定的《中石油昆仑燃气有限公司城市燃气管网数据标准》首期采集要素类。 2.一般要求 (1)执行标准 燃气管网地理信息按1:500比例尺采集,测量仪器的选择、各等级控制点和地物点测量边长、测回数(或时间)的要求,测绘精度要求、成果检查和质量评定程序和标准,按《工程测量规范(GB50026-2007)》、《城市地下管线探测技术规程(CJJ61-2003)》和《中石油昆仑燃气有限公司城市燃气管网数据标准》执行。 (2)精度要求 测点相对于临近控制点的位置中误差限差为: 埋深(隐蔽点)水平位置限差(cm)高程(埋深)限差(cm) 1米以内±10 ±15 1—2米±15 ±(5+0.1h) 2米以上±20 ±(5+0.1h) 注:1.h为地下管线中心埋深,以厘米计; 2.h小于100厘米时,按100计。 测点精度须同时满足管线的线位与邻近地上建(构)筑物、道路中心线或相邻管线的间距实地中误差不超过30cm要求;明显测点相对于临近控制点平面位置中误差不超过±10cm(本要求也适用于纸质图扫面数字化划算到实地的位置),高程中误差不超过±5cm。 图根控制测量平面位置中误差限差为±5cm,高程中误差限差为±2.5cm。 (3)作业资质要求 数据采集作业队伍必须具有地下管线探测和地理数据处理相应资质。

GIS系统在燃气管网中的应用

GIS系统在燃气管网中的应用 1 GIS系统简介 GIS(Geographical Information System的英文缩写,即地理信息系统)是随着地理科学、计算机技术、遥感技术和信息科学的发展而发展起来的一门新兴的边缘科学,它是一个利用现代计算机图形和数据库技术来输入、存储、编辑、查询、分析显示和输出地理图形及其属性数据的计算机系统,是集地理学、几何学、计算机科学及各类应用对象为一体的综合性高新技术。 GIS的概念提出始于上世纪60年代的美国和加拿大。我国的GIS研究与应用虽然起步稍晚,但经过20多年的努力,现在已成功应用于电力、自来水、燃气等公用管线设施的例子也越来越多。 2 GIS系统组成 GIS系统由如下五大部分组成。 (1)硬件 主要是指操作GIS系统所需的一切计算机资源,包括计算机、网络设备、存储设备、数据输入、输出和显示的外围设备等等。 (2)软件 主要是指GIS系统运行所必须的各种程序,包括计算机系统软件和GIS系统软件两部分。GIS系统软件提供存储、分析和显示地理信息的功能和工具,其软件工具包括: 输入和处理地理信息的工具;数据库管理系统工具;支持地理查询、分析和可视化显示的工具;容易使用这些工具的图形用户界面(GUI)。 (3)数据 数据是一个GIS系统最基础的组成部分,主要包括空间数据和属性数据。空间数据是GIS的操作对象,是现实世界经过模型抽象的实质性内容。空间数据的表达可以采用栅格和矢量两种形式。空间数据表现了地理空间实体的位

置、大小、形状、方向以及几何拓扑关系。空间数据通常为几何图形或图像数据,属性数据通常为文档或表格数据。 (4)方法 这里的方法主要是指空间信息的综合分析方法,即我们常说的应用模型。它是在对专业领域的具体对象与过程进行大量研究的基础上总结出的规律的表示。GIS应用就是利用这些模型对大量空间数据进行分析综合来解决实际问题的。 (5)人员 人是GIS系统中重要的构成要素,GIS不同于一幅地图,它是一个动态的地理模型,仅有系统软硬件和数据还不能构成一个完整的GIS系统,需要人进行系统组织、管理、维护和数据更新、系统扩充完善以及应用程序开发,并采用空间分析模型提取多种信息。因此,GIS应用的关键是掌握实施GIS来解决现实问题的人员素质。这些人员既包括从事设计、开发和维护GIS系统的技术专家,也包括那些使用该系统并解决专业领域任务的行业专家。 3 GIS系统应用实例 3.1 GIS系统实施背景 南京港华现有50多万居民用户,2000多工商团体用户,中低压管道逾800km,调压站500多座,年供应天然气3亿m3。2004年5月,天然气正式进入南京城市燃气管网,天然气置换工作开始全面展开。天然气的置换工作必需对现有地下管网设施有清晰的了解,需要输出各种比例,各种规格的图纸,实时统计各种材质、管径、年代的管网资料。为了配合天然气置换工作,同时为了进一步加强对地下燃气管网的安全管理,公司于2004年初开始建设燃气管网GIS系统,由沈阳金建数字城市软件有限公司负责系统开发,香港中华煤气有限公司担任监理工作,鹰图(中国)有限公司提供技术支持。 2005年3月系统正式投入使用,为天然气置换以及地下管网设施管理提供了极大的方便。 3.2设计目标

城市燃气管网GIS系统

城市燃气管网GIS系统 城市燃气GIS系统解决方案 (成都方位导向科技开发有限公司) 公司自主研发,利用GIS技术,FLEX富客户表现技术,空间数据库,采用B/S 开发,java 跨平台部署,实现城市燃气高压管线、低压管线、阀们、外业工程车辆的调度安排、作业管理、应急指挥等纳入到信息化的管理当中。一方面,通过本系统的事务处理的能力对阀门,管线报警预警并同时进行工程车辆出警调度管理,另一方面,通过本系统的智能化处理技术,将管线采集作业情况实现智能化采集入库。提高管线采集作业管理。 系统总体架构 系统总体架构是以面向对象(OOP)的设计为基础,以面向服务(SOA)的设计为应用扩展,系统主要采用Browser - Server(B/S)表现形式。 系统服务端是基于J2EE技术标准规范下进行开发的,有着良好的安全性、扩展性以及跨平台的适应能力,GIS服务平台采用本公司自己的一套解决方案MAPHAOSERVER进行应用开发,MAPHAOSER企业级GIS平台跨平台部署,支持发布WMS\WFS地图服务,支持shp\tab\dwg\dgn\等目前国内外GIS各种矢量数据以及光栅图的发布;支持缓冲区分析、叠加分析、路径分析、网络分析等各种空间分析算法;支持浏览器端直接绘制点、线、面矢量数据入库。数据库选用PostgreSQL。

系统维护管理端应用环境 服务端:可在windows或者linux的服务器上部署系统,维护简单。客户端:终端用户只需要浏览器即可访问,支持各种主流浏览器。系统主界 面 系统功能简介 1.阀门管理 ①.能查询到所有的阀门列表,并以表格形式展示。

②.能根据阀门的各种参数模糊查询阀门。 ③.查询到的阀门,点击定位后,能在地图上定位该阀门。 ④.在表格中能删除选定阀门。 ⑤.在表格中能修改选定阀门。 ⑥.可以直接在地图上绘制点并输入阀门其他参数添加阀门。

综合管网地理信息系统解决方案

综合管网地理信息系统解决方案 产品简述 综合管网地理信息系统解决方案是集GIS技术、三维引擎技术、计算机技术为一体的智能化管网管理系统。它采用ZGIS平台,通过对地表建筑物、地下管网进行三维可视化建模,实现了对地下燃气、给水、排水、电力、通信、热力等多种管网数据的集成管理。系统提供各类查询、统计、分析等功能,同时借助三维引擎技术,实现对综合管线的全方位三维模拟展示,让用户足不出户也能亲临现场。

(功能导图) 功能介绍 1.管网查询统计 本系统利用GIS空间数据库技术,将地图、管网、各类资源统一管理,提供了完善的查询统计功能。查询功能包括:综合信息查询、属性信息查询、空间范围查询、缓冲区查询、SQL语句查询等;统计功能则提供了设施统计、范围统计、缓冲区统计、沿线统计及各类设备的压力、材质、状态的报表统计等,为管网信息查询统计提供了强大的技术支持。 (属性查询)

(压力统计) 2.管网编辑录入 该系统提供了强大的web端管网编辑功能,实现管网在web端上的动态导入和实时编辑。这些强大的功能中包含:管点、管线及它们之间逻辑拓扑关系的批量导入、按区域录入;web上管网、管点、附属物的添加、线上加点、管点连接、设备移动、删除、旋转、管线合并、撤销回退、属性审核、转换辅助点等。强大的编辑录入功能给用户带来了极大的便利性,让软件更加人性化和多元化。 (工单批量录入)

3.业务检查分析 本系统还提供了管点和管线质量检查,其中包括:孤立点检查、悬挂线检查、三通连接性检查、四通连接性检查、管网连接性检查、管网压力检查、管网管径检查、设备状态检查、调压器配置和流量计配置;在业务分析功能中提供了:横、纵断面分析、预警分析、覆土分析、连通分析等。 (横断面分析) 4.管网展示成图 本系统提供了丰富的专题图展示和管网成图导出功能。本系统可以采用标准图纸、屏幕截屏、栓点图纸等成图方式,不同比例尺皆可打印预览输出。

燃气公司信息化建设规划

生产运营部2017财年信息化建设工作设想 随着我司供气范围的扩大,管网分布和设备的日趋复杂性,造成燃气管网的建设和管理的难度越来越大,这就要求使用先进的技术手段对燃气系统进行科学管理。随着社会信息化程度的加深,突破传统管理的粗放型的管理模式,打造燃气系统的信息化建设,在燃气管理上实行信息化建设和改造,是提高燃气管理水平的重要手段,对于提高生产管理效率和生产管理手段变革有着重要意义。 一、我司信息建设存在不足 1、在燃气信息化建设方面,缺乏长远的建设目标,缺乏统一标准与科学规划,在建设中多根据经验,施工追求短平快,其方向性、目的性、系统性不明确,多为流于形式。 2、信息化管理还停留在分散式的管理状态之下,缺少规范的信息管理平台,信息被分散在各个职能部门,子系统各自为政,并没有进行统一有效的管理。作为一种重要资源,信息没有得到共享,信息的价值得不到体现。 3、在燃气管网的数据和设备、资料管理方面,仍以传统档案方式为,造成信息的查询与检索都很不方便,资料利用率低,信息的综合联系与利用得不到及时体现,不能为决策者、信息咨询者提供精确的决策依据。 4、目前管网图更新速度慢,没有建立信息化数据库,不能及时跟踪管网线路的变化,资料的时效性低。

二、2017财年信息化建设规划 1、安全运营信息化管理 1.1 集团GPS巡线系统。 该系统主要对每个巡线人员所配备的手机终端进行GPS实时定位,数据同步上传,在系统中通过轨迹回放的形式展现出来,通过对巡线轨迹及巡线任务完成率的查看,实现对巡线人员的科学管理,提高巡线效率,为员工考核制定标准依据。该系统结合我司管网巡检制度,衍生出一系列如设备巡检、隐患上报、工地监护等功能,对我司巡线人员日常巡检起到辅助作用,使巡线工作变的更加科学,更加高效,从而改变目前落后的管理模式。 现已与集团科技公司达成协议,初步对科技公司GPS巡线系统进行免费试用,试用部门为陈仓公司运行班,试用期限为1-3个月。在试用过程中生产部要对整个系统进行跟踪调查,结合项目公司试用情况向科技公司给出反馈意见。待系统功能完善后向公司符合条件的外勤人员配备巡线器材,进行推广使用。目前正与电信公司洽谈终端设备及网络合同签订事宜,单部终端价格60元/月,包含3G流量和900分钟通话时长。 1.2、集团客服入户安检APP系统。 客服入户稽查、安检APP主要是稽查人员在入户安检、稽查过程中使用手机APP软件,对用户的基本信息、用气情况及存在的安全隐患进行登记,同时上传至客服系统服务器,与客服售气系统用户档案进行关联。

城市燃气管网GIS系统的开发分析

城市燃气管网GIS系统的开发分析 发表时间:2018-12-25T10:45:31.257Z 来源:《基层建设》2018年第31期作者:刘文导 [导读] 摘要:根据AutoCAD所具有的控件作用,来设计研发一种燃气管网分析系统。 博罗深能燃气有限公司 516100 摘要:根据AutoCAD所具有的控件作用,来设计研发一种燃气管网分析系统。此系统在运行中,需要体现出自主对GIS信息进行录入和能够对AutoCAD中的文件进行正确操作等功能,从而达到对燃气管网进行良好分析设计的目的。 关键词:燃气管网;分析系统;地理信息系统;水力计算;输配模拟;优化设计 引言 近年来。国内相关部门相继研发出了很多燃气APP,然而这些APP在使用中,都体现出了相似的缺陷,也就是说,在功能导向上较为全面,而在具体使用中,却没能发挥应有作用.这主要是归因于,其中大部分APP都是由信息公司进行研发,在具体使用方面没能进行深化的探索,所以导致在具体使用中,没能体现应有作用,现阶段,笔者也将主要工作着重点落于对GIS信息系统的研究,那么在本文中就对燃气管网对GIS系统的需求和运用做出阐述。 1概述和需求 1.1概述 在各地区都在实行城市基础建设的背景下,燃气管网工程也在不断增多,然而在工程建设中也会存在诸多问题,如在管网系统构建中,借助对管道规格和智能设备实行水力预测的方式,没能从现实的角度来对工程造价做出预测;在管网系统优化环节、对管网运用的稳定性也没能进行深入分析。而在城区管网系统工程逐渐增多的同时,相关财力的投入量也会不断增多,在确保业主用气条件完善的基础上,对管网系统进行改造,节省管网改造成本、运行成本和提升管网运用稳定性,也属于各地区相关单位所面临的首要问题。相关单位技术人员,借助支点负荷法来对管网水力作出预测,充分弥补了以往节点模式的不足,从而对未来管网水力预测方面工作的有序进行创造了条件;设置了城区管网改造模型,也将遗传分析法融入到了模型改造环节中,实现了理想的改造目标。除此之外。管网预测还被很多业内人士称为网络模拟、管网平差等,叫法尽管多样,其实,其都是借助现实管网的模型来对实体管网的运行情况做出预测和问题防控,这样的工作过程,重点就是为了对实体管网在各种环境中的运行稳定性做出明确。已有很多相关专业人员对这方面做出了大量的研究,值得参考。基本现阶段,国内各燃气部门广泛采用GIS系统来对收集相关信息,并根据设计软件所体现出控件功能,研发出了管网预测系统,以此对管网系统未来运行情况做出预测。 1.2需求分析 城区燃气管网系统在运行中,尽管其构架在运行中不会出现任何体内改变,但是相关工作人员在工作中,也还是不能完全掌握系统各部分的运行状态。针对这样的情况,就需要在进行设立GIS系统过程中,先在智能设备中设置管网设计信息库、系统硬件信息库;其次是将各类型信息库进行整合,并结合具体情况,来调取相应的信息。其实管网各连接处的流量和压力数值,都主要是借助智能设备的对其的持续监测、水力预测而实现、再将预测信息传递到各监测设备,以此对各个监测区域的流量、压力数值做出调控、以确保管网系统在各个时间段都能够稳定运行,完全实现对管网运行状态的动态跟踪管理。根据工程的总体要求和现有的技术水平及网络环境、通讯设施、笔者认为城市燃气 GIS 信息系统在技术方案的实施上是完全可行的。 2 系统工作流程 管网分析系统在运行中,通常都需要借助一致的用户区,体现对管网信息进行顺畅传递、变更、预测、归档管理等功能。管网系统运行的具体流程为:模型建立和模型两个步骤:第一是模型的创建,不仅能够从地理信息系统调取出最新的拓扑信息和管网设计数据,也能够通过徒手绘图,并给出精准数据。模型分析:属于模型改造、预测、总结结果的过程,结合模型对管网运行情况做出预测,并对预测给出的数据作出反复核对,倘若这些数据没能与相关标准相切合,就必须要对模型做出再一次的改造,以确保预测数据与相关标准的切合性。 3 系统基本功能 第一是系统平台。通过 AutoCAD 控件组态成一体化图形用户界面,所有相关管网分析和操作管理等均在此界面下进行,并采用多文档界面设计,可同时打开多个文件进行操作。 第二是数据共享。自动导入 GIS 的相关管网数据,为分析计算提供数据源。用户可通过图形界面进行配置和修改需要导入的设备及管道类型等,并进行显示:其一是动态标注管道的流向、流量、管径、管材,节点的压力、名称、类型等。其二是按照元素类别进行图形显示,不同级别的管道按不同颜色显示,不同类型的节点和设备按不同的符号显示。其三是按照压力和流量进行图形显示,管道根据其流量所在的范围,显示不同的颜色;节点根据压力显示不同的颜色。其四是管道根据其管径显示不同的颜色。其五是管道根据其管材类型显示不同的颜色。第三是数据录入。用户可将AutoCAD 格式文件在该系统中打开作为底图,在系统界面中进行管网相关数据的录入,例如管网及其附属节点、管道、调压柜、气源等信息,进行模型创建。用户可以任意修改管道和节点的空间位置,修改方法包括复制、延长、打断、删除、剪切、旋转、移动、放大等,通过添加这些功能,可以方便地进行管网拓扑关系的编辑。第四是检验工具。要想确保模型预测的精准性,就需要在系统模型中,增设拓扑关系的检测功能,此功能的设置能够对模型实行实时性的优化,重点会涉及到以下几点:其一是管道整合:将材质一致或与相关标准相切合的管线整合成同一管网;其二是拓扑性检测,明确各管线间拓扑关系的标准度;其三是重叠性检测,检测管网系统有否存在管线重叠的现象;其四是管网长度计算;将管线总体长度做出明确;其五是从整体的角度,来对管网系统中各类型设备和连接点的总体数值做出明确;其六是属性检测:明确所传递信息的完整性,以保证预测信息的完善。第五是本系统的核心就是实现燃气管网输配模拟和优化设计两大功能。其一是输配模拟:结合管线规格、气源和用户的需求量等数据,对管网未来的运行情况做出预测,预测出管网各连接处的压力数值和各区段的流量,以此对管网系统中的危险点做出精准确定,为后续管网系统改造的有序进行创造条件,强化管网运行可靠性;其二改造计划:是结合具体标准来对管网进行的再分布,借助遗传法得出最精准的结果,以建立最相应、最可行的管网构建计划。 4 系统应用 第一是输配模拟。借助对城区管网指定区域压强、流量的分析,来对其中设计参数进行若干次的比对,来强化分析精准性,以保证管

燃气地理信息系统的建设与应用

燃气地理信息系统的建设与应用 2010-3-23白连明储强宋桂平 分享到: QQ空间新浪微博开心网人人网 摘要:阐述了地理信息系统的基本功能及在燃气公司的应用前景,探讨了系统建设中应注意的问题,给出了系统建设及应用的两点建议。 关键词:地理信息系统;燃气管网;空间数据;属性数据 Construction and Application of Gas Geographic Information System BAI Lian-ming,CHU Qiang,SONG Gui-ping Abstract:The basic functions of GIS and its application prospect in gas companies are described. The problems to which attention should be paid in the system construction are discussed. Two suggestions on the system construction and application are offered. Key words:geographic information system(GIS);gas network;spatial data;attribute data 1 概述 宜兴市燃气管网始建于1995年,近年来城市建设飞速发展,燃气用户大幅度增加,燃气管网不断延伸,目前已有地下燃气管网近1000km。管网资料越积越多,同一处管道由于改造变更可能出现多份资料,以传统方式保存燃气管网数据和资料,信息分散且容易遗失,给管理带来诸多困难。改变传统落后的管理手段,实现城市燃气规划、发展、服务、管理的科学化、规范化、自动化,建设城市燃气地理信息系统(GIS)是必由之路。 地理信息系统(Geographic Information System,简称GIS)是一种采集、处理、传输、储存、管理、查询、检索、分析、表达和应用地理信息的计算机系统,是分析、处理和挖掘海量地理数据的通用技术[1]。系统由计算机硬件平台、GIS,专业软件、地理数据等组成。借助GIS,充分利用现有管道及地形数据,实现管道空间数据、属性数据、拓扑关系的一体化管理,可为燃气管网的维护维修、事故抢险、业务分析提供准确可靠的数据,形成一套行之有效的燃气管网信息管理系统。 宜兴港华燃气有限公司GIS建设于2004年,系统平台为Intergraph公司专门面对燃气行业的G/Gas产品。本文结合宜兴港华GIS的特点,主要针对燃气公司GI S探讨其基本功能、应用及建设情况。 2 系统功能 2.1 基本功能 燃气设施数据输入是GIS最基础的操作,也是系统平台搭建完成之后需要进行的首要工作,没有数据输入,系统功能就无从谈起。GIS系统数据输入方式与目前燃气公司常用的CAD绘图软件十分相似。系统除支持燃气设施的矢量、空间输入外,

燃气管网测绘与识图课件

燃气管网测绘与识图课件 (一)图形的种类 在燃气管网工程开工前有施工设计图,竣工后有该工程的竣工图。这些图均已平面图为主(道路带状图,小区图必要时有对平面图的补充的大样图),局部位置施工时管道配件太多,无法在同一部位明确表示或复杂的碰接处要有详图。 立面图:主要用于穿越河流上的管桥; 断面图:是以道路里程桩号为横坐标(1:500),高程为纵坐标(1:50)按规定的比列绘制,各栏有路面标高,管顶标高,埋深,坡度/距离,管径及材质,里程桩号,断面图是平面图的补充,它全面反映了管道及其附属配件的高程及深度等。 系统图:是以三维空间X,Y,Z三条线组成主要用于工业公建用户及室外立管,室内管线的表房、厨房、锅炉等接管在平面图上难以表述明确的,不同平面层不同标高或同一平面层不同位置等,系统图最大的优点是任何复杂的管线,系统图就能全面给予展示出来。 (二)燃气管线的主要符号 要看懂图,能读图,首先要认识符号及标注,并了解其符号和标注含义。符号和标注是不会说话的,但施工前它能告诉你该项工程用什么样的材料和配件,施工结束后的竣工验收,它能告诉你该项工程用了什么材料和配件,因此符号及标注是平面图的主要组成部分。 首先我们要认识的第一个符号为指北针,即北方向,一般在平面 图的右上角,用圆圈或黑实心三角形组成,圆的直径为24mm,指北针头 部应注“北”或“N”,三角形尾部为3mm或圆直径的1/8,确定北方向

有两种,一为坐标北,另一种为磁北,我们常用的是坐标北,户外运动就要用磁北确定方位,确定北方向后再来确定自己所处的位置(一般来讲地形图均以上北,下南,左西,右东),才不会走错方向。 接下来我们认识一下阀门,阀门是管道上的重要设备,因此阀门必须坚固严密,在安装前必须进行单体试压等检查。阀门具有动作灵活,开关迅速,检修比较方便,并能抵抗所 输送介质的腐蚀性。阀门的种类很多,燃气管道工程常用的阀门有截止阀、球阀 、闸阀、蝶阀、旋塞阀、紧急切断阀,工业公建用户(如锅炉房,厨房)有总控制阀,手动闸阀、自动压力调节阀、手动切断阀、流量调节阀、安全切断电磁阀、放散阀等。 要认识阀门首先要了解阀门型号,阀门型号有七个单元组成,分别是阀门类型、传动方式、连接形式、结构形式、阀门密封面或衬里材料、公称压力、阀体材料,如Q347F-16C,其中: Q:在阀门类型中表示的是球阀; 3:传动方式中表示的是涡轮; 4:连接方式中表示的是法兰连接; 7:结构形式中表示的是内部结构形式(可以不去管它); F:阀门密封面或衬里材料表示的氟塑料; 16:阀门公称压力; C:阀门材料为ZG25Ⅱ(铸钢)

相关文档