文档库 最新最全的文档下载
当前位置:文档库 › 接地电阻测试方法(图解)

接地电阻测试方法(图解)

接地电阻测试方法(图解)
接地电阻测试方法(图解)

接地电阻国家标准

建筑物接地电阻的要求

依据GB50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第条:每根引下线的冲击接地电阻不宜大于30Ω。第条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。

电源系统接地电阻的要求

依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。

依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第条:低压配电线路的接地应采用TN-S或TN-C-S系统,引入建筑物的电源线路,中性点应重复接地,接地电阻不应大于10Ω。

石化接地电阻的要求

依据GB50074-2002《石油库设计规范》第14章:电气装置;第条:钢油罐接地点沿油罐周长的间距,不宜大于30m,接地电阻不宜大于10Ω。第条:覆土油罐的罐体及罐宝的金属构件以及呼吸阀、量油孔等金属附件,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进出洞内的金属管道接地电阻不宜大于20Ω。电力和信息线路应采用铠装电缆埋地引入洞内。接地电阻不宜大于20Ω。电缆与架空线路的连接处,应装设过电压保护器。过电压保护器、电缆外皮和瓷瓶铁脚,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进入油品装卸区的输油(油气)管道在进入点应接地,接地电阻不应大于20Ω。第条:避雷针(网、带)的接地电阻,不宜大于10Ω。第条:每组绝缘轨缝的电气化铁路侧,应设一组向电气化铁路所在方向延伸的接地装置,接地电阻不应大于10Ω。第条:铁路油品装卸设施的钢轨、输油管道、鹤管、钢栈桥等应做等电位跨接并接地,两组跨接间距不应大于20m,每组接地电阻不应大于10Ω。条:防静电装置的接地电阻应小于100Ω。第条:石油库内防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置,其接地电阻不应大于4Ω。

依据GB50156-2002《汽车加油加气站设计与施工规范》第10章:电气装置;第条:加油加气站的防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置,其接地电阻不应大于4Ω。第条:液化受有气罐采用牺牲阳极法进行阴极防腐时,牺牲阳极的接地电阻不应大于10Ω。第条:地上或管沟敷设的油品、液化石油气和天然气管道的始、末端和分支处

应设防静电和防感应雷的联合接地装置,其接地电阻不应大于30Ω。条:防静电装置的接地电阻应小于100Ω。

依据GB50028-93《城镇燃气设计规范》第条:防雷接地装置的冲击接地电阻应小于10Ω。第条:静电接地体的接地电阻应小于100Ω。第条:当建筑物处于防雷区外时,放散管的引线应接地,接地电阻应小于10Ω

计算机系统接地电阻的要求

依据GB/T2887-2000《电子计算机场地通用规范》第4章要求:第四节接地的要求:第条接地电阻及相互关系要求,计算机系统直流工作地,接地电阻应按计算机系统具体要求确定;交流工作接地,接地电阻不应大于4Ω;安全保护接地,接地电阻不应大于4Ω;防雷接地接地电阻不应大于10Ω。诸地之间的关系及接法应依不同计算机系统的要求而定。

依据GB50174-93《电子计算机机房设计规范》第六章电气技术:第四节接地要求:第条、第条要求,交流工作接地,接地电阻不应大于4Ω;安全保护接地,接地电阻不应大于4Ω;直流工作接地,接地电阻应按计算机系统具体要求确定;防雷接地,应按现行国家标准《建筑物防雷设计规范》执行。第条要求交流工作接地、安全保护接地、直流工作接地、防雷接地宜采用一组接地装置,其接地电阻按其中最小值确定。

有线电视系统接地电阻的要求

依据GB50198-94《民用闭路监视电视系统工程技术规范》第2章:第节供电、接地与安全防护:第条要求系统采用专用接地装置时,其接地电阻不得大于4Ω,采用综合接地时,接地电阻不得大于1Ω;

移动通讯系统接地电阻的要求

依据YD5068-98《移动通信基站防雷与接地设计规范》第5章:接地电阻的要求,条:移动通信基站地网的接地电阻值应小于5Ω,对于年雷暴日小于20天的地区,其接地电阻可小于10Ω;条:架空电力线与电力电缆接口处的保护接地以及电力变压器(100KVA以下)保护接地的接地电阻值应小于10Ω。条:架空电力线上方的避雷线及增装在高压线上的避雷器的接地电阻值,其首端(即进站端)应小于10Ω,中间或末端应小于30Ω。

依据YD2011-93《微波站防雷与接地设计规范》第4章:接地电阻的要求,条:微波中继续站地网的工频接地电阻值应不大于10Ω;微波枢纽站地网的工频接地电阻值应不大于5Ω。。其接地电阻可小于10Ω;条:无源中继续站地网的工频接地电阻值为20~30Ω。条:架空电力线与电力电缆接口处的保护接地以及电力变压器(100KVA以下)保护接地的接地电阻值应小于10Ω。条:架空电力线上方的避雷线及增装在高压线上的避雷器的接地电阻值,其首端(即进站端)应小于10Ω,中间或末端应小于30Ω。

接地电阻测试方法(图解)

一、接地电阻测试要求:

a. 交流工作接地,接地电阻不应大于4Ω;

b. 安全工作接地,接地电阻不应大于4Ω;

c. 直流工作接地,接地电阻应按计算机系统具体要求确定;

d. 防雷保护地的接地电阻不应大于10Ω;

e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。

二、接地电阻测试仪

ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。

三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。

四、使用前检查测试仪是否完整,测试仪包括如下器件。

1、ZC-8型接地电阻测试仪一台

2、辅助接地棒二根

3、导线5m、20m、40m各一根

五、使用与操作

1、测量接地电阻值时接线方式的规定

仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m

测量大于等于1Ω接地电阻时接线图见图1

将仪表上2个E端钮连结在一起。

测量小于1Ω接地电阻时接线图见图2

测量小于1Ω接地电阻时接线图

将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。

2、操作步骤

、仪表端所有接线应正确无误。

、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。

、仪表放置水平后,调整检流计的机械零位,归零。

、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。

、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。

、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。

六、注意事项

1、禁止在有雷电或被测物带电时进行测量。

2、仪表携带、使用时须小心轻放,避免剧烈震动。

1接地网优化设计的合理性

改善导体的泄漏电流密度分布

面积为190 m×170 m的新塘变电站接地网,在导体根数相同的情况下,分别按10 m 等间距布置和平均10 m 不等间距布置。沿平行导体①、②、③、④、⑤的泄漏电流密度分布曲线。从此可见,不等间距布置的接地网,边上导体①的泄漏电流密度较等间距布置的接地网平均低15%左右;对于导体②的泄漏电流密度,这两种布置的接地网几乎相等(仅相差%);对于中部导体③、④、⑤,不等间距布置的接地网的泄漏电流较等间距布置的接地网分别提高了9%,14%和15%。由此可见,不等间距布置能增大中部导体的泄漏电流密度分布,相应降低了边缘导体的泄漏电流密度,使得中部导体能得到更充分的利用。

均匀土壤表面的电位分布

不等间距布置的接地网能较大地改善表面电位分布,其最大与最小网孔电位的相对差值不超过%,使各网孔电位大致相等,而等间距地网,其最大与最小网孔电位的相对差值在%以上。同时不等间距地网的最大接触电势较等间距地网的最大接触电势降低了%,极大地提高了接地网的安全水平。

2)地网面积为190 m×170 m;

3)长方向导体根数n1=18,宽方向导体根数n2=20。

节省大量钢材和施工费用

如果按10 m等间距布置的新塘变电站接地网,最大接触电势在边角网孔,其值为kV,但采用不等间距布置时,保持最大接触电势与该值接近,这时可节省钢材%。

2接地网优化设计的方法

在设计时采用尝试的方法来确定均压导体的总根数和总长度,即先对地网长和宽方向的导体根数n1和n2进行试算,对于大地网一般可采用均压导体间距为10 m左右试算,若接触电势满足要求,进行技术经济比较后再考虑增减导体的根数。当确定了n1和n2后,则地网长宽方向的分段数就确定了:长方向上导体分段为k1=n2-1,宽方向上的导体分段为k2=n1-1,然后按下式得出各分段导体的长度。

Lik=,

式中

L——地网边长(长方向L=L1,宽方向L=L2),m;

Lik——第i 段导体长度,m;

Sik——Lik占边长L的百分数。

Sik与i的关系似一负指数曲线

即Sik=b1×e-b2i+b3,

式中,b1,b2,b3均为常数,其确定方法如下:

当7≤k≤14时,当k>14时,

对于任意矩形地网,只要长、宽方向导体的布置根数一经确定,就可根据长、宽方向导体的不同分段k,分别按上述推得的公式布置导体的间距。(风险管理世界网-安全员之家)

3结论

a)采用不等间距布置优化设计接地网,能够使地网各网孔电位趋于一致,从而提高了变电站的安全水平。

b)在同样安全水平下,优化设计的接地网较常规布置的接地网,一般能节省钢材量达38%以上,同时也减少了相应的接地工程投资,在技术上、经济上较为合理。

c)从边缘到中心均压导体间距采用按负指数规律增加的新方法来布置接地网,其指数公式的系数b只与某平行导体根数(或平行导体分段数k)有关。(风险管理世界网-安全员之家)

通信站防雷接地设计

发布者:boss 发布时间:2008-6-28 阅读:1002次

通信站的雷电防护问题过去一直都存在,由于近年来大量采用了高可靠性的先进设备,加上运维水平的提高,通信站的运行可靠性也极大地提高,而现代的电信设备对雷电较敏感,这样雷害问题就日益凸显出来。

九十年代是防雷工作大发展的十年,国际上国际电工委员会颁布了IEC系列防雷标准,国内也颁布了基于IEC标准的国标,各相关行业也将防雷要求列入标准。邮电部作为最早在国内开展弱电系统防雷的行业,也颁布了许多关于通信站防雷的新标准。由于防雷牵涉的范围很广,必须系统考虑才能取得经济有效的成果。

一、雷电对通信站的危害

直击雷的危害

雷云对地放电的主通道通过被保护物,就称被保护物被直击雷击中。雷电直接击中通信站建筑、通信设备、通信电缆和操作人员,可能会造成建筑损毁,设备损坏、人员伤亡和电气短路引起火灾等严重后果,因此直击雷发生的

概率虽然很小,但其危害十分大,所以不能掉以轻心。

感应雷的危害

雷云对地放电的主通道虽然没有经过被保护物,但放电过程中产生的强大的电磁场可以在附近的导体中感应起电磁脉冲,我们称为雷电电磁感应脉冲,即通常所说的感应雷。显然感应雷是由直击雷引起的,感应雷产生于导体中并沿导体传播,损坏与导体相联的某些设备或设备中的某些器件。(这些设备或器件的耐冲击水平较低)通信站的设备中有大量的集成电路通过金属导线相连,并且通信站也通过电力电缆和各种通信传输电缆与外界相连,这就为感应雷的侵入提供了良好的条件,加上现代通信设备采用了大量高集成度的微电子电路,其耐冲击水平较低,容易被感应雷损坏,产生各种各样的设备故障。如接口板损坏、内部通信口的损坏、整流模块的损坏等,有时感应雷引起故障甚至让我们很难与雷电联系在一起,但却是由雷电引起的。感应雷形成的破坏虽然不及直击雷大,但其损害的往往是通信设备的核心器件,给正常通信带来障碍。

有研究表明直击雷可在其周围1000米范围的半导体上感应起危险电压,加上通信站与外界连接的各种长距离电缆可在更大的范围内感应上雷电电磁脉冲,并几乎无衰减的沿电缆传入通信站。因此对通信站来讲感应雷的概率远大于直击雷的概率,可以这样说通信站防雷主要是防感应雷。

二、通信站的防雷

直击雷的防护

虽然有不少专家学者在努力的研究有效的防止直击雷的方法,但直到今天我们还是无法阻止雷击的发生。实际上现在公认的防直击雷的方法仍然是200年前富兰克林先生发明的避雷针。

接闪器

避雷针及其变形产品避雷线、避雷带、避雷网等统称为接闪器。历史上对接闪器防雷原理的认识产生过误解。当时认为:避雷针防雷是因为其尖端放电综合了雷云电荷从而避免了雷击发生,所以当时要求避雷针顶部一定要是尖端,以加强放电能力。后来的研究表明:一定高度的金属导体会使大气电场畸变,这样雷云就容易向该导体放电,并且能量越大的雷就越易被金属导体吸引。这样接闪器的防雷是因为将雷电引向自身而防止了被保护物被雷电击中。现在认为任何良好接地的导体都可能成为有效的接闪器,而与它的形状没有什么关系。

有铁塔的通信站铁塔本身就是良好的接闪器,如果铁塔在建筑物顶应将铁塔四周与屋顶避雷带作好电气连接。铁塔在通信站附近的可在建筑物顶部设避雷带,并校核铁塔和避雷带联合防雷的保护范围。方法见国标《建筑物防雷设计规范》(GB50057--94)。

通信站附近无铁塔的宜优先采用避雷网、作为建筑物的接闪器,如果屋面有天线等通信设施可在局部加装避雷针保护,这样接闪器的高度不会太高,不会增大通信站的雷击概率。避雷网的网格尺寸应不大于10mX10m,避雷针应与避雷网可靠连接。

引下线

引下线的作用是将接闪器接闪的雷电流安全的导引入地,引下线不得少于两根,并应沿建筑物四周对称均匀的布置,引下线的间距不大于18米,重要通信局和100米及以上的电信楼其引下线的间距应不大于12米。引下线接长必须采用焊接,引下线应与各层均压环焊接,引下线采用10毫米的圆钢或相同面积的扁钢。对于框架结构的建筑物,

引下线应利用建筑物内的钢筋作为防雷引下线。

采用多根引下线不但提高了防雷装置的可靠性,更重要的是多根引下线的分流作用可大大降低每根引下线的沿线压降,减少侧击的危险。的目的是为了让雷电流均匀入地,便于地网散流,以均衡地电位。同时,均匀对称布置可使引下线泻流时产生的强电磁场在引下线所包围的电信建筑物内相互抵消,减小雷击感应的危险。

接地体

接地体是指埋在土壤中起散流作用的导体,接地体应采用:

钢管直径大于50毫米,壁厚大于毫米;

角钢不小于50X50X5毫米

扁钢不小于40X4毫米。

应将多根接地体连接成地网,地网的布置应优先采用环型地网,引下线应连接在环型地网的四周,这样有利于雷电流的散流和内部电位的均衡。垂直接地体一般长为米,埋深米,地极间隔5米,水平接地体应埋深1米,其向建筑物外引出的长度一般不大于50米。

框架结构的通信站应采用建筑物基础钢筋做接地体。

感应雷的防护

前面已提到感应雷是因为直击雷放电而感应到附近的金属导体中的,其实感应雷可通过两种不同的感应方式侵入导体,一是静电感应:在雷云中的电荷积聚时,附近的导体也会感应上相反的电荷,当雷击放电时,雷云中的电荷迅速释放,而导体中原来被雷云电场束缚住的静电也会沿导体流动寻找释放通道,就在电路中形成电脉冲。二是电磁感应:在雷云放电时,迅速变化的雷电流在其周围产生强大的瞬变电磁场,在其附近的导体中产生很高的感生电动势。研究表明:静电感应方式引起的浪涌数倍于电磁感应引起的浪涌。

感应雷可以通过电力电缆、通信电缆、光纤和天馈线侵入通信站,由于电力电缆的距离长且对雷电波的传输损耗小,所以由电源侵入的感应雷造成的危害十分突出,按原邮电部的统计约占了通信站雷击事故的80%。因此,对通信站进行感应雷防护时,电源是重点。

感应雷还可以通过空间感应侵入通信站的内部线路,虽然经过建筑物和机壳的屏蔽衰减后其能量大为减小,但站内许多电信设备的抗过压能力也很弱,如果处理不当也可能造成设备故障。

电源防护

信息产业部发布了专门的通信电源防雷标准,对各种通信站的电源防雷提出了具体要求,主要是两条:一是电力电缆应有金属屏蔽层,且必须埋地进出通信站。二是在电源上逐级加装电源避雷器,实现多级防护。即在变压器的高压端加装高压避雷器,低压侧加装低压避雷器,在交流配电屏和直流配电屏分别加装交、直流避雷器。

通信电源防护应注意以下问题:

进局电力电缆的防雷容易引起重视,而其它进出通信站的电力线常常被忽视,如照明路灯线、塔灯电力线、非电信设施租用电信电力线等。现在宜采用太阳能塔灯,可减少一个雷击入侵渠道。其它出局电力线应在防雷系统的保护范围内,否则应采取专门的防雷措施。

加装直流避雷器是最近发布的防雷标准中才提出的,因为直流避雷器的残压大大低于交流避雷器,因此能有效地提高通信站内敏感设备抵御雷电电磁脉冲的能力。

避雷器的防雷能力与安装方式有密切关系,主要是引线电感会产生额外的残压,应尽可能地缩短电力线与避雷器的连线和避雷器与接地汇接板连线的长度。

多级布置避雷器可减小引线电感带来的额外残压,因为前级避雷器已将大部分雷电流泄放入地,在后级的避雷器只泄放少部分雷电流,雷电流的减小必然导致引线上的附加残压减小。为保证避雷器由前到后顺序泄放,避雷器的动作电压应是后级不低于前级。避雷器之间的电力电缆长度不小于15米。

传输线防护

电信局内的低频传输线大量是用户线和中继线,目前采用保安单元基本有效,如果采取进一步的防雷措施会急剧增大投资,目前尚无推广方案。

光纤的防雷主要是针对其金属护皮和金属芯线,从线路防护的要求看这些金属应接地,最好在埋地进局时接在底楼的接地汇接排上,而不要接在设备机架上。

天馈线防雷主要是针对同轴电缆,接地的波导管本身就有良好的防雷作用不需再加避雷器。同轴电缆天馈线应加装相应的高频避雷器,避雷器的地线应就近与机房的接地汇接排相连。天馈线的顶端应通过铁塔接地,在入局处应接到机房汇接排。如果天馈线较长在其中间应每隔25米与走线架或铁塔相连。

移动通信设备与光端机、微波、交换机相联的PCM、DDF线线宜采用同轴电缆,可加装相应的避雷器。

监控信号的数据传输线可加装相应的数据避雷器。

所有进出通信站的通信传输电缆应采用有金属屏蔽层的电缆埋地进出,其屏蔽层应在进局处就近接地。

联合地网

通信站机房、变电房、铁塔的接地极应连接起来,组成联合地网,如果是框架结构的机房,建筑物的基础钢筋是优良的环型接地网,应利用。联合地网是通信站内所有设备共用的接地装置。

接地电阻是地网的一个重要指标,部标对不同类型的通信站作了具体规定,其阻值为1到20欧。其依据是早期单线通信设备需要用大地做回路,不控制地电阻就无法通信。现在的通信设备不需要大地做回路了,但没有研究阻值可放宽到何种程度,所以就沿用了过去的规定。从防雷技术的角度看,地电阻的要求已不那么严格,而是强调接地系统的布置,这在《建筑物防雷设计规范》(GB50057-94)中已有体现。

早期的通信站建设中往往采用分离地网,要求交流地、直流地、保护地、数据地、防雷地等都采用单独的接地装置。其目的是想避免各系统的干扰通过地网耦合,但现在认为联合地网更经济有效。这是因为分离地网要求的条件太苛刻,地网须相距20米以上才认为实现了分离,而现代通信站需要五、六个这样的独立地网,在寸土寸金的年代很难办到。另外,从技术角度看,分离地网在泄放雷电流时因接地线和接地电阻的不同,各接地系统会产生电位差,反而可能危害相互连接着的通信设备。联合地网通过合理的布置接地线可以实现通信设备间的等电位。

设备接地

通信站内所有设备的金属外壳都应接地,金属走线架、水管等金属物也必须接地。站内金属物良好的接地不但是用电安全的要求,也是屏蔽雷电感应、均衡设备电位的重要措施。

接地有单点接地、多点接地和混合接地三种方式。从抗干扰的角度讲:低频通信设备宜用单点接地,高频通信宜用多点接地,高、低频混合通信设备宜采用混合接地。但目前部标统一规定各种通信站都用单点接地方式,接地线的要求是粗、短、直,要兼顾到泄放设备短路电流和泄放雷电流的能力。设备短路电流由电源电压和接地阻抗决定,部标推荐用35-95平方毫米的多股铜线。而泄放雷电流只需大于16平方毫米的铜线即可。

接地汇集线的布置

接地汇集线(汇流排)应布置在靠近避雷器的地方,以使避雷器的接地连接线最短,各楼层的分汇集线应直接与楼底的总汇集线相连,这样能保证实现单点接地方式,当楼层高于30米时,高于30米部分的分汇集线应与建筑物均压环相连,以防止侧击。

近年来IEC的研究认为:接地汇集线的多重互连是有益的,但部标尚未采纳。

三、接地连线

通信站的种类很多,但其防雷思想是一致的,就是努力实现等电位。绝对的等电位只是一个理想,实际中只能尽量逼近,目前是综合采用分流、屏蔽、箝位、接地等方法来近似实现等电位。由于电信设备种类繁多,且新产品层出不穷,它们的耐过压能力也有差别,目前在这方面的量化研究尚未普遍开展,因此,防雷的等电位理论还主要停留在定性上。现在这些措施经多年的实践证明是行之有效的,但并不表示采取了这些措施就万事大吉。我们还需在实践中不断地研究新问题、解决新问题,才能将通信站的防雷工作推向一个新水平。

接地网防腐工程中的阴极保护设计

1.

概述

接地装置是发电厂、变电站、通信站中确保工作接地、防雷接地、保护接地的必备设施。出于经济方面的考虑,接地装置一般采用镀锌碳钢(扁钢、圆钢)组成立体接地网;由于长期处于地下恶劣的运行环境中,土壤带来化学与电化学腐蚀不可避免,同时还要承受巨大的排流与杂散电流腐蚀,接地网的腐蚀是电网系统问题与事故的主要来源之一[1][2]。因此,确保接地网免受腐蚀是电网稳定安全运行的前提,在各种接地网防护措施中,阴极保护是一项科学、可行的方法,尤其对于业已运行的接地网的保护,有其独特的优点。

2.

阴极保护原理

通过对受保护金属设施(如变电站的接地网)进行阴极极化,使之变成一个大阴极,从而防止金属腐蚀(金属只有在阳极状态下才可能腐蚀),此即所谓的阴极保护。阴极保护可通过两种方法实现,一是牺牲阳极法;二是外加电流法。牺牲阳极法简单易行,无须维护,它是在被保护的接地网上连接电位更负、更容易腐蚀的金属或合金(如镁及镁合金阳极、锌合金阳极),靠阳极的腐蚀溶解达到保护阴极(接地网)的目的。外加电流法是利用外加直流电源,将被保护的金属与电源负极连接,使之变成阴极而达到防止金属腐蚀的目的。两种保护方式各有千秋,具体的选择是根据保护电流、土壤电阻率及现场的其他情况决定的,但它们在接地网的保护中都有成功的应用。

3.

土壤的腐蚀特性

土壤是一个由气、液、固三相物质组成的复杂体系,其三相组成随温度、气候、季节等因素的变化而改变,由此导致土壤的电阻率、氧化还原电位、pH值、含水率、透气性等特性改变;同时土壤中伴有一系列微生物的新陈代谢活动,这些都是引起接地网腐蚀的因素。因此,评定土壤的腐蚀性是非常复杂的;作为常用的参考指标,表1给出了用土壤电阻率(?m)评定土壤腐蚀性的标准。表1:土壤电阻率(?m)与土壤腐蚀性[3]

腐蚀性: a) n9 T3 _, s: R 中国前苏联+ `" l'

a8 [9 ^- P6 z- B) `/ B

英国" C* {% D&

p; R/ K'

日本美国

极强6 W* |0 C# {5 [$ f <5+ q2 O$ D7

Y v- p

<90 J- U' X, g& o9

y6 L( W5 {" T

' v: @8 {$ u' P! z2 i*

H( S( h$ C9 z

0 _- o1 g0 o6 T

强<205~109~23% n6 u4

O$ t: L- S2 E

<20<20

中等20~5010~2023~5020~45# X) U8

P7 n. n 20~454 K& W. O6 k& E2 U) c! c

弱' _7 R% A1 g' o4 e1 c >505 k2 I5 W. A!

p2 g; W

20~100# Q N)

S2 V; I1 S

50~100, u3

y E) E7 |- k1 f: |2 f.

n

45~605 R. V( e-

p/ N3 r8 m! w

45~60

很弱( N4 Q) z0 J( I9 w >100>100" H3 w$ s2

q8 J4 R7 J# h

>608 j) A' q2

A$ A3 c- v

60~1006 G s,

W4 \0 Z, j

土壤电阻率是接地网阴极保护设计中的主要考察指标之一,它一般通过交流四极法测得[4]。

土壤的氧化还原电位(一般在-300 mV ~+700 mV之间)也是评定土壤腐蚀性的指标之一,表2给出了土壤氧化还原电位(Eh)与土壤腐蚀性的关系。

表2:土壤氧化还原电位与土壤腐蚀性[3]

Eh,mV,(pH=,对标准氢电极)8 A( |/

b( O" }# G! o

腐蚀性

<100/ y7 g3 A9 V# S' I6 `强! x* |3 U6 u# K$ M& g5 m' n

100~200中200~400, d# J# D3 \9 a+ @) 9 _1 c

>400& ^ ]7 V/ v; $ f 不腐蚀$ O% B; B( v* a, V0 A$ A' J8 |0 P

氧化还原电位是反映微生物参与土壤腐蚀的一个参考指标,其值低时,嫌气微生物活动增强,可导致接地网的微生物腐蚀。土壤的氧化还原电位通过甘汞做参比电极、铂电极做工作电极测得[9]。

英国的研究表明[4]:低电阻率(<20?m)的土壤具有腐蚀危险性;pH=7时,若氧化还原电位较低(<400 mV,SHE),这种土壤适合硫酸盐还原菌生长,也具有腐蚀危险性。对于这两种判据的边界情况,可以用土壤含水率判断,即含水率超过20%的土壤具有腐蚀性。

另外,土壤中的盐分(尤其是Cl-)、含气量(O2)、微生物类型、有机质、杂散电流等也会对土壤的腐蚀性产生影响。

4 .接地网阴极保护设计要点

接地网牺牲阳极式阴极保护设计

(1)接地网所在地土壤电阻率的测定

测定不同时间、气候条件下的土壤电阻率,得到电阻率的变化范围。

(2)根据土壤电阻率,决定选用牺牲阳极的类型

土壤电阻率<15?m(或20?m)时, 选用锌基阳极;土壤电阻率<100?m时,选用镁基阳极;土壤电阻率>100?m时,除特殊情况采用带状镁阳极外,一般不采用牺牲阳极(即采用外加电流)。表3给出了两种阳极的电化学性能。

表3:镁阳极、锌阳极电化学性能[3]

性能单位0 u: Q/

~# d" T9 w5 H0

e6 q

Mg、Mg-Mn3 x%

M3 @2 [6 a7 m

Mg-Al-Zn-Mn Zn、Zn合金

密度g/cm3$ q7 [# F# g' ^! P) E( G8 z S

开路电位" G1 a0 m/ y, K.

^# O/ v

-V(SHE)理论发生电量A?h/g

土壤中电流效率) O, u- K# x2 b3 i7 n H( b %

40≥50≥65

土壤中发生电量' L)

L8 p5 @* S6 O. O

A?h/g

土壤中消耗率6 |/ _ G! `7 }, Z3 M kg/(A?a)

≤≤

(3)确定接地网最小保护电流密度(mA/ m2):两家实施接地网阴极保护的变电站选择的保护电流密度分别为:25;45;有关资料给出的数值为:10~100;4~40;35。接地网最小保护电流密度应该土壤腐蚀性(土壤电阻率、氧化还原电位)确定,一般在10~50 mA/ m2。

(4)根据接地网所用碳钢的外形尺寸、总长计算受保护的总面积(m2),按选定的保护电流密度计算所需的阴极保护总电流(A)。

(5)确定接地网阴极保护电位:地网的阴极电位至少为-850mV(相对Cu/CuSO4饱和电极),或者使接地网的自然腐蚀电位负移250-300mV(至少100 mV)。对于牺牲阳极式阴极保护,在保证达到最小保护电流密度前提下,不需考虑过保护问题[10]。

(6)按公式计算阳极接地电阻与输出电流[3]、按阴极保护设计年限(一般为25—30年)计算所需的阳极质量,再根据单个阳极质量计算出需布置的阳极个数。

(7)选择牺牲阳极填包料、确定阳极埋设方式(立式或卧式)

(8)确定阴极保护的测试系统

接地网外加电流式阴极保护设计

除按接地网保护总电流选择恒电位仪、辅助阳极外,其余基本与同。由于接地网碳钢一般无涂层,不需考虑因达到析氢电位而出现的涂层脱落问题,不过,出于经济性考虑,一般实测保护电位应不小于(相对Cu/CuSO4饱和电极)为宜。

5.设计实例

×××变电站接地网采用Φ50×钢管180m,70×7扁钢680m,40×6扁钢520m;变电站所在地土壤为粘土,其电阻率为20~35?m,阴极保护设计寿命30年。

按牺牲阳极方式设计

(1)

因土壤电阻率为20~35?m,故选用镁基阳极。

(2)

选定接地网最小保护电流密度25 mA/ m2。

(3)

受保护的总面积为205 m2。

(4)

阴极保护总电流IA为,考虑变化因素,IA取值。

(5)

用130×145×545的镁合金阳极(质量为),埋设深度,填料电阻率为15?m,牺牲阳极距接地网~.处水平埋设,阳极与接地网用电缆连接。

a.

单只阳极接地电阻计算[3]

RH=/(2πL)(ln(2L/D)+ln(L/2t)+

a/ln(D/d))

式中,、a分别为土壤、填包料电阻率,其值为30、15?m;

L为阳极长度,其值为;

D为填包层直径,其值为;

d为阳极等效直径,

d=C/π=π=

t

为阳极中心至地面距离,其值为;

由此计算RH=

b.

单只阳极输出电流计算(忽略回路电阻、阴极过渡电阻)

Ia=△E/R==

c.

保护所需的阳极数量计算

N=f×IA/ Ia=×==105支

阳极总质量W=105×=1596kg

阳极工作寿命计算

T=(?I)=×1596/×=31年

(6)

牺牲阳极(与填包料一起)按接地网走向均匀布置,并布置电位监测装置。

(7)

实地检测保护电位,检查保护效果。

按外加电流方式设计

根据上述阴极保护总电流IA为的计算结果,选择36V×的恒电位仪。如果选择YJD流线型高硅铸铁辅助阳极(Φ75×160,, m2),当辅助阳极工作电流为25A/m2时,所需的辅助阳极数量为:N=(×25)==5支

辅助阳极的工作寿命:T=KG/gI=×5×(×)==39年

根据接地网的地理分布情况,埋设5支辅助阳极(与回填料一起)。

6. 结论

(1)

接地网的阴极保护简单可行,对防止接地网的腐蚀、保证接地装置的安全运行意义重大。

(2)

对于已经投入运行的接地网,为防止其进一步腐蚀,最简单的方法就是实施阴极保护。

(3)

对地下钢铁设施实施阴极保护是一项成熟、安全的技术,国内许多接地网的阴极保护技术的成功运用说明了这一点。

接地电阻测量原理与方法

接地电阻测量原理与方 法 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

接地电阻测量原理 梁子斌 对从事地电学工作,对接地电阻的概念并不陌生,然并非能完全理解。这里想跟大家聊聊其概念和测量原理。 1.接地电阻概念,接地装置在输变电工程中是个特殊的项目,属隐蔽工程。对新安装的接地装置,它包括埋入地中直接与大地接触的金属导体,或称接地体,以及连接接地体与电气设备接地部分的接地线。为了确保其是否符合设计或规程要求必须经过检验才能正式投入运行。接地电阻就是当有电流由接地体流入土壤中将呈现有电阻,这就是接地电阻。 接地电阻本质是由土壤产生的电阻,是接地装置泄放电流时表现出来的电阻。由 高斯定理知道,在全空间中,一半径为R的导体球其接地电阻为ρ地= ρ 4πR ,如在地 表无限半空间中其接地电阻大一倍ρ地= ρ 2πR ,埋在地下某深度中,则在两者之间, 对均匀介质,也可以解析得到。还有不同形状的接地体,圆盘形、棍形,环形等都有公式可以计算。 其等效电路如下图:其中U为接地体对大地零电位参考点的电位差,I为流过接地体的电流U/I即为接地电阻。 接地电阻测量原理 看视很简单,通过电压的电流的测量就可以得到电阻值,可实际上并不容易。试想想,在工作现场去哪能找到大地零电位的参考点那?哎呀,有思路了,我们可以临时做一个啊,再做一个接地,可这临时的接地电阻值也不知道,我们可以知道这两个电阻之和,一个方程,两个位知数!好办,再加一个辅助接地电极,这样我们两两进

行测量,三个方程,三个未知接地电阻,简单解方程就可以啦!呵呵,还不明白呀,看下面示意图。 我们分别将RR1,RR2,R1R2做环路供电,电压和电流我们都会测的,测得后容易得到R+R1,R+R2,R1+R2,更不用说现在都有万用表了,真接可以测出的,多大的阻值,万用表都能测得,别担心。接地电阻也和收音机里的电阻一样,道理没什么不同。好了,写方程吧。 { R+R1=r1R+R1=r2R1+R2=r12 这里r们就是我们万用表的读数R是我们要测的接地电阻,R1,R2是两个辅助电极的接地电阻,这方程找个中学生解一下,是R=(r1+r2-r12)/2吧?他一定是中学生了。 你也看一下R1和R2吧,看看吧,我保证比一定R大的多,小了?工程一定不合格! 你还没问我:两个辅助电极就可以吗那为什么多数接地电阻测量仪要三个辅助电极那其实呀,四个的也有那。从前面说明你应知道了,两两电极组合就多一个方程,三个辅助电极加上被测电极共四个,便有C42个组合,6个方程,未知数是4个,用最小二乘法,那结果不是好得多了?布辅助电极不怕烦,你用十个,结果会更好,一定不会错。 多说一句,如果没有布设辅助电极的场地,你只好使用电磁感应方式的接地电阻测量仪了,而且还不用断开系统接地,直接测量。

接地电阻测量方法

接地电阻的测量方法简介 接地线和接地体都使用金属材料,统称为接地装置。电力部门按用途不同设有各种接地装置,如保护接地、工作接地和防雷保护接地等。 接地装置的接地电阻包括:接地线电阻、接地体电阻、接地体和土壤的接触电阻以及接地电流途径的土壤电阻等。在上述各种电阻中,接地线和接地体的电阻很小,可以忽略不计。这样,接地装置的接地电阻的数值就是接地体对大地零电位点的电压和流经接地体的电流的比值,即: R= 式中R——接地电阻Ω U——电压V I——电流 A 接地电阻有冲击接地电阻和工频接地电阻之分。冲击接地电阻是按通过接地体的电流为冲击电流时求得的接地电阻值,它对通过雷电电流时的情况下很有研究价值;而工频接地电阻是按通过接地体的电流为工频电流时求得的接地电阻。一般在不指明时,接地电阻均指工频接地电阻而言,测量出的接地电阻数值也是工频接地电阻值,以便衡量其接地电阻是否符合规程要求。 各种接地装置对工频接地电阻数值都有不同的要求,如表1所示。在接地装置完工后或在运行中,均需按规定进行测量,以鉴别其是否合格。 接地电阻的测量方法很多,这里仅介绍目前应用最普遍的ZC—8型接地电阻测量仪的技术特点及其使用方法。 1 ZC—8型测试仪技术特点和使用方法 1.1 ZC—8型测试仪的技术特点 (1) 在仪器的检流计回路内,接入了电容C1,使在测试时不受土壤电解电流的影响。 (2) 发电机输出频率为110~115Hz,并采用了由BG、D等组成的相敏整流环节,以避免市电杂散电流对测试的影响。 (3) 制造厂生产的仪器,如果设有4个端钮的,还可用来测量土壤电阻率。该仪器还分B组和T组两种类型,B组适用于普通气候条件,T组适用于亚热带的气候条件,即可适合在环境温度为0~50℃和相对湿度为98%以下的气候条件使用。

接地电阻测试方法(图解)

For personal use only in study and research; not for commercial use 接地系统接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤

接地电阻测试仪使用说明书样本

4102A/4105A接地电阻测试仪 使用说明书 目录 1安全事项------------------------------------------1 2特点----------------------------------------------2 3规格----------------------------------------------2 4部件名称------------------------------------------4 5准备测量------------------------------------------5 6测量方法------------------------------------------5 7更换电池------------------------------------------8 8机壳与背带----------------------------------------9 1.安全事项 本仪器符合以下的标准

●IEC 61010-1 CATⅢ-300V.二级 ●IEC 61O10-2-31 ●IEC 61557-1, 5 ●IEC 60529(IP54) ●JIS C1304-95 为正确使用本测试仪及避免触电的危险,使用前请务必详读本说明书。 在说明书中,遇到特别需要注意事项均以表示,请仔细阅读之: 危险是标示有可能造成触电事故的注意事项,注意是标示可能起仪器损坏或测量误差的注意事项。 为确保安全,以下的注意事项请务必遵守: (1)测试前请先确认量程选择开关已设定在适当的档位。 (2)测试导线的连接插头已紧密地插入端子内。 ( 3)主机于潮湿状态下.请勿作接线动作。 (4)在各档位中, 请勿加载超于该量程额定值的电量。 (5)请勿在线接于被测物上时切换量程选择开关。 (6)测试端子间请勿加载超过200安培的交流或直流电压。 (7)请勿在易燃性场所测试, 火花可能会引起爆炸。 (8)本测试器在使用中, 出现仪器破损或测试线发生龟裂而造成金属外露等异常情况时停止使用。 (9)更换电池时, 请务必确定测试导线已从测试端子拆除。 (10)主机于潮湿状态下请勿更换电池。 (11)使用过后请务必将量程选择开关切于OFF之位置。 (12)请勿于高温潮湿,有结露可能的场所及日光直射下长时间放置。 (13)本测试器请勿存放于超过60o C之场所。

防雷接地电阻测试方法(图解)

接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作1、测量接地电阻值时接线方式的规定仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 此主题相关图片如下: .2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 此主题相关图片如下:

2、操作步骤 2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。2.6、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。 六、注意事项1、禁止在有雷电或被测物带电时进行测量。2、仪表携带、使用时须小心轻放,避免剧烈震动。

建筑物接地电阻的测试方法及要求

建筑物接地电阻的测试方法及要求 建筑物接地系统对于整个建筑的防雷保护和电气系统的正常运行有着重要和深远的意义。建筑物接地系统的接地电阻也是电气工程验收的一项重要内容,其测量记录是工程竣工归档资料之一。当防雷接地体地下部分工程完工后要及时对接地体的接地电阻值进行测量,单位工程竣工时还要进行复测,建筑物接地电阻的测试,一般是先由施工单位自行组织专业人员使用专用的测试仪器进行测量,由监理人员旁站,测试的数据填入专用的测试记录表格。 防雷接地系统的接地电阻测试必须使用专用的接地摇表(又称接地电阻摇表、接地电阻表、接地电阻测试仪,切不可用普通的兆欧表代替),目前有指针式和数字式两种。常见型号有ZC29B型指针式接地摇表(见图示1),DER2571数字接地电阻表(见图示2),民用建筑多采用ZC29B型指针式接地摇表。 见图示1 见图示2

为方便施工单位正确地使用接地摇表,现将接地电阻的测试方法及ZC29B型指针式接地摇表的使用和要求做一简单介绍。 一、结构 ZC29型接地电阻测试仪由手摇发电机、电流互感器、滑线电阻及检流计等组成,附件有辅助探棒导线等。 二、使用说明 1、接地电阻测量时的接线方式(图示3): 图示3 (1) 在测量接地电阻时,E-E两个接线柱用镀铬铜板短接,并接在随仪表配来的5m长纯铜导线上,导线的另一端接在待测的接地体测试点上。 (2) P柱接随仪表配来的20m纯铜导线,导线的另一端接插针Pˊ。

(3) C柱接随仪表配来的40m纯铜导线,导线的另一端接插针Cˊ。 2、接地电阻测试仪设置要求 (1) 接地电阻测试仪应水平放置在离测试点1~3m处,检查检流计的指针是否在中心线上,否则应用零位调整器将其调整于中心线上。 (2) 每个接线头的接线柱都必须接触良好,连接牢固。 (3) 两个接地极插针应设置在离待测接地体左右分别为20m和40m的位置,其间距为20m 。且Eˊ、Pˊ、Cˊ应保持在一条直线上。 (4) 两插针设置的土质必须坚实,不能设置在泥地、回填土、树根旁、草丛等位置。 (5) 不得用其他导线代替随仪表配置来的5m、20m、40m长的纯铜导线。 (6) 雨后连续7个晴天后才能进行接地电阻的测试。 (7) 待测接地体应先进行除锈等处理,以保证可靠的电气连接。 (8) 当检流计灵敏度过高时,可将电位探针电压极插入土壤中浅一些,当检流计灵敏度不够时,可沿探针注水使其湿润。 3、接地电阻测试仪的操作要领 (1)测试仪设置符合规范后才开始接地电阻值的测量。 (2)测量前,接地电阻档位旋钮应旋在最大档位即×10档位,调节接地电阻值旋钮应放置在6~7Ω位置。

接地电阻测试的新方法--异频法

接地电阻测试的新方法--异频法 摘要:本文介绍了异频法测量地网接地电阻的基本工作原理,以及相对传统测试方法的优点,并通过实际测试数据进一步验证了异频法测量地网接地电阻的实用性。 关键词:接地电阻异频法测试 1 引言 变电站的接地网连接着全站的高低压电气设备的接地线,低压用电系统接地、电缆屏蔽接地、监控系统设备接地,以及变电站维护检修时的一些临时接地。接地网有工作接地、保护接地、防雷电和防静电接地等多项用途,它是维护变电站安全可靠运行,保障运行人员和电气设备安全运行的根本保证和重要措施。随着用电容量的不断扩大,接地故障后短路电流增大,地网经过较长时间的运行,可能会发生较严重的锈蚀。接地网的好坏(接地电阻值)直接影响变电站设备的安全运行,因此,变电站接地网接地电阻的测试工作显得尤为重要。对变电站接地网接地电阻的测量主要采用的是传统的工频大电流法,这里,以使用的SATURN GEOxC接地电阻测试仪为例,为大家介绍一种新的接地电阻测试方法--异频法。 2 异频法基本工作原理 异频法测量接地电阻的原理框图如图1所示。异频法采用异频功率源,按照电流—电压法在94—128Hz频率范围内,采用94Hz、105Hz、111Hz、128Hz四个测量频率,依靠内置AFC频率自动跟踪

图1 异频法测量接地电阻原理框图 系统自动选择测量频率,产生不同于工频的测量电流信号,从而避开干扰的频率。异频电流信号注入被测地网辅助电流极,从被测地网辅助电压极取得该测量电流通过时产生的异频电压信号,异频电流、电压测量信号经DSP数字信号处理器计算、分析,得到异频电流信号和电压测量信号的基波分量的实部和虚部,采用硬件和软件设备通过公式计算出被测地网工频下的接地阻抗和接地电阻,并由显示装置显示测量计算的最后结果。 3 异频法的优点 相比于传统的工频大电流法来说,异频法具有明显的优点: a、采用异频小电流测试,只需能通过5A电流的小导线即可,极大地减少了导线成本,降低了布线时的劳动强度。 b、在线测量,被测接地体无需与负载断开,测试时只向地网注入异于工频的电流,对变电站的安全运行不产生任何影响。 c、采用AFC自动测试频率控制技术,自动测试干扰电压、干扰频率,自动抗线圈绕组间的内部干扰及被测线路的外部干扰,最大程序保证了测量精度,具有极强的抗干扰能力。 d、采用异频法除可测量各类接地电阻外,还可以测量土壤的接

接地电阻测试方法与设置要求(图解)

一、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 二、接地电阻设置要求: a. 交流工作接地,接地电阻不应大 于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 三、接地电阻测试方法 1、测量接地电阻值时接线方式的规定仪表上的E端钮接5m导线,P端钮接20m线,C 端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m

1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤:

2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为止。 2.6、如果发现仪表检流计指针有抖动现象,可变化摇柄转速,以消除抖动现象。 四、注意事项: 1、禁止在有雷电或被测物带电时进行测量。 2、仪表携带、使用时须小心轻放,避免剧烈震动。

接地电阻测试仪测量方法详细介绍

目前,市场上存在的接地电阻测试仪有成百上千种,有进口的也有国产的,归纳起来,其测量方法只有三类:打地桩法、钳夹法、地桩与钳夹结合法。 一、打地桩法:地桩法可分为二线法、三线法和四线法 1.二线法:这是最初的测量方法:即将 一根线接在被测接地体上,另一根接辅助地极。此法的测量结果R=接地电阻+地桩电阻+引线及接触电阻,所以误差较大,现已一般不用。 2.三线法:这是二线法的改进型,即采用两个辅助地极,通过公式计算,在中间一根辅助地极在总长的0.62倍时,可基本消除由于地桩电阻引起的误差;现在这种方法仍然在用。但是此法仍不能消除由于被测接地体由于风化锈蚀引起接触电阻的误差。 3. 四线法:这是在三线法基础上的改进法。这种方法可以消除由于辅助地极接地电阻、测试引线及接触电阻引起的误差。 二、钳夹法:钳夹法分为单钳法和双钳法 1.双钳法:利用在变化磁场中的导体会产生感应电压的原理,用一个钳子通以变化的电流,从而产生交变的磁场,该磁场使得其内的导体产生一定的感应电压,用另一个钳子测量由此电压产生的感应电流,最后用欧姆定律计算出环路电路值。其适用条件一是要形成回路,二是另一端电阻可忽略不计。 2. 单钳法: 单钳法的实质是将双钳法的两个钳子做成一体,但如果发生机械损伤,邻近的两个钳子难免相互干扰,从而影响测量精度。仪器选择:目前市场支持此种方法的仪器有法国CA公司的CA6415钳式接地电阻测试仪,还有华谊仪表的MS2301钳式接地电阻测试仪等,我公司支持此种方法的仪器是ET3000双钳多功能接地电阻测试仪。 三、地桩与钳夹结合法:这种方法又叫选择电极法这种方法的测量原理同四线法,由于在利用欧姆定律计算结果时,其电流值由外置的电流钳测得,而不是象四线法

接地电阻测量方法介绍

接地电阻测量方法介绍 1 仪表测量法 在隔离变压器B的电源两端中,分别接上电流表、电压表、开关,如图1。当开关闭合后,用电流表测出线路的电流。用高内阻电压表测出接地极E与临时接地极P之间电阻RE的电位差V。最后用RE=V/I 公式计算出接地电阻值。 2 摇表测量法 测量前,首先将电位探测针P和电流探测针C分别插入地中,使它们与接地极E成一条直线,E、P、C三点间距离为20m。随后将E、P、C用专用导线接到摇表相应的接线柱上。测量时,以2r/s的速度摇动并对指示数逐渐进行调节,便可以直接从刻度盘上读出被测的接地电阻值。 3 万用表测量法 1)三角形测量法。在接地体E的3m处,分别插入临时接地极P和辅助接地极C,使它们之间的夹角为30°~60°,如图2。然后用高精确度的万用表分别测出REP、REC、RPC电阻。最后用下列公式计算出接地电阻值。 RE=1/2(REP+REC+RPC)。 2)直线测量法。在接地极E的3m和6m处,分别插入临时接地极P 和辅助接地极C,如图3。若用万用表测得:RE+RP=8Ω,RP+RC=10

Ω,RE+RC=6Ω,则可以用解三元一次方程组方法,分别求出RE、RP、RC的接地电阻值。 接地网接地电阻测试的原理方法及意义 一、概述近些年来,国内多处变电站因雷击形成扩大事故,多数与地网接地电阻不合格有关,接地网起着工作接地和保护接地的作用,当接地电阻过大则:发生接地故障时,使中性点电压偏移增大,可能使健全相和中性点电压过高,超过绝缘要求的水平而造成设备损坏。在雷击或雷电波袭击时,由于电流很大,会产生很高的残压,使附近的设备遭受到反击的威胁,并降低接地网本身保护设备(架空输电线路及变电站电气设备)带电导体的耐雷水平,达不到设计的要求而损坏设备。同时接地系统的接地电阻是否合格直接关系到变电站运行人员、变电检修人员人身安全;但由于土壤对接地装置具有腐蚀作用,随着运行时间的加长,接地装置已有腐蚀,影响变电站的安全运行;因此,必须大力加强对地网接地电阻的定期监测;运行中变电站地网接地电阻的测量,由于受系统流入地网电流的干扰以及试验引线线间的干扰,使测试结果产生较大的误差。特别是大型接地网接地电阻很小(一般在0.5Ω以下),即使细微的干扰也会对测试结果产生很大的影响;如果对地网接地电阻测试不准确,不仅损坏设备,而且会造成诸如地网误改造等不必要的损失,结合我对接地网接地阻抗测试方法的研究,现总结如下: 二、接地电阻测试原理及方法:测试接地装置的接地阻抗时电流极要布置的尽量远,通常电流极与被试接地装置边缘的距离dcG应为被试接地装置最大对角线长度D的4~5倍(平行布线法),在土壤电阻率

接地电阻测试方法(图解)

接地系统接地电阻测试方法(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于 4 Ω; b. 安全工作接地,接地电阻不应大于 4 Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10 Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于 1 Ωo 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m 各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极 E 电位探棒P /和电流探棒C /,且E /、P', C'应保持直线,其间距为20m 1.1测量大于等于1 Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1 Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤 2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极 E '、电位探棒P '和电流探棒C '应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“倍率开关"置于最大倍率,逐渐加快摇柄转速,使其达到150r∕min 。当检流计指针向某一方向偏转时,旋动 刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为 图1测量大于等干1殳接地电阻时接线图 被 测 物 E ,

接地电阻测试方法和及其详细测试步骤

接地系统接地电阻测试方法和步骤(图解) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台 2、辅助接地棒二根 3、导线5m、20m、40m各一根 五、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、Pˊ、Cˊ应保持直线,其间距为20m 1.1测量大于等于1Ω接地电阻时接线图见图1 将仪表上2个E端钮连结在一起。 测量小于1Ω接地电阻时接线图 1.2测量小于1Ω接地电阻时接线图见图2 将仪表上2个E端钮导线分别连接到被测接地体上,以消除测量时连接导线电阻对测量结果引入的附加误差。 2、操作步骤 2.1、仪表端所有接线应正确无误。 2.2、仪表连线与接地极Eˊ、电位探棒Pˊ和电流探棒Cˊ应牢固接触。 2.3、仪表放置水平后,调整检流计的机械零位,归零。 2.4、将“ 倍率开关”置于最大倍率,逐渐加快摇柄转速,使其达到150r/min。当检流计指针向某一方向偏转时,旋动刻度盘,使检流计指针恢复到“0”点。此时刻度盘上读数乘上倍率档即为被测电阻值。 2.5、如果刻度盘读数小于1时,检流计指针仍未取得平衡,可将倍率开关置于小一档的倍率,直至调节到完全平衡为

接地电阻测试说明

一、什么是接地电阻? 接地电阻就是电流由接地装置流入大地再经大地流向另一接地体或向远处扩散所遇到的电阻,它包括接地线和接地体本身的电阻、接地体与大地的电阻之间的接触电阻以及两接地体之间大地的电阻或接地体到无限远处的大地电阻。接地电阻大小直接体现了电气装置与“地”接触的良好程度,也反映了接地网的规模。在单点接地系统、干扰性强等条件下,可以采用打辅助地极的测量方式进行测量。接地电阻主要分以下三种。 1.保护接地:电气设备的金属外壳,混凝土、电杆等,由于绝缘损坏有可能带电,为了防止这种情况危及人身安全而设的接地。1Ω以下 2.防静电接地:防止静电危险影响而将易燃油、天然气贮藏罐和管道、电子设备等的接地。 3.防雷接地:为了将雷电引入地下,将防雷设备(避雷针等)的接地端与大地相连,以消除雷电过电压对电气设备、人身财产的危害的接地,也称过电压保护接地。 二、接地电阻的主要功能 接地电阻的功能主要体现在以下几个方面: ●精确测量大型接地网接地阻抗、接地电阻、接地电抗 ●精确测量大型接地网场区地表电位梯度 ●精确测量大型接地网接触电位差、接触电压、跨步电位差、跨步电压 ●精确测量大型接地网转移电位 ●测量接地引下线导通电阻 ●测量土壤电阻率 三、接地电阻的测试方法 1.接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 2.接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。

接地电阻测量方法

接地电阻测量方法 影响接地电阻的因素很多:接地极的大小(长度、粗细)、形状、数量、埋设深度、周围地理环境(如平地、沟渠、坡地是不同的)、土壤湿度、质地等等。为了保证设备的良好接地,利用仪表对接地电阻进行测量是必不可少的,接地电阻的测量方法可分为:电压电流表法;比率计法;电桥法。按具体测量仪器及布极数可分为:手摇式地阻表法;钳形地阻表法;电压电流表法;三极法;四极法。在此主要介绍电压电流表法。 一、电压电流表法 电压电流表测量接地电阻法见图 4.图中的电流辅助极是用来与被测接地电极构成电流回路,电压辅助极是用来测得被测接地电位。采用该方法保证测量准确度的关键在于电流辅助极和电压辅助极的位置要选择适合。如在辅助电流极以前,电压表已有读数,说明存在外来干扰。 按DL475-92《接地装置工频物性参数的测量导则》规定,当大型接地装置如110kV 以上变电所接地网,或地网对角线D≥60m需要采用大电流测量,施加电流极上的工频电流应≥30A,以排除干扰减少误差。 (一) 电压电流三极直线法。电压电流三极直线法是指电流极和电压极沿直线布置,三极是:被测接地体、测量用电压极和电流极,其原理接线如图 5所示。一般d13=(4~5)D,d12=(0.5~0.6)d13,D为被测接地装置最大角线长度,点2可以认为是处于的零点位。根据测量导则(DL475-92),如d13取(4~5)D有困难,而接地装置周围的土壤电阻率又比较均匀时,d13可以取2Dd12取D值。测量步骤如下: ①按图4接线。 ②记录初始的电压值V0. ③通电后,记录电流值I1、电压值V1. ④将电压极沿接地体和电流极连接方向前后移动3次,每次移动的距离为d13的5%,记录每次移动后的电流和电压数值,取3次记录的电压和电流值的算术平均值,作为计算接地体的接地电阻的电压和电流值。 (二)电压电流三极三角形法。电极如图6所示布置,一般取d13=d12≥2D,夹角θ≈30度(或d23=1/2d12),测量步骤与电压电流三极直线法相同。 ④将电压极沿接地体和电流极连接方向前后移动3次,每次移动的距离为d13的5%,记录每次移动后的电流和电压数值,取3次记录的电压和电流值的算术平均值,作为计算接地体的接地电阻的电压和电流值。 二、手摇式地阻表测量原理 手摇式地阻表是一种较为传统的测量仪表,它的基本原理是采用三点式电压落差法,其测量手段是在被测地线接地极(暂称为X)一侧地上打入两根辅助测试极,要求这两根测试极位于被测地极的同一侧,三者基本在一条直线上,距被测地极较近的一根辅助测试极 (称为Y)距离被测地极20米左右,距被测地极较远的一根辅助测试极(称为Z)距离被测地极40米左右。测试时,按要求的转速转动摇把,测试仪通过内部磁电机产生电能,被测地极X和较远的辅助测试极(称为Z)之间“灌入”电

接地电阻测试方法(带图)

接地电阻测试方法(带图) 一、接地电阻测试要求: a. 交流工作接地,接地电阻不应大于4Ω; b. 安全工作接地,接地电阻不应大于4Ω; c. 直流工作接地,接地电阻应按计算机系统具体要求确定; d. 防雷保护地的接地电阻不应大于10Ω; e. 对于屏蔽系统如果采用联合接地时,接地电阻不应大于1Ω。 二、接地电阻测试仪 ZC-8型接地电阻测试仪适用于测量各种电力系统,电气设备,避雷针等接地装置的电阻值。亦可测量低电阻导体的电阻值和土壤电阻率。 ZC-8型接地电阻测试仪 三、本仪表工作由手摇发电机、电流互感器、滑线电阻及检流计等组成,全部机构装在塑料壳内,外有皮壳便于携带。附件有辅助探棒导线等,装于附件袋内。其工作原理采用基准电压比较式。 四、使用前检查测试仪是否完整,测试仪包括如下器件。 1、ZC-8型接地电阻测试仪一台

2、辅助接地棒二根 3、导线5m、20m、40m各一根 常用工器具 五、仪表好坏检查: 1、外观检查。 先检查仪表是否有试验合格标志,接着检查外观是否完好;然后看指针是否居中;最后轻摇摇把,看是否能轻松转动。 2、开路检查。 三个端钮的接地摇表:将仪表电流端钮(C)和电位端钮(P)短接,然后轻摇摇表,摇表的指针直接偏向读数最大方向; 四端钮的接地摇表:将仪表上的电流端纽(C1)和电位端纽(P1)短接,再将接地两端钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。钮(C2、P2)短接[我们常说的两两相接],然后轻摇摇表,摇表的指针直接偏向读数最大方向。

3、短路检查。不管是三端钮的仪表还是四端钮的仪表,均将所有端钮连接起来,然后轻摇摇表,摇表的指针偏往“0”的方向。 通过上述三个步骤的检查后,基本上可以确定仪表是完好的。 六、使用与操作 1、测量接地电阻值时接线方式的规定 仪表上的E端钮接5m导线,P端钮接20m线,C端钮接40m线,导线的另一端分别接被测物接地极Eˊ,电位探棒Pˊ和电流探棒Cˊ,且Eˊ、

接地电阻地测量方法

接地电阻的测量 1.接地电阻的概念 与大地紧密接触并形成电气连接的一个或一组导体,叫接地极。通过接地极与大地相连接,称接地。接地,按用途分,有防雷接地,防静电接地,防触电接地,工作接地,零线的重复接地,还有逻辑接地。 工频电流或冲击电流从接地极向周围大地流散时,土壤呈现的电阻称为接地电阻。 通过接地极流入大地的电流作半球形散开,半球形的球面,在距接地极越远,电阻越小,20M以外的地方,已无电阻的存在。也就无电压降了。20M以外的地方,电位等于零,我们称为电气上的零电位,也称地电位。在接地体分布密集的地方很难找到电气上的地。 电子设备中各级电路中,有一个参考电位,这个电位称为逻辑地。它可以是电子设备的机壳、底座、印刷电路版的地线,建筑物内总接地端子,接地干线。逻辑地,可以与大地相连接,也可以不连接。 逻辑地没有接地电阻的概念。 接地电阻的数值等于接地极的对地电位与通过接地极的接地短路电流的比。所谓接地电阻是表征工频电流或冲击电流通过接地极向周围大地流散的能力。接地电阻愈小,流

散愈快。接地电阻不能用从接地极到大地某点的电阻来表达,因此,不能用欧姆表测量接地电阻。 可以认为,接地电阻虽然具有直流电阻相同的量纲,但实际上是土壤电阻率ρ与电容的比率乘以介电系数ε,因此,确切的说,接地电阻应称为接地阻抗。同时,由于接地电阻R含有电容C这一分量。因此,测量时,不能使用直流电源。也不宜使用功率表法来测量,用功率法的指示值只反映电阻分量。而且一般功率表法的误差与功率因数COSΦ有关。随着COSΦ的降低,误差较大。接地电阻的阻抗角一般都是在Φ=COS—1(0.5-0.7)之间,因此,不宜使用功率表法来测量,因误差较大。由此可见,接地电阻与一般导体的电阻R=Ρl/S的物理概念是不一样的。其值与土壤电阻率ρ和介电系数ε的乘积成正比,与电容C成反比,而与接地装置内部的引线长度无关。 2.测量方法 1)测量原理 接地装置工频接地电阻的数值,等于接地装置的对地电压与通过接地装置流入地中的工频电流的比值因此,测量接地电阻必须测量接地装置的对地电压和流入地中的工频电流接地装置的对地电压是指接地装置与地中电流场的实际的零电位区之间的电位差。因此,必须在接地体中通过流入地中的工频电流,电源的一端接接地装置上,另一端接在能与被测接地极构成回路的辅助电

接地电阻的测试方法和步骤

接地电阻,是电气行业中必须检测的一个项目,如果电阻值异常,会引起设备功率因数问题,谐波失真,仪器仪表的损坏,如果短路会造成火灾从而对人员造成危险和引发许多其它电气设备的问题。出于接地安全的标准和建议。接地木桩和接地连接必须是一个有效的接地系统的关键部件。这些的耐腐蚀性能一年至少检查一次。电阻应跳率应在20%以上,发现问题要进行调查和固定:通过更换新旧地面木桩,或附加更多的接地系统来解决。 什么是接地电阻系统?这是一个三部分组成的组合。首先是地面指挥,这带来了不必要的电流从电力系统到地面。二是接地导线和接地电极之间的连接器。三是接地电极,必须是至少8英尺长,可能会更长。 这些接地电极,可单独设置在连接网络或网状配置。此外,可用于埋地的地板块,而不是木桩。图表可以帮助你确定,当地接地电阻,深度和数量的接地土壤类型在您的应用领域的利害关系或地板块。埋木桩和板霜线以下的接地电极是非常重要的,因为温度将趋于稳定。多个桩之间的间距必须至少相距遥远,其长度。 接地电阻的测试方法有3种: 1.通过土壤电阻率测试: 这种方法是最常用的,将要成立一个新的接地系统。土壤层,其中的电阻相差很大。其他一些因素的影响,局部阻力。为了确保正确的配置,开发区域配置文件,通过执行此测试多次,奠定了在不同方向和不同深度的利害关系。 接地电阻测试仪,将有四个连接线将附加到4个地面赌注。这些利害关系,奠定了在一条直线上,等距离至少三次除了其长度。测试仪会产生电流与外部两个赌注中,并读取电压两者之间的内在的利害关系的潜在下降。使用欧姆定律(V = IR),测试土壤的电阻值。 2.利用三极法: 利用这种方法来确定个别的接地股份或整个接地系统,消耗不必要的电力的能力。要做的第一件事就是断开电气系统的股份的权益。然后连接到测试仪股份,这是现在称为地球电极。然后两个接地电极,必须放置在与地球电极直接平行的地方。它们通常放在除了65英尺外,虽然这个数字可能会改变对地球电极的长度而定。通过地面测试,然后迷上了内部和外部的关系,和一个已知电流通过外部电极和地球电极发送。内部电极和地球电极之间的电位降电压测量,然后转换成接地电阻值。 3.选择法: 这种方法类似于三极法测试,但是,它是更安全和地球电极并不需要断开电源。只是实现绕地球电极放在钳型表,消除并联电阻的影响。理顺内部和外部的利害关系,设置好并加上钳表测试仪。 测量接地回路电阻值可以安全,快速地使用迷上了两个钳表地面测试。被淘汰危险的断线的程序和需要寻找适当的地点开车到地面测试赌注。这种检测方法可以在几乎任何位置,使得它非常有利。夹放在地球周围的电极或连接电缆。通过一夹生成一个已知的电压,电流通过第二次测量。测试仪将计算出的接地回路电阻。如果只有一个路径到地面的存在,这种方法就不可行了,必须采用别的方法。 接地电阻的测试步骤: 绝缘电阻测试:定期测试,以确定绝缘电阻逐渐减少。这是一个防止以后发生绝缘故障的一种手段。 极化指数测试:对于大型电动机,发电机,或与复杂的保温系统设备,如高电容系统测试。稳定的读数是唯一可能随时间变化的电流后,几乎已经偃旗息鼓。测试测量比例之间的绝缘电阻读数在一分钟和10 分钟后电压的应用程序来判断电容和吸收电流的消失率。被称为极化指数的比率可以得到除以从一分钟读数值到10分钟的数值。低极化指数通常表明过多的水分和污染。在大型电动机或发电机,普遍预计值高达10。

实验五接地电阻测试

实验五接地电阻测试 一、实验目的: 1、了解接地电阻的测试理论。 2、熟练掌握接地电阻测试的方法,并且能应用于实践中。 3、熟练操作接地电阻测试仪。 二、实验原理与说明: 大楼的接地电阻包括:防雷接地、保护接地、用电设备接地。其中,防雷接地是防止雷雨天气,雷电通过导线流入室内的设备,损坏设备和人身安全。保护接地大部分是指的设备的外壳等的接地,是为了防止设备的绝缘层损坏,威胁人身安全和设备安全。用电设备接地是指室内的开关的接地,设备需要公共的接地端,所以有用电接地。 在用电正常时,接地线是没有电流的,只有当设备的绝缘损坏或有雷击时才会有电流流过。 所以,接地电阻的指标是衡量各种电器设备安全性能的重要指标之一。它是在大电流(25A或10A)的情况下对接地回路的电阻进行测量,同时也是对接地回路承受大电流的指标的测试,以避免在绝缘性能下降(或损坏)时对人身的伤害。 接地电阻测量方法通常有以下几种:两线法、三线法、四线法、单钳法和双钳法。各有各的特点,实际测量时,尽量选择正确的方式,才能使测量结果准确无误。 我们在测量时使用的是三线法,使用条件是,必须有两个接地棒:一个辅助地和一个探测电极。各个接地电极间的距离不小于20米。原理是在辅助地和被测地之间加上电流,输测量被测地和探测电极间的电压降,测量结果包括测量电缆本身的电阻。适用于地基接地,建筑工地接地和防雷接地。四线法基本上同三线法,在低接地电阻测量和消除测量电缆电阻对测量结果的影响时替代三线法。该方法是所有接地电阻测量方法中准确度最高的。 测量原理图如图(1): 图(1) 接地电阻的测量原理是基于电阻定律,用四根电极E1、P1、P2、E2,插入地表下一定深度,相距约20m的距离测量,如图(1),交流信号作用于电极E1和E2,通过电极P1和P2,在地表上测量流过大地的电流,如果电流是常数,则测量得到的电压和大地电阻成比例。显示值取决于机内的扩展电阻,所以要根据不同的电阻测量值来选择相应的量程以获得最佳读数。交流信号是由内置变换器产生的。

接地电阻测试方法(图解)

接地电阻国家标准 建筑物接地电阻的要求 依据GB50057-94(2000版)《建筑物防雷设计规范》第三章、建筑物的防雷措施;第二节、第一类防雷建筑物的防雷措施要求,第条:防雷电感应的接地装置应和电气设备接地装置共用,其工频接地电阻不应大于10Ω。第三节、第二类防雷建筑物的防雷措施要求,第条:每根引下线的接地电阻不小于10Ω,防直击雷接地装置宜和防雷电感应、电气设备、信息系统等共用接地装置。第条:避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不应大于10Ω。架空和直接埋地的金属管道在进出建筑物处应就近与防雷的接地装置相连;当不相连时,架空管道应接地,其冲击接地电阻不应大于10Ω。本规范第.条四、五、六款所规定的建筑物,引人、引出该建筑物的金属管道在进出处应与防雷的接地装置相连;对架空金属管道尚应在距建筑物约25m处接地一次,其冲击接地电阻不应大于10Ω。第四节、第三类防雷建筑物的防雷措施要求,第条:每根引下线的冲击接地电阻不宜大于30Ω。第条:避雷器、电缆金属外皮和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于30Ω。 电源系统接地电阻的要求 依据JGJ/T16-92《民用建筑电气设计规范》第14章接地与安全:第条要求,当机房接地与防雷接地系统共用时,接地电阻要求小于1Ω。因此对于监控机房和通讯机房接地均应与建筑物防雷地等共用同一接地装置,接地电阻要求小于1Ω。 依据GB50089-98《民用爆破器材工厂设计安全规范》第12章:电气;第条:在电缆与架空线连接处,应装设避雷器。避雷器、电缆金属外皮、钢管和绝缘子铁脚、金具等应连在一起接地,其冲击接地电阻不宜大于10Ω。第条:输送危险物质的各种室外架空管,应每隔20~25米接地一次,每处冲击接地电阻不应大于10Ω。第条:危险区域应采取相应的防静电措施。凡生产、加工或储存危险品的过程中,有可能积聚静电电荷的金属设备、金属管道和导电物体,均应直接接地,接地电阻不应大于100Ω。第条:低压配电线路的接地应采用TN-S或TN-C-S系统,引入建筑物的电源线路,中性点应重复接地,接地电阻不应大于10Ω。 石化接地电阻的要求 依据GB50074-2002《石油库设计规范》第14章:电气装置;第条:钢油罐接地点沿油罐周长的间距,不宜大于30m,接地电阻不宜大于10Ω。第条:覆土油罐的罐体及罐宝的金属构件以及呼吸阀、量油孔等金属附件,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进出洞内的金属管道接地电阻不宜大于20Ω。电力和信息线路应采用铠装电缆埋地引入洞内。接地电阻不宜大于20Ω。电缆与架空线路的连接处,应装设过电压保护器。过电压保护器、电缆外皮和瓷瓶铁脚,应做电气连接并接地,接地电阻不宜大于10Ω。第条:进入油品装卸区的输油(油气)管道在进入点应接地,接地电阻不应大于20Ω。第条:避雷针(网、带)的接地电阻,不宜大于10Ω。第条:每组绝缘轨缝的电气化铁路侧,应设一组向电气化铁路所在方向延伸的接地装置,接地电阻不应大于10Ω。第条:铁路油品装卸设施的钢轨、输油管道、鹤管、钢栈桥等应做等电位跨接并接地,两组跨接间距不应大于20m,每组接地电阻不应大于10Ω。条:防静电装置的接地电阻应小于100Ω。第条:石油库内防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置,其接地电阻不应大于4Ω。 依据GB50156-2002《汽车加油加气站设计与施工规范》第10章:电气装置;第条:加油加气站的防雷接地、防静电接地、电气设备的工作接地、保护接地及信息系统的接地等,宜共用接地装置,其接地电阻不应大于4Ω。第条:液化受有气罐采用牺牲阳极法进行阴极防腐时,牺牲阳极的接地电阻不应大于10Ω。第条:地上或管沟敷设的油品、液化石油气和天然气管道的始、末端和分支处

相关文档