文档库 最新最全的文档下载
当前位置:文档库 › 第七章 金属及合金的回复与再结晶

第七章 金属及合金的回复与再结晶

第六章 回复与再结晶

第六章回复与再结晶 (一)填空题 1. 金属再结晶概念的前提是,它与重结晶的主要区别是。 2. 金属的最低再结晶温度是指,它与熔点的大致关系是。 3 钢在常温下的变形加工称,铅在常温下的变形加工称。 4.回复是,再结晶是。 5.临界变形量的定义是,通常临界变形量约在范围内。 6 金属板材深冲压时形成制耳是由于造成的。 7.根据经验公式得知,纯铁的最低再结晶温度为。 (二)判断题 1.金属的预先变形越大,其开始再结晶的温度越高。(×) 2.变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。(√)3.金属的热加工是指在室温以上的塑性变形过程。(×) 4.金属铸件不能通过再结晶退火来细化晶粒。(√) 金属铸件不能通过再结晶退火达到细化晶粒的目的,因为铸件,没有经受冷变形加工,所以当加热至再结晶退火温度时,其组织不会发生根本变化,因而达不到细化晶粒的目的。 再结晶退火必须用于经冷塑性变形加工的材料,其目的是改善冷变形后材料的组织和性能。再结晶退火的温度较低,一般都在临界点以下。若对铸件采用再结晶退火,其组织不会发生相变,也没有形成新晶核的驱动力(如冷变形储存能等),所以不会形成新晶粒,也就不能细化晶粒。 5.再结晶过程是形核和核长大过程,所以再结晶过程也是相变过程。(×); 6 从金属学的观点看,凡是加热以后的变形为热加工,反之不加热的变形为冷加工。 (×) 7 在一定范围内增加冷变形金属的变形量,会使再结晶温度下降。( √) 8.凡是重要的结构零件一般都应进行锻造加工。(√) 9.在冷拔钢丝时,如果总变形量很大,中间需安排几次退火工序。( √) 10.从本质上讲,热加工变形不产生加工硬化现象,而冷加工变形会产生加工硬化现象。这是两者的主要区别。( ×) (三)选择题 1.变形金属在加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶型( )。 A.与变形前的金属相同 B 与变形后的金属相同 C 与再结晶前的金属相同D.形成新的晶型 2.金属的再结晶温度是( ) A.一个确定的温度值B.一个温度范围 C 一个临界点D.一个最高的温度值 3.为了提高大跨距铜导线的强度,可以采取适当的( A )。 A.冷塑变形加去应力退火 B 冷塑变形加再结晶退火 C 热处理强化D.热加工强化 4 下面制造齿轮的方法中,较为理想的方法是( C )。 A.用厚钢板切出圆饼再加工成齿轮B用粗钢棒切下圆饼再加工成齿轮 C 由圆钢棒热锻成圆饼再加工成齿轮D.由钢液浇注成圆饼再加工成齿轮 5.下面说法正确的是( C )。 A.冷加工钨在1 000℃发生再结晶 B 钢的再结晶退火温度为450℃ C 冷加工铅在0℃也会发生再结晶D.冷加工铝的T再≈0.4Tm=0.4X660℃=264℃ 6 下列工艺操作正确的是(D ) 。 A.用冷拉强化的弹簧丝绳吊装大型零件淬火加热时入炉和出炉 B 用冷拉强化的弹簧钢丝作沙发弹簧 C 室温可以将保险丝拉成细丝而不采取中间退火 D.铅的铸锭在室温多次轧制成为薄板,中间应进行再结晶退火 7 冷加工金属回复时,位错(C )。

七章-回复与再结晶习题标准答案(西北工业大学-刘智恩)

七章-回复与再结晶习题答案(西北工业大学-刘智恩)

————————————————————————————————作者:————————————————————————————————日期:

1.设计一种实验方法,确定在一定温度( T )下再结晶形核率N和长大线速度G (若N和G都随时间而变)。 2.金属铸件能否通过再结晶退火来细化晶粒? 3.固态下无相变的金属及合金,如不重熔,能否改变其晶粒大小? 用什么方法可以改变? 4.说明金属在冷变形、回复、再结晶及晶粒长大各阶段晶体缺陷的行为与表现,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。 5.将一锲型铜片置于间距恒定的两轧辊间轧制,如图7—4所示。 (1) 画出此铜片经完全再结晶后晶粒大小沿片长方向变化的 示意图;

(2) 如果在较低温度退火,何处先发生再结晶?为什么? 6.图7—5示出。—黄铜在再结晶终了的晶粒尺寸和再结晶前的冷加 工量之间的关系。图中曲线表明,三种不同的退火温度对晶粒大小影响不大。这一现象与通常所说的“退火温度越高,退火后晶粒越大”是否有矛盾?该如何解释? 7.假定再结晶温度被定义为在1 h 内完成95%再结晶的温度,按阿 累尼乌斯(Arrhenius)方程,N =N 0exp(RT Q n -),G =G 0exp(RT Q g -)可 以知道,再结晶温度将是G 和向的函数。 (1) 确定再结晶温度与G 0,N 0,Q g ,Q n 的函数关系; (2) 说明N 0,G 0,Q g ,Q 0的意义及其影响因素。 8.为细化某纯铝件晶粒,将其冷变形5%后于650℃退火1 h ,组织 反而粗化;增大冷变形量至80%,再于650℃退火1 h ,仍然得到粗大晶粒。试分析其原因,指出上述工艺不合理处,并制定一种合理的晶粒细化工艺。

回复与再结晶

理论课教案 编号:NGQD-0707-09版本号:A/0页码:编制/时间:审核/时间:批准/时间: 学科金属材料及 热处理 第三章金属的塑性变形与再结晶 第三节回复与再结晶 教学类型授新课授课时数1授课班级 教学目的 和要求 1、了解加热过程中,变形金属内部组织的变化。 教学重点和难点1、重点:回复、再结晶的作用。 2、难点:再结晶温度的计算。 教具准备 复习提问再结晶温度如何计算? 作业布置P33习题8 教学方法主要教学内容和过程附记 §3-3回复与再结晶 经冷塑性变形后的金属晶粒破碎,晶格扭曲,位错密度增高,产生内应力,其内部能量增高,因而组织处于不稳定 的状态,并存在向稳定状态转变的趋势。在低温下,这种转 变一般不易实现。而在加热时,由于原子的动能增大,活动 能力增强,冷塑性变形后的金属组织会发生一系列的变化, 最后趋于较稳定的状态。随着加热温度的升高,变形金属的 内部相继发生回复、再结晶、晶粒长大三个阶段的变化

理论课教案附页 编制/时间: 教学方法主要教学内容和过程附记 一、回复 回复:当加热温度不太高时,原子活动能力有所增加,原子已能作短距离的运动,此时,晶格畸变程度大为减轻, 从而使内应力有所降低,这个阶段称为回复。 1、回复是冷塑性变形金属在较低温度下加热的阶段。 在这个温度范围内,随温度的升高,变形金属中的原子活动 能力有所增大。 2、通过回复,变形金属的晶格畸变程度减轻,内应力 大部分消除,但金属的显微组织无明显变化,因此力学性能 变化不大。 3、在生产实际中,常利用回复现象将冷变形金属在低 温加热,进行消除内应力的处理,适当提高塑性、韧性、弹 性,以稳定其组织和尺寸,并保留加工硬化时留下的高硬度 的性能。 二、再结晶 再结晶:当冷塑性变形金属加热到较高温度时,由畸变晶粒通过形核及晶核长大而形成新的无畸变的等轴晶粒的 过程。 1、再结晶过程是发生在较高温度(再结晶温度以上), 其过程以形核和核长大的方式进行。(见教材P30) 2、再结晶后,冷变形金属的组织和性能恢复到变形前 的状态(教材P31) 3、再结晶过程是新晶粒重新形成的过程,而晶格类型 并没有发生改变,所以它不是相变过程。(教材P31)

金属学与热处理课后习题答案第七章

第七章金属及合金的回复和再结晶 7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么? 答: 应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。 原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。 7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1) 7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。 答: 再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。 1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再≈δTm,对于工业纯金属来说:δ值为0.35-0.4,取0.4计算。 2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。 如上所述取T =0.4Tm,可得: 再 W再=3399×0.4=1359.6℃ Fe再=1538×0.4=615.2℃ Cu再=1083×0.4=433.2℃ 7-4 说明以下概念的本质区别:

1、一次再结晶和二次在结晶。 2、再结晶时晶核长大和再结晶后的晶粒长大。 答: 1、一次再结晶和二次在结晶。 定义 一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显著下降,性能发生显著变化恢复到冷变形前的水平,称为(一次)再结晶。它的实质是新的晶粒形核、长大的过程。 二次再结晶:经过剧烈冷变形的某些金属材料,在较高温度下退火时,会出现反常的晶粒长大现象,即少数晶粒具有特别大的长大能力,逐步吞食掉周围的小晶粒,其最终尺寸超过原始晶粒的几十倍或上百倍,比临界变形后的再结晶晶粒还要粗大得多,这个过程称为二次再结晶。二次再结晶并不是晶粒重新形核和长大的过程,它是以一次再结晶后的某些特殊晶粒作为基础而异常长大,严格来说它是特殊条件下的晶粒长大过程,并非是再结晶过程。 本质区别:是否有新的形核晶粒。 2、再结晶时晶核长大和再结晶后的晶粒长大。 定义 再结晶晶核长大:是指再结晶晶核形成后长大至再结晶初始晶粒的过程。其长大驱动力是新晶粒与周围变形基体的畸变能差,促使晶核界面向畸变区域推进,界面移动的方向,也就是晶粒长大的方向总是远离界面曲率中心,直至所有畸变晶粒被新的无畸变晶粒代替。 再结晶后的晶粒长大:是指再结晶晶核长大成再结晶初始晶粒后,当温度继续升高或延长保温时间,晶粒仍然继续长大的过程。此时,晶粒长大的驱动力是晶粒长大前后总的界面能的差,界面移动的方向,也就是晶粒长大的方向都朝向晶界的曲率中心,直至晶界变成平面状,达到界面能最低的稳定状态。 本质区别: 1、长大驱动力不同 2、长大方向不同,即晶界的移动方向不同。 7-5 分析回复和再结晶阶段空位与位错的变化及其对性能的影响。 答: 回复阶段: 回复:是指冷塑性变形的金属在加热时,在光学显微组织发生改变前(即再结晶晶粒形成前)所产生的某些亚结构和性能的变化过程。 空位和位错的变化及对性能的影响: 回复过程中,空位和位错发生运动,从而改变了他们的数量和组态。 低温回复时,主要涉及空位的运动。空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。电阻率对空位密度比较敏感,因此其数值会有显著下降。而力学性能对空位的变化不敏感,没有变化。 中温回复时,主要涉及位错的运动。由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。高温回复时,主要涉及位错的运动。位错不但可以滑移、而且可以攀移,发生多

金属学与热处理课后习题答案第七章

第七章金属及合金的回复和再结晶7-1 用冷拔铜丝线制作导线,冷拔之后应如何如理,为什么? 答: 应采取回复退火(去应力退火)处理:即将冷变形金属加热到再结晶温度以下某一温度,并保温足够时间,然后缓慢冷却到室温的热处理工艺。 原因:铜丝冷拔属于再结晶温度以下的冷变形加工,冷塑性变形会使铜丝产生加工硬化和残留内应力,该残留内应力的存在容易导致铜丝在使用过程中断裂。因此,应当采用去应力退火使冷拔铜丝在基本上保持加工硬化的条件下降低其内应力(主要是第一类内应力),改善其塑性和韧性,提高其在使用过程的安全性。 7-2 一块厚纯金属板经冷弯并再结晶退火后,试画出截面上的显微组织示意图。 答:解答此题就是画出金属冷变形后晶粒回复、再结晶和晶粒长大过程示意图(可参考教材P195,图7-1) 7-3 已知W、Fe、Cu的熔点分别为3399℃、1538℃和1083℃,试估算其再结晶温度。答: 再结晶温度:通常把经过严重冷变形(变形度在70%以上)的金属,在约1h的保温时间内能够完成超过95%再结晶转变量的温度作为再结晶温度。 1、金属的最低再结晶温度与其熔点之间存在一经验关系式:T再≈δTm,对于工业纯金属来说:δ值为0.35-0.4,取0.4计算。 2、应当指出,为了消除冷塑性变形加工硬化现象,再结晶退火温度通常要比其最低再结晶温度高出100-200℃。 =0.4Tm,可得: 如上所述取T 再 W再=3399×0.4=1359.6℃ Fe再=1538×0.4=615.2℃ Cu再=1083×0.4=433.2℃ 7-4 说明以下概念的本质区别: 1、一次再结晶和二次在结晶。 2、再结晶时晶核长大和再结晶后的晶粒长大。 答: 1、一次再结晶和二次在结晶。 定义 一次再结晶:冷变形后的金属加热到一定温度,保温足够时间后,在原来的变形组织中产生了无畸变的新的等轴晶粒,位错密度显著下降,性能发生显著变化恢复到冷变形前的水平,称为(一次)再结晶。它的实质是新的晶粒形核、长大的过程。 二次再结晶:经过剧烈冷变形的某些金属材料,在较高温度下退火时,会出现反常的晶粒长大现象,即少数晶粒具有特别大的长大能力,逐步吞食掉周围的小晶粒,其最终尺寸超过原始晶粒的几十倍或上百倍,比临界变形后的再结晶晶粒还要粗大得多,这个过程称为二次再结晶。二次再结晶并不是晶粒重新形核和长大的过程,它是以一次再结晶后的某些特殊晶粒作为基础而异常长大,严格来说它是特殊条件下的晶粒长大过程,并非是再结晶过程。 本质区别:是否有新的形核晶粒。 2、再结晶时晶核长大和再结晶后的晶粒长大。

第五次作业( 金属与合金的回复与再结晶)

第五次作业 第六章《金属与合金的回复与再结晶》 一、名词解释: 1.储存能: 2.回复: 3.再结晶: 4.再结晶温度: 5.临界变形度: 6.热加工: 7.冷加工: 二、填空题: 1.变形金属的最低再结晶温度是指 。2.钢在常温下的变形加工称为加工,而铅在常温下变形加工称为加工。3.影响再结晶开始温度的因素、、和、、。 4.再结晶后晶粒的大小主要取决于和。 5.金属在塑性变形时所消耗的机械能,绝大部分(占90%)转变成。但有一小部分能量占(10%)是以增加金属的和因变形不均匀而产生的形式(残余应力)储存起来,这种能量我们称之为。在这10% 形变储存能中,其中90%是由于和引起;10%为而产生的。 6.金属在热加工过程中,塑性变形使其发生,由于加工温度高于再结晶温度,金属在塑性变形过程中同时发生与,

使金属和同时交替进行。 三、判断题: 1.()金属的预先变形度越大,其开始再结晶的温度越高。 2.()其它条件相同,变形金属的再结晶退火温度越高,退火后得到的晶粒越粗大。 3.()金属铸件可以通过再结晶退火来细化晶粒。 4.()热加工是指在室温以上的塑性变形加工。 5.()再结晶能够消除加工硬化效果,是一种软化过程。 6.()再结晶过程是有晶格类型变化的结晶过程。 四、选择题: 1.工业纯金属的最低再结晶温度可用下式计算:() a.T再(℃)=0.4T熔(℃);b.T再(K)=0.4T熔(K); c.T再(K)=0.4T熔(℃)+273。 2.变形金属再加热时发生的再结晶过程是一个新晶粒代替旧晶粒的过程,这种新晶粒的晶体结构是:() a.与变形前的金属相同;b.与变形后的金属相同;c.形成新的结构。3.金属再结晶后:() a.形成等轴晶,强度增大;b.形成柱状晶,塑性下降; c.形成柱状晶,强度升高;d.形成等轴晶,塑性升高。 五、问答题: 1.已知金属钨、铁、铅、锡的熔点分别为3380℃,1538℃,327℃和232℃,试计算这些金属的最低再结晶温度,并分析钨和铁在1100℃下的加工,锡和铅在室温(20℃)下的加工各为何种加工? 2.何谓临界变形度?简要分析造成临界变形度的原因。 3.热加工对金属的组织和性能有何影响?钢材在热变形加工时,为什么不出现

金属及合金的回复与再结晶

金属及合金的回复与再结晶 回复:冷变形金属在低温加热时,其显微组织无可见变化,但其物理、力学性能却部分恢复到冷塑性变形以前的过程。晶粒仍保持伸长的纤维状. 再结晶:冷变形金属被加热到适当温度后,在变形组织内部新的无畸变的等轴晶粒逐步取代变形晶粒,而使形变强化效应完全消失的过程。 回复与再结晶的驱动力都是储存能的降低 储存能:存在于冷形变金属内部的一小部分(约为10%)变形功.形变温度越低,形变量越大,则储存能越高。 储存能存在形式:弹性应变能(3%~12%)+点阵畸变能点阵畸变能包括点缺陷能和位错能,点缺陷能所占的比例较小,而位错能所占比例较大,约占总储存能的80~90%。 力学性能的变化 在回复阶段:强度、硬度均略有下降,而塑性有所提高.在再结晶阶段:硬度、硬度均显著下降,塑性大大提高.在晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗化严重时下降 另外,金属的电阻与晶体中点缺陷的浓度有关。随着加热温度的升高,变形金属中的点缺陷浓度明显降低,因此在回复和再结晶阶段,电阻均发生了比较明显的变化,电阻不断下降。此外,点缺陷浓度的降低,应力腐蚀倾向显著减小。 回复过程及其动力学特征 回复是指经冷塑性变形的金属在加热时,在光学显微组织发生变化前所产生的某些亚结构和性能的变化过程.回复的程度是温度和时间的函数.温度越高,回复的程度越大.温度一定时,回复的程度随时间的延长而逐渐增加.但在回复初期,变化较大,随后就逐渐变慢,当达到一个极限值后,回复停止。

回复机制 低温回复时,主要涉及空位的运动。空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。电阻率对空位密度比较敏感,因此其数值会有显著下降。而力学性能对空位的变化不敏感,没有变化。 中温回复时,主要涉及位错的运动。由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。 高温回复时,主要涉及位错的运动。位错不但可以滑移、而且可以攀移,发生多边化,使错密度有所降低,降低系统部分内应力,从而使硬度、强度略有下降,塑性、韧性得到改善。 回复过程中亚结构(胞状亚结构)的变化 金属材料经塑性变形后形成胞状亚结构,胞内位错密度较低,胞壁处集中着缠结位错,位错密度很高。经短暂回复退火后,空位浓度大大下降,胞内的位错向胞壁滑移,与胞壁的异号位错相抵消,位错密度有所下降.随着回复的进一步进行,胞壁中的位错逐渐形成低能态的位错网络,胞壁变得比较明晰而成为亚晶界,接着这些亚晶界通过亚晶界的迁移而逐渐长大,亚晶粒内的位错密度进一步下降.回复温度越低,变形量越大,则回复后的亚晶粒越细小. 再结晶形核机制 亚晶长大形核机制(适用于大变形度)因在回复阶段,塑性变形所形成的胞状组织经多边形化后转变为亚晶,其中有些亚晶粒就会逐渐长大,发展成为再结晶的晶核,这种亚晶成为再结晶晶核的方式有两种: 1)亚晶界移动形核它是依靠某些局部位错密度很高的亚晶界的移动,吞并相邻的变形基体和亚晶而成长为再结晶晶核。 2)亚晶合并形核相邻亚晶界上的位错,通过攀移和滑移,转移到周围的晶界或亚晶界上,导致原来亚晶界的消失,然后通过原子扩散和位置的调整,终于使两个或更多个亚晶粒的取向变为一致,合并成为一个大的亚晶粒,成为再结晶的晶核。晶界凸出形核机制(变形度约小于40%)又称为晶界弓出形核。由于变形度小,所以金属的变形不均匀,有的晶粒变形度大,位错密度也大;有的晶粒变形

第7章 回复和再结晶

第7章回复和再结晶 金属发生冷塑性变形后,其组织和性能发生了变化,为了使冷变形金属恢复到冷变形前的状态,需要将其进行加热退火。 为什么将冷变形金属加热到适当的温度能使其恢复到冷变形前的状态呢?因为冷变形金属中储存了部分机械能,使能量升高,处于热力学不稳定的亚稳状态,它有自发向热力学更稳定的低能状态转变的趋势。然而,在这两种状态之间有一个能量升高的中间状态,成为自发转变的障碍,称势垒。如果升高温度,金属中的原子获得足够的能量(激活能),就可越过势垒,转变成低能状态。 研究冷变形金属在加热过程中的变化有两种方法。1)以一定的速度连续加热时发生的变化;2)快速加热到某一温度,在保温过程中发生的变化。通常采用。 P195图1为将冷变形金属快速加热到0.5T m附近保温时,金相组织随保温时间的变化示意图。可以将保温过程分三个阶段:1)在光学显微组织发生改变前,称回复阶段;2)等轴晶粒开始产生到变形晶粒刚消失之间,称再结晶阶段;3)晶粒长大阶段。 7-1 回复 一、回复的定义 冷变形金属加热时,在光学显微组织发生改变前所产生的某些亚结构和性能的变化称回复。 二、回复对性能的影响 内应力降低,电阻降低,硬度和强度下降不多(基本不变)。 三、回复的机制 回复的机制根据温度的不同有三种: (一)低温回复机制 冷变形金属在较低温度范围就开始回复,主要表现为电阻下降,但机械性能无变化。由此认为低温回复的机制是:过量点缺陷减少或消失。 (二)中温回复机制 温度范围比低温回复稍高。中温回复的机制是:位错发生滑移,导致位错的重新组合,及异号位错相遇抵消。 发生中温回复时,在电镜组织中,位错组态有变化;但位错密度的下降不明显。若两个异号位错不在同一滑移面上,在相遇抵消前,要通过攀移或交滑

第6章金属及合金的回复与再结晶

第六章:金属及合金的回复与再结晶 1.回复和再结晶的概念:形变后的金属和合金处于不稳定的高自由能状态,具有一种向着形变前低自由能状态自发恢复的趋势,因此,只要动力学条件允许,例如温度较高,原子具有相当的扩散能力时,形变后的金属和合金就会自发的向着自由能降低的方向转变。进行这种转变的过程称回复和再结晶。前者是指在较低温度下或在较早阶段所发生的转变过程;后者则指在较高温度下或较晚阶段发生的过程。 2.退火:将金属材料加热到某一规定温度,并保温一段时间,而后缓慢冷却至室温的一种热处理过程。其目的在于足够提高金属材料组织和结构的热力学稳定性,以保证所要求的各种性能指标,形变金属和合金的退火主要由回复、再结晶和晶粒长大三个过程综合组成的。3.形变金属或合金退火过程中发生的一般变化: ①显微组织的基本变化回复阶段:显微组织的基本变化看不出任何变化,晶粒保持伸长状或扁片状;再结晶阶段:形变晶粒内部发生了新晶粒的生核和成长过程,直到形变组织完全改组为新的等轴晶粒;晶粒长大阶段:新晶粒逐步相互吞食而长大,直到一个较为稳定的尺寸。 ②储存能的变化供金属和合金形变而施加的外部能量有相当一部分以弹性能和缺陷能的形式储存在金属内部,这一部分储存能在加热退火过程中应释放出来,成为回复和再结晶的推动力。 ③性能的变化硬度、强度变化:回复过程中,位错密度的减小有限,只有达到再结晶阶段时,位错密度才会显著下降,因此回复阶段强度变化有限,再结晶阶段变化很大。电阻、密度变化:在回复阶段,点缺陷密度显著下降,因此回复阶段电阻显著减小,密度逐步增大。总之,回复过程中,硬度和强度等力学性能等变化率很小,而电阻和密度等一些物理性能变化率却相当大;再结晶过程中,各种变化都是比较剧烈的。 回复机理: 再结晶与相变:再结晶形似相变,但并非相变。一般来说,再结晶前后各晶粒的晶体类型不变,成分也不变。从转变过程来看与相变有很多相似之处。相变是自由能较低的新相在自由能较高的旧相中进行生核和成长的过程,驱动力是体积自由能差,阻力主要来自异相间的界面能;而再结晶则是无畸变能或畸变能较低的晶粒在畸变能较高的基体中进行生核和成长的过程,驱动力是畸变能差,阻力则来自晶界能。 再结晶过程的形核:再结晶形核一般有两种方式:一是原晶界的某些部位突然迅速成长而变为核心,二是某些亚晶的迅速成长而变为核心。所谓再结晶核心是通过某些现成的活动性较大的界面突发式的移动而形成的,这些现成界面可以是原始大角晶界、通过亚晶长大而逐步形成的大角亚晶界、已存在与形变基体中的大角亚晶界。 再结晶晶核的长大:当再结晶晶核出现后,晶核成长总是通过晶界向着畸变能较高的基体中扩散移动而进行的,晶界移动的驱动力主要是两晶粒间的畸变能差,晶界向着其曲率中心的反方向移动。由于形变基体中的畸变能分布不均,而晶界总是优先想畸变能大的地方推移,所以在长大过程中,界面总是参差不齐的甚至呈锯齿状。 再结晶动力学: 再结晶温度:再结晶温度不象结晶或其它相变温度那样确定不变,它受许多因素影响,可以随条件的不同而在一个相当宽的范围内变化。通常所说的再结晶温度是指在规定时间内(如一小时)能够完成再结晶,或再结晶达到规定程度(如95%)的最低温度。即再结晶温度包含时间和再结晶量两个因素在内。 再结晶晶粒大小:再结晶晶粒的平均直径d=K[G/N]1/4-K为比例常数。 预形变量:预形变量增大可使N/G增大,因此原始晶粒度相同时,预形变量越大,晶粒尺

七章回复与再结晶习题答案(西北工业大学刘智恩)

1.设计一种实验方法,确定在一定温度( T )下再结晶形核率N和长大线速度G (若N和G都随时间而变)。 2.金属铸件能否通过再结晶退火来细化晶粒 3.固态下无相变的金属及合金,如不重熔,能否改变其晶粒大小用什么方法可以改变 4.说明金属在冷变形、回复、再结晶及晶粒长大各阶段晶体缺陷的行为与表现,并说明各阶段促使这些晶体缺陷运动的驱动力是什么。 5.将一锲型铜片置于间距恒定的两轧辊间轧制,如图7—4所示。 (1) 画出此铜片经完全再结晶后晶粒大小沿片长方 向变化的示意图;

(2) 如果在较低温度退火,何处先发生再结晶为什么 6.图7—5示出。—黄铜在再结晶终了的晶粒尺寸和再结晶 前的冷加工量之间的关系。图中曲线表明,三种不同的退火温度对晶粒大小影响不大。这一现象与通常所说的“退火温度越高,退火后晶粒越大”是否有矛盾该如何解释 7.假定再结晶温度被定义为在1 h 内完成95%再结晶的温度, 按阿累尼乌斯(Arrhenius)方程,N =N 0exp(RT Q n -),G =G 0exp(RT Q g -) 可以知道,再结晶温度将是G 和向的函数。 (1) 确定再结晶温度与G 0,N 0,Q g ,Q n 的函数关系; (2) 说明N 0,G 0,Q g ,Q 0的意义及其影响因素。 8.为细化某纯铝件晶粒,将其冷变形5%后于650℃退火1 h ,组织反而粗化;增大冷变形量至80%,再于650℃退火1 h ,仍然得到粗大晶粒。试分析其原因,指出上述工艺不合理处,并制定一种合理的晶粒细化工艺。

9.冷拉铜导线在用作架空导线时(要求一定的强度)和电灯花导线(要求韧性好)时,应分别采用什么样的最终热处理工艺才合适 10.试比较去应力退火过程与动态回复过程位错运动有何不同。从显微组织上如何区分动、静态回复和动、静态再结晶 11.某低碳钢零件要求各向同性,但在热加工后形成比较明显的带状组织。请提出几种具体方法来减轻或消除在热加工中形成带状组织的因素。 12.为何金属材料经热加工后机械性能较铸造状态为佳 13.灯泡中的钨丝在非常高的温度下工作,故会发生显著的晶粒长大。当形成横跨灯丝的大晶粒时,

回复与再结晶

第七章回复与再结晶 重点与难点 内容提要: 晶体在外力的作用下发生形变.当外力较小时形变是弹性的,即卸载后形变也随之消失.这 种可恢复的变形就称为弹性变形.但是,当外加应力超过一定值(即屈服极限)时,卸载后变形就不能完全消失,而会留下一定的残余变形或永久变形.这种不可恢复的变形就称为塑性变形. 晶体的弹性和材料的微观组织(或结构)关系不大,而晶体的塑性(和强度)则对微观组织(结构)十分敏感. 本章的重点时讨论单晶体的塑性变形方式和规律,并在此基础上讨论多晶体和合金的塑性 变形特点及位错机制,以便认识材料强韧化的本质和方法,合理使用,研制开发新材料. 从微观上看,单晶体塑性变形的基本方法有两种:滑移和孪生.滑移和孪生都是剪应变,即在剪应力作用下晶体的一部分相对与另一部分沿着特定的晶面和晶向发生滑移.在滑移时,改特定晶面和晶向分别称为滑移面和滑移方向,一个滑移面和位于该面上的一个滑移方向便组成一个滑移系统.类似的,在孪生时,该特定晶面和晶向分别称为孪生面和孪生方向,一个孪生面和位于该面上的一个孪生方向组成一个孪生系统. 多晶体及合金的塑性变形,其基本方式也是滑移和孪生.不过,也各有其特点,如多晶体变形时,就会受晶粒取向及晶界的影响;而合金变形时还会受到第二相的影响. 陶瓷晶体的塑性变形与金属不同.除了与结合键(共价键、离子键)的本性有关外,还与陶瓷晶体中的滑移多少、位错的柏氏矢量大有关.所以,仅有那些以离子键为主的单晶体陶瓷可以进行较多的塑性变形. 许多高聚物在一定的条件下都能屈服,有些高聚物在屈服之后产生很大的塑性变形,但这与金属材料的屈服现象有着本质上的差别.高聚物的变形受温度的影响很大:在Tg以下,材料是钢硬的,只有弹性变形;在Tg附近,呈粘弹性或皮革状;在Tg以上呈橡胶态;接近Tm时呈粘性流动。基本要求: (1)熟悉滑移、孪生变形的主要特点;滑移系统及schmid定律(T=σm=Tk) (2)能用位错理论解释晶体的滑移过程,滑移带和滑移线的形成,滑移系的特点; (3)理解加工硬化、细晶强化、弥散强化、固溶强化等产生的原因和它的实际意义; (4)了解聚合物及陶瓷塑性变形的特点; (5)熟悉材料塑性变形后内部组织及性能的变化,这些变化的实际意义; (6)了解屈服现象与应变实效,它对生产有什么危害及如何消除?

金属及合金的回复与再结晶教学文稿

金属及合金的回复与 再结晶

金属及合金的回复与再结晶 回复:冷变形金属在低温加热时,其显微组织无可见变化,但其物理、力学性能却部分恢复到冷塑性变形以前的过程。晶粒仍保持伸长的纤维状. 再结晶:冷变形金属被加热到适当温度后,在变形组织内部新的无畸变的等轴晶粒逐步取代变形晶粒,而使形变强化效应完全消失的过程。 回复与再结晶的驱动力都是储存能的降低 储存能:存在于冷形变金属内部的一小部分(约为10%)变形功.形变温度越低,形变量越大,则储存能越高。 储存能存在形式:弹性应变能(3%~12%)+点阵畸变能点阵畸变能包括点缺陷能和位错能,点缺陷能所占的比例较小,而位错能所占比例较大,约占总储存能的80~90%。 力学性能的变化 在回复阶段:强度、硬度均略有下降,而塑性有所提高.在再结晶阶段:硬度、硬度均显著下降,塑性大大提高.在晶粒长大阶段:强度、硬度继续下降,塑性继续提高,粗化严重时下降 另外,金属的电阻与晶体中点缺陷的浓度有关。随着加热温度的升高,变形金属中的点缺陷浓度明显降低,因此在回复和再结晶阶段,电阻均发生了比较明显的变化,电阻不断下降。此外,点缺陷浓度的降低,应力腐蚀倾向显著减小。 回复过程及其动力学特征 回复是指经冷塑性变形的金属在加热时,在光学显微组织发生变化前所产生的某些亚结构和性能的变化过程.回复的程度是温度和时间的函数.温度越高,回复的程度越大.温度一定时,回复的程度随时间的延长而逐渐增加.但在回复初期,变化较大,随后就逐渐变慢,当达到一个极限值后,回复停止。

回复机制 低温回复时,主要涉及空位的运动。空位可以移至表面、晶界或位错处消失,也可以聚集形成空位对、空位群,还可以与间隙原子相互作用而消失,总之空位运动的结果使空位密度大大减小。电阻率对空位密度比较敏感,因此其数值会有显著下降。而力学性能对空位的变化不敏感,没有变化。 中温回复时,主要涉及位错的运动。由于位错滑移会导致同一滑移面上异号位错合并而相互抵消,位错密度略有下降,但降低幅度不大,力学性能变化不大。 高温回复时,主要涉及位错的运动。位错不但可以滑移、而且可以攀移,发生多边化,使错密度有所降低,降低系统部分内应力,从而使硬度、强度略有下降,塑性、韧性得到改善。 回复过程中亚结构(胞状亚结构)的变化 金属材料经塑性变形后形成胞状亚结构,胞内位错密度较低,胞壁处集中着缠结位错,位错密度很高。经短暂回复退火后,空位浓度大大下降,胞内的位错向胞壁滑移,与胞壁的异号位错相抵消,位错密度有所下降.随着回复的进一步进行,胞壁中的位错逐渐形成低能态的位错网络,胞壁变得比较明晰而成为亚晶界,接着这些亚晶界通过亚晶界的迁移而逐渐长大,亚晶粒内的位错密度进一步下降.回复温度越低,变形量越大,则回复后的亚晶粒越细小. 再结晶形核机制 亚晶长大形核机制(适用于大变形度)因在回复阶段,塑性变形所形成的胞状组织经多边形化后转变为亚晶,其中有些亚晶粒就会逐渐长大,发展成为再结晶的晶核,这种亚晶成为再结晶晶核的方式有两种: 1)亚晶界移动形核它是依靠某些局部位错密度很高的亚晶界的移动,吞并相邻的变形基体和亚晶而成长为再结晶晶核。 2)亚晶合并形核相邻亚晶界上的位错,通过攀移和滑移,转移到周围的晶界或亚晶界上,导致原来亚晶界的消失,然后通过原子扩散和位置的调整,终于使两个或更多个亚晶粒的取向变为一致,合并成为一个大的亚晶粒,成为再结晶的晶核。晶界凸出形核机制(变形度约小于40%)又称为晶界弓出形核。由于变形度小,所以金属的变形不均匀,有的晶粒变形度大,位错密度也大;有的晶粒

相关文档
相关文档 最新文档