文档库 最新最全的文档下载
当前位置:文档库 › 《三维设计》2016级数学一轮复习基础讲解双曲线

《三维设计》2016级数学一轮复习基础讲解双曲线

《三维设计》2016级数学一轮复习基础讲解双曲线
《三维设计》2016级数学一轮复习基础讲解双曲线

双_曲_线

[知识能否忆起]

1.双曲线的定义

平面内与定点F 1、F 2的距离的差的绝对值等于常数(小于|F 1F 2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两焦点间的距离叫做双曲线的焦距.

2.双曲线的标准方程和几何性质

[小题能否全取]

1.(教材习题改编)若双曲线方程为x 2-2y 2=1,则它的左焦点的坐标为( ) A.?

???

22,0 B.?

??

?

52,0 C.?

??

?-

62,0

D.()-3,0

解析:选C ∵双曲线方程可化为x 2

-y 2

12

=1,

∴a 2=1,b 2=12.∴c 2=a 2+b 2=32,c =6

2.

∴左焦点坐标为?

??

?

62,0. 2.(教材习题改编)若双曲线x 2a 2-y 2

=1的一个焦点为(2,0),则它的离心率为( )

A.255

B.32

C.233

D .2

解析:选C 依题意得a 2+1=4,a 2=3, 故e =

2a 2=23

=233.

3.设F 1,F 2是双曲线x 2

-y 2

24=1的两个焦点,P 是双曲线上的一点,且3|PF 1|=4|PF 2|,

则△PF 1F 2的面积等于( )

A .4 2

B .8 3

C .24

D .48

解析:选C 由P 是双曲线上的一点和3|PF 1|=4|PF 2|可知,|PF 1|-|PF 2|=2,解得|PF 1|=8,|PF 2|=6.又|F 1F 2|=2c =10,所以△PF 1F 2为直角三角形,所以△PF 1F 2的面积S =1

2×6×8

=24.

4.双曲线x 2a 2-y 2

=1(a >0)的离心率为2,则该双曲线的渐近线方程为________________.

解析:由题意知a 2+1a

= 1+????1a 2=2,解得a =33

,故该双曲线的渐近线方程是3x ±y =0,即y =±3x .

答案:y =±3x

5.已知F 1(0,-5),F 2(0,5),一曲线上任意一点M 满足|MF 1|-|MF 2|=8,若该曲线的一条渐近线的斜率为k ,该曲线的离心率为e ,则|k |·e =________.

解析:根据双曲线的定义可知,该曲线为焦点在y 轴上的双曲线的上支, ∵c =5,a =4,∴b =3,e =c a =54,|k |=43

.

《三维设计》2014届高考数学一轮复习教学案+复习技法

∴|k |·e =43×54=5

3.

答案:53

1.区分双曲线与椭圆中a 、b 、c 的关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b

2.双曲线的离心率e >1;椭圆的离心率e ∈(0,1).

2.渐近线与离心率:

x 2a 2-y 2b 2=1(a >0,b >0)的一条渐近线的斜率为b a

= b 2

a 2

= c 2-a 2a

2=e 2

-1.可以看出,双曲线的渐近线和离心率的实质都表示双曲线张口的大小.

[注意] 当a >b >0时,双曲线的离心率满足10时,e =2(亦称为等轴双曲线); 当b >a >0时,e > 2.

3.直线与双曲线交于一点时,不一定相切,例如:当直线与双曲线的渐近线平行时,直线与双曲线相交于一点,但不是相切;反之,当直线与双曲线相切时,直线与双曲线仅有一个交点.

典题导入

[例1] (1)(2012·湖南高考)已知双曲线C :x 2a 2-y 2

b 2=1的焦距为10,点P (2,1)在C 的渐

近线上,则C 的方程为( )

A.x 220-y 2

5=1 B.x 25-y 2

20=1 C.x 280-y 2

20

=1

D.x 220-y 2

80

=1 (2)(2012·辽宁高考)已知双曲线x 2-y 2=1,点F 1,F 2为其两个焦点,点P 为双曲线上一点,若PF 1⊥PF 2,则|PF 1|+|PF 2|的值为________.

[自主解答] (1)∵x 2a 2-y 2

b 2=1的焦距为10,

∴c =5=

a 2+

b 2.①

又双曲线渐近线方程为y =±b a x ,且P (2,1)在渐近线上,∴2b

a

=1,即a =2b .②

由①②解得a =25,b = 5.

(2)不妨设点P 在双曲线的右支上,因为PF 1⊥PF 2, 所以(22)2=|PF 1|2+|PF 2|2,

又因为|PF 1|-|PF 2|=2,所以(|PF 1|-|PF 2|)2=4,可得2|PF 1|·|PF 2|=4, 则(|PF 1|+|PF 2|)2=|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=12,所以|PF 1|+|PF 2|=2 3. [答案] (1)A (2)2 3

由题悟法

1.应用双曲线的定义需注意的问题

在双曲线的定义中要注意双曲线上的点(动点)具备的几何条件,即“到两定点(焦点)的距离之差的绝对值为一常数,且该常数必须小于两定点的距离”.若定义中的“绝对值”去掉,点的轨迹是双曲线的一支.

2.双曲线方程的求法

(1)若不能明确焦点在哪条坐标轴上,设双曲线方程为mx 2+ny 2=1(mn <0). (2)与双曲线x 2a 2-y 2b 2=1有共同渐近线的双曲线方程可设为x 2a 2-y 2

b 2=λ(λ≠0).

(3)若已知渐近线方程为mx +ny =0,则双曲线方程可设为m 2x 2-n 2y 2=λ(λ≠0).

以题试法

1.(2012·大连模拟)设P 是双曲线x 216-y 2

20=1上一点,F 1,F 2分别是双曲线左右两个焦

点,若|PF 1|=9,则|PF 2|=( )

A .1

B .17

C .1或17

D .以上答案均不对

解析:选B 由双曲线定义||PF 1|-|PF 2||=8,又∵|PF 1|=9,∴|PF 2|=1或17,但双曲线的右顶点到右焦点距离最小为c -a =6-4=2>1,∴|PF 2|=17.

《三维设计》2014届高考数学一轮复习教学案+复习技法

典题导入

[例2] (2012·浙江高考)如图,F 1,F 2分别是双曲线C :x 2a 2-y 2

b 2=1(a ,b >0)的左、右焦

点,B 是虚轴的端点,直线F 1B 与C 的两条渐近线分别交于P ,Q 两点,线段PQ 的垂直平分线与x 轴交于点M .若|MF 2|=|F 1F 2|,则C 的离心率是( )

A.233

B.62

C. 2

D. 3

[自主解答] 设双曲线的焦点坐标为F 1(-c,0),F 2(c,0). ∵B (0,b ),∴F 1B 所在的直线为-x c +y

b =1.①

双曲线渐近线为y =±b

a

x ,

由??? y =b a

x ,-x c +y

b =1,

得Q ? ??

??ac c -a ,bc c -a .

由???

y =-b a

x ,

-x c +y

b =1,

得P ? ??

??-ac a +c ,bc a +c ,

∴PQ 的中点坐标为? ??

??

a 2

c c 2-a 2,bc 2

c 2-a 2.

由a 2

+b 2

=c 2

得,PQ 的中点坐标可化为????a 2c b 2,c 2b .

直线F 1B 的斜率为k =b

c

∴PQ 的垂直平分线为y -c 2b =-c b

????

x -a 2

c b 2.

令y =0,得x =a 2c

b 2+

c ,

∴M ????a 2

c b 2+c ,0,∴|F 2M |=a 2

c b 2. 由|MF 2|=|F 1F 2|得 a 2c b 2=a 2c c 2-a 2

=2c , 即3a 2=2c 2,∴e 2=32,∴e =6

2.

[答案] B

若本例条件变为“此双曲线的一条渐近线与x 轴的夹角为α,且π4<α<π

3”,求双曲线

的离心率的取值范围.

解:根据题意知1<b

a <3,

即1<

e 2-1< 3.所以2<e <2.

即离心率的取值范围为( 2,2).

由题悟法

1.已知渐近线方程y =mx ,求离心率时,若焦点位置不确定时,m =b a (m >0)或m =a

b ,

故离心率有两种可能.

2.解决与双曲线几何性质相关的问题时,要注意数形结合思想的应用.

以题试法

2.(1)(2012·福建高考)已知双曲线x 2a 2-y 2

5=1的右焦点为(3,0),则该双曲线的离心率等于

( )

A.31414

B.324

C.32

D.43

解析:选C 由题意知c =3,故a 2+5=9,解得a =2,故该双曲线的离心率e =c a =3

2.

(2)(2012·大同模拟)已知双曲线x 2a 2-y 2

b 2=1(a >0,b >0)与抛物线y 2=8x 有一个公共的焦

点F ,且两曲线的一个交点为P ,若|PF |=5,则双曲线的渐近线方程为( )

《三维设计》2014届高考数学一轮复习教学案+复习技法

A .y =±3

3x

B .y =±3x

C .y =±2x

D .y =±2

2

x

解析:选B 设点P (m ,n ),依题意得,点F (2,0),由点P 在抛物线y 2=8x 上,且|PF |=5得?????

m +2=5,

n 2=8m ,由此解得m =3,n 2=24.于是有?????

a 2+

b 2

=4,9a 2-24b 2=1,

由此解得a 2=1,b 2=3,

该双曲线的渐近线方程为y =±b

a

x =±3x .

典题导入

[例3] (2012·南昌模拟)已知双曲线x 2a 2-y 2

b 2=1(b >a >0),O 为坐标原

点,离心率e =2,点M (5,3)在双曲线上.

(1)求双曲线的方程;

(2)若直线l 与双曲线交于P ,Q 两点,且OP ·OQ =0.求1|OP |2+1

|OQ |2

的值.

[自主解答] (1)∵e =2,∴c =2a ,b 2=c 2-a 2=3a 2, 双曲线方程为x 2a 2-y 2

3a 2=1,即3x 2-y 2=3a 2.

∵点M (5,3)在双曲线上,∴15-3=3a 2.∴a 2=4. ∴所求双曲线的方程为x 24-y 2

12

=1.

(2)设直线OP 的方程为y =kx (k ≠0),联立x 24-y 2

12=1,得

?????

x 2=

12

3-k

2,y 2

=12k 23-k 2

,∴|OP |2=x 2+y 2

=12(k 2

+1)3-k 2

.

则OQ 的方程为y =-1

k

x ,

同理有|OQ |2=12???

?1+1

k 23-1k 2

=12(k 2+1)3k 2-1, ∴1|OP |2+1|OQ |2=3-k 2+(3k 2-1)12(k 2+1)=2+2k 212(k 2+1)=1

6.

由题悟法

1.解决此类问题的常用方法是设出直线方程或双曲线方程,然后把直线方程和双曲线方程组成方程组,消元后转化成关于x (或y )的一元二次方程.利用根与系数的关系,整体代入.

2.与中点有关的问题常用点差法.

[注意] 根据直线的斜率k 与渐近线的斜率的关系来判断直线与双曲线的位置关系.

以题试法

3.(2012·长春模拟)F 1,F 2分别为双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左,右焦点,过点F 2

作此双曲线一条渐近线的垂线,垂足为M ,满足|1MF ,|=3|2MF ,|,则此双曲线的渐近线方程为________________.

解析:由双曲线的性质可得|

2MF ,|=b ,则|1MF ,|=3b .在△MF 1O 中,|OM ,|=a ,|1OF ,|=c ,cos ∠F 1OM =-a

c ,由余弦定理可知

a 2+c 2-(3

b )22a

c =-a c ,又c 2=a 2+b 2,所以a 2=2b 2,即b a =2

2,故此双曲

线的渐近线方程为y =±22

x .

答案:y =±2

2

x

1.(2013·唐山模拟)已知双曲线的渐近线为y =±3x ,焦点坐标为(-4,0),(4,0),则双曲线方程为( )

A.x 24-y 2

12

=1 B.x 22-y 2

4

=1

《三维设计》2014届高考数学一轮复习教学案+复习技法

C.x 224-y 2

8

=1

D.x 28-y 2

24

=1 解析:选A 由题意可设双曲线方程为x 2a 2-y 2

b 2=1(a >0,b >0),由已知条件可得

????? b a =3,c =4,即?????

b a =3,a 2+b 2=42,

解得?

????

a 2

=4,b 2=12,故双曲线方程为x 24-y 2

12=1.

2.若双曲线过点(m ,n )(m >n >0),且渐近线方程为y =±x ,则双曲线的焦点( ) A .在x 轴上

B .在y 轴上

C .在x 轴或y 轴上

D .无法判断是否在坐标轴上

解析:选A ∵m >n >0,∴点(m ,n )在第一象限且在直线y =x 的下方,故焦点在x 轴上.

3.(2012·华南师大附中模拟)已知m 是两个正数2,8的等比中项,则圆锥曲线x 2

+y 2

m

=1

的离心率为( )

A.

32或 52

B.3

2 C. 5

D.

3

2

或 5 解析:选D ∵m 2

=16,∴m =±4,故该曲线为椭圆或双曲线.当m =4时,e =c

a =

a 2-

b 2a =32.当m =-4时,e =c

a =a 2+

b 2a

= 5.

4.(2012·浙江高考)如图,中心均为原点O 的双曲线与椭圆有公共焦点,M ,N 是双曲线的两顶点.若M ,O ,N 将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是( )

A .3

B .2 C. 3

D. 2

解析:选B 设焦点为F (±c,0),双曲线的实半轴长为a ,则双曲线的离心率e 1=c a ,椭

圆的离心率e 2=c 2a ,所以e 1

e 2

=2.

5.(2013·哈尔滨模拟)已知P 是双曲线x 2a 2-y 2

b 2=1(a >0,b >0)上的点,F 1,F 2是其焦点,

双曲线的离心率是5

4

,且1PF ,·2PF ,=0,若△PF 1F 2的面积为9,则a +b 的值为( )

A .5

B .6

C .7

D .8

解析:选C 由1PF ,·2PF ,=0得1PF ,⊥2PF ,,设|1PF ,|=m ,|2PF ,|=n ,不妨设m

>n ,则m 2

+n 2

=4c 2

,m -n =2a ,12mn =9,c a =5

4,解得?

????

a =4,c =5,∴

b =3,∴a +b =7.

6.(2012·浙江模拟)平面内有一固定线段AB ,|AB |=4,动点P 满足|P A |-|PB |=3,O 为AB 中点,则|OP |的最小值为( )

A .3

B .2 C.3

2

D .1

解析:选C 依题意得,动点P 位于以点A ,B 为焦点、实轴长为3的双曲线的一支上,结合图形可知,该曲线上与点O 距离最近的点是该双曲线的一个顶点,因此|OP |的最小值等于32

. 7.(2012·西城模拟)若双曲线x 2-ky 2=1的一个焦点是(3,0),则实数k =________. 解析:∵双曲线x 2-ky 2=1的一个焦点是(3,0), ∴1+1k =32=9,可得k =18.

答案:18

8.(2012·天津高考)已知双曲线C 1:x 2a 2-y 2b 2=1(a >0,b >0)与双曲线C 2:x 24-y 2

16=1有相

同的渐近线,且C 1的右焦点为F (5,0),则a =________,b =________.

解析:双曲线x 24-y 216=1的渐近线为y =±2x ,则b

a =2,即

b =2a ,又因为

c =5,a 2+

b 2=

c 2,所以a =1,b =2.

答案:1 2

9.(2012·济南模拟)过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的左焦点F 作圆x 2+y 2=a 2

4

的切线,切点为E ,延长FE 交双曲线右支于点P ,若E 为PF 的中点,则双曲线的离心率为________.

解析:设双曲线的右焦点为F ′.由于E 为PF 的中点,坐标原点O 为FF ′的中点,所以EO ∥PF ′,又EO ⊥PF ,所以PF ′⊥PF ,且|PF ′|=2×a

2=a ,故|PF |=3a ,根据勾股定理

得|FF ′|=10a .所以双曲线的离心率为

10a 2a =102

.

《三维设计》2014届高考数学一轮复习教学案+复习技法

答案:

102

10.(2012·宿州模拟)已知双曲线的中心在原点,焦点F 1,F 2在坐标轴上,离心率为2,且过点(4,-10).点M (3,m )在双曲线上.

(1)求双曲线方程; (2)求证:1MF ·2MF =0.

解:(1)∵e =2,∴可设双曲线方程为x 2-y 2=λ(λ≠0). ∵过点(4,-10),∴16-10=λ,即λ=6. ∴双曲线方程为x 26-y 2

6

=1.

(2)证明:由(1)可知,双曲线中a =b =6,∴c =23, ∴F 1(-23,0),F 2(23,0), ∴kMF 1=m 3+23,kMF 2=m

3-23,

kMF 1·kMF 2=m 2

9-12

=-m 2

3.

∵点(3,m )在双曲线上,∴9-m 2=6,m 2=3, 故kMF 1·kMF 2=-1,∴MF 1⊥MF 2. ∴1MF ·2MF =0.

11.(2012·广东名校质检)已知双曲线的方程是16x 2-9y 2=144. (1)求双曲线的焦点坐标、离心率和渐近线方程;

(2)设F 1和F 2是双曲线的左、右焦点,点P 在双曲线上,且|PF 1|·|PF 2|=32,求∠F 1PF 2

的大小.

解:(1)由16x 2

-9y 2

=144得x 29-y 2

16

=1,

所以a =3,b =4,c =5,

所以焦点坐标F 1(-5,0),F 2(5,0),离心率e =53,渐近线方程为y =±4

3x .

(2)由双曲线的定义可知||PF 1|-|PF 2||=6, cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|2

2|PF 1||PF 2|

=(|PF 1|-|PF 2|)2+2|PF 1||PF 2|-|F 1F 2|22|PF 1||PF 2|

36+64-100

64

=0,

则∠F 1PF 2=90°.

12.如图,P 是以F 1、F 2为焦点的双曲线C :x 2a 2-y 2

b

2=1上的一

点,已知PF 1·

PF 2=0,且|PF 1|=2|PF 2|. (1)求双曲线的离心率e ;

(2)过点P 作直线分别与双曲线的两渐近线相交于P 1,P 2两点,若OP 1·OP 2=-27

4,2PP 1+PP 2=0.求双曲线C 的方程.

解:(1)由PF 1·PF 2=0,得PF 1⊥PF 2,即△F 1PF 2为直角三角形.设|PF 2|=r ,|PF 1|

=2r ,所以(2r )2+r 2=4c 2,2r -r =2a ,即5×(2a )2=4c 2.所以e = 5.

(2)b

a

=e 2-1=2,可设P 1(x 1,2x 1),P 2(x 2,-2x 2),P (x ,y ),

则OP 1·OP 2=x 1x 2-4x 1x 2=-27

4, 所以x 1x 2=94

.①

由2PP 1+PP 2=0,得?????

x 2-x =-2(x 1-x ),

-2x 2-y =-2(2x 1-y ),

即x =2x 1+x 23,y =2(2x 1-x 2)3.又因为点P 在双曲线x 2a 2-y 2

b 2=1上,

所以(2x 1+x 2)29a 2-4(2x 1-x 2)2

9b 2

=1.

又b 2=4a 2,代入上式整理得x 1x 2=9

8a 2.②

由①②得a 2=2,b 2=8. 故所求双曲线方程为x 22-y 2

8

=1.

1.(2012·长春模拟)设e 1、e 2分别为具有公共焦点F 1、F 2的椭圆和双曲线的离心率,P

《三维设计》2014届高考数学一轮复习教学案+复习技法

是两曲线的一个公共点,且满足|1PF ,+2PF ,|=|12F F ,|,则

e 1e 2

e 21+e 22

的值为( ) A.2

2

B .2 C. 2

D .1

解析:选A 依题意,设|PF 1|=m ,|PF 2|=n ,|F 1F 2|=2c ,不妨设m >n .则由|1PF ,+2PF ,|=|12F F ,|得|1PF ,+2PF ,|=|2PF ,-1PF ,|=|1PF ,-2PF ,|,即|1PF ,+2PF ,|2=|1PF ,-2PF ,|2,所以1PF ,·2PF ,=0,所以m 2+n 2=4c 2.又e 1=2c

m +n ,e 2=2c m -n

,所以1e 21+1

e 22

2(m 2+n 2)

4c 2

=2,所以e 1e 2

e 21+e 22

11e 22+1e 21

=2

2. 2.已知双曲线x 2a 2-y 2

b 2=1(a >1,b >0)的焦距为2

c ,直线l 过点(a,0)和(0,b ),点(1,0)

到直线l 的距离与点(-1,0)到直线l 的距离之和s ≥4

5c ,则双曲线的离心率e 的取值范围为

________.

解析:由题意知直线l 的方程为x a +y

b =1,即bx +ay -ab =0.由点到直线的距离公式得,

点(1,0)到直线l 的距离d 1=

b (a -1)a 2

+b

2

,同理得,点(-1,0)到直线l 的距离d 2=

b (a +1)a 2

+b

2

,s =

d 1+d 2=

2ab a 2+b

2

=2ab c .由s ≥45c ,得2ab c ≥4

5c ,即5a

c 2-a 2≥2c 2.

所以5

e 2-1≥2e 2,即4e 4-25e 2+25≤0,解得5

4

≤e 2≤5.

由于e >1,所以e 的取值范围为???

? 52, 5 . 答案:???

?

52, 5

3.设A ,B 分别为双曲线x 2a 2-y 2

b 2=1(a >0,b >0)的左,右顶点,双曲线的实轴长为43,

焦点到渐近线的距离为 3.

(1)求双曲线的方程; (2)已知直线y =

3

3

x -2与双曲线的右支交于M 、N 两点,且在双曲线的右支上存在点D ,使OM ,+ON ,=t OD ,,求t 的值及点D 的坐标.

解:(1)由题意知a =23,故一条渐近线为y =b

23x ,

即bx -23y =0,则

|bc |b 2

+12

=3,

得b 2

=3,故双曲线的方程为x 212-y 2

3

=1.

(2)设M (x 1,y 1),N (x 2,y 2),D (x 0,y 0), 则x 1+x 2=tx 0,y 1+y 2=ty 0,

将直线方程代入双曲线方程得x 2-163x +84=0, 则x 1+x 2=163,y 1+y 2=12, 则???

x 0y 0=433,x 20

12-y

20

3=1,

得?

????

x 0=43,y 0=3, 故t =4,点D 的坐标为(43,3).

1.(2012·岳阳模拟)直线x =2与双曲线C :x 24-y 2

=1的渐近线交于E 1,E 2两点,记1OE ,

=e 1,2OE ,=e 2,任取双曲线C 上的点P ,若OP ,=a e 1+b e 2,则实数a 和b 满足的一个等式是________.

解析:可求出e 1=(2,1),e 2=(2,-1),设P (x 0,y 0),则?????

2a +2b =x 0,

a -

b =y 0,

则(a +b )2-(a

-b )2=1,得ab =1

4

.

答案:ab =1

4

2.已知双曲线x 2a 2-y 2

b 2=1的左,右焦点分别为F 1、F 2,过点F 2作与x 轴垂直的直线与

双曲线一个交点为P ,且∠PF 1F 2=π

6

,则双曲线的渐近线方程为________________.

解析:根据已知得点P 的坐标为????c ,±b 2

a ,则|PF 2|=

b 2

a ,又∠PF 1F 2=π6,则|PF 1|=2

b 2

a ,故2

b 2a -b 2a =2a ,所以b 2a 2=2,b

a

=2,所以该双曲线的渐近线方程为y =±2x .

《三维设计》2014届高考数学一轮复习教学案+复习技法

答案:y =±2x

3.(2012·大同模拟)已知中心在原点的双曲线C 的右焦点为(2,0),右顶点为(3,0). (1)求双曲线C 的方程;

(2)若直线l :y =kx +2与双曲线C 恒有两个不同的交点A 和B ,且OA ―→,·OB ―→,>2(其中O 为原点),求k 的取值范围.

解:(1)设双曲线C 的方程为x 2a 2-y 2

b 2=1(a >0,b >0),

由已知得a =3,c =2,再由c 2=a 2+b 2得b 2=1, 所以双曲线C 的方程为x 23-y 2

=1.

(2)将y =kx +2代入x 23-y 2

=1,

整理得(1-3k 2)x 2-62kx -9=0,

由题意得?

????

1-3k 2

≠0,

Δ=(62k )2+36(1-3k 2)=36(1-k 2

)>0,

故k 2≠1

3

且k 2<1,①

设A (x A ,y A ),B (x B ,y B ),则x A +x B =62k

1-3k

2

, x A ·x B =

-9

1-3k 2

由OA ,·OB ,>2得x A x B +y A y B >2, 又x A x B +y A y B =x A x B +(kx A +2)(kx B +2) =(k 2+1)x A x B +2k (x A +x B )+2

=(k 2

+1)·-9

1-3k 2+2k ·62k 1-3k 2+2=3k 2

+73k 2-1

于是3k 2+73k 2-1>2,即-3k 2+9

3k 2-1>0,

解不等式得1

3<k 2<3,②

由①②得1

3

<k 2<1,

3 3∪????

3

3,1

.

所以k的取值范围为????

-1,-

数学分析的基本内容和方法

渤海大学数理学院 毕业论文 论文题目:简述数学分析中的基本内容和方法 系别:数学系 专业年级:数学与应用数学专业07级 姓名:王迪 学号:07020176 指导教师:王长忠 日期:2011年5月20日

目录 一、数学分析中的研究对象 (3) 二、数学分析的基本内容 (3) 三、数学分析中的基本概念和相互关系 (3) 1.极限概念 (4) 2.连续和一致连续的概念 (5) 3.收敛和一致收敛概念 (6) 4.导数概念 (6) 5.微分概念 (7) 6.原函数和不定积分 (7) 7.定积分 (8) 8.一元函数中极限、连续、导数、微分之间的关系 (8) 9.多元函数中,极限、连续、偏导数、方向导数和全微分之间的关系 (9) 10.连续与一致连续的关系 (9) 11.收敛和一致收敛的关系 (9) 12.连续、不定积分和定积分的关系 (10) 13.微分和积分的关系 (10) 四、数学分析的主要计算 (11) 1.极限的求法 (12) 2.微分学中的计算 (13) 3.积分学中的计算 (14) 4.无穷级数中的计算 (14) 五、数学分析的主要理论 (15) 1.实数的连续性和极限的存在性 (16) 2.连续函数的基本性质 (17) 3.微分学的基本定理和泰勒公式 (18) 4.积分中的理论 (19) 5.无穷级数和广义积分的敛散性 (20) 6.函数级数和广义参变量积分的一致收敛性 (21) 六、数学分析的基本方法 (21) 七、数学分析教学内容的初步实践与思考 (22)

简述数学分析中的基本内容和方法 王迪 (渤海大学数学系辽宁锦州121000中国) 摘要:数学分析的基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起严密的数学分析理论体系。应全面掌握数学分析的基本理论知识;培养严格的逻辑思维能力与推理论证能力;具备熟练的运算能力与技巧;提高建立数学模型,并应用微积分这一工具解决实际应用问题的能力。 关键词:极限,微分,积分,近似。 Contents and methods of mathematical analysis Wang di (Department of Mathematics Bohai University Liaoning Jinzhou 121000 China) Abstract:Mathematical analysis is based on the theory of real numbers. The real number system is the continuity of the most important feature, with the continuity of real numbers to discuss the limit, continuity, differentiation and integration. It is in discussing the function of the various limits of the legitimacy of the process of operation, it gradually established system of rigorous mathematical theory. Mathematical analysis should be fully grasp the basic theory of knowledge; develop logical thinking and rigorous reasoning ability; people with good computing power and skills; improve the mathematical model, and apply the tools of calculus to solve practical problems. Key word: Limits, differentiation, integration, and similar.

高等数学求极限的常用方法附例题和详解

高等数学求极限的14种方法 一、极限的定义 1.极限的保号性很重要:设 A x f x x =→)(lim 0 , (i )若A 0>,则有0>δ,使得当δ<-<||00x x 时,0)(>x f ; (ii )若有,0>δ使得当δ<-<||00x x 时,0A ,0)(≥≥则x f 。 2.极限分为函数极限、数列极限,其中函数极限又分为∞→x 时函数的极限和 0x x →的极限。要特别注意判定极限是否存在在: (i )数列{}的充要条件收敛于a n x 是它的所有子数列均收敛于a 。常用的是其推 论,即“一个数列收敛于a 的充要条件是其奇子列和偶子列都收敛于a ” (ii ) A x x f x A x f x =+∞ →= -∞ →? =∞ →lim lim lim )()( (iii)A x x x x A x f x x =→=→?=→+ - lim lim lim 0 )( (iv)单调有界准则 (v )两边夹挤准则(夹逼定理/夹逼原理) (vi )柯西收敛准则(不需要掌握)。极限)(lim 0 x f x x →存在的充分必要条件是: εδεδ<-∈>?>?|)()(|)(,0,021021x f x f x U x x o 时,恒有、使得当 二.解决极限的方法如下: 1.等价无穷小代换。只能在乘除.. 时候使用。例题略。 2.洛必达(L ’hospital )法则(大题目有时候会有暗示要你使用这个方法) 它的使用有严格的使用前提。首先必须是X 趋近,而不是N 趋近,所以面对数列极限时候先要转化成求x 趋近情况下的极限,数列极限的n 当然是趋近于正无穷的,不可能是负无穷。其次,必须是函数的导数要存在,假如告诉f

高考数学椭圆与双曲线的经典性质50条经典法则

椭圆与双曲线的对偶性质--(必背的经典结论) 高三数学备课组 椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积 为122 tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆 准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于 点N ,则MF ⊥NF. 11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则2 2OM AB b k k a ?=-,即0 202y a x b K AB -=。 12. 若000(,)P x y 在椭圆22 221x y a b +=内,则被Po 所平分的中点弦的方程是2200002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22221x y a b +=内,则过Po 的弦中点的轨迹方程是22002222x x y y x y a b a b +=+. 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端 点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交. 4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支) 5. 若000(,)P x y 在双曲线22221x y a b -=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22 221x y a b -=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2 的直线方程是00221x x y y a b -=. 7. 双曲线22 221x y a b -=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦 点角形的面积为122 t 2 F PF S b co γ ?=. 8. 双曲线22 221x y a b -=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c 当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-. 当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =-- 9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦 点F 的双曲线准线于M 、N 两点,则MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和 A 1Q 交于点N ,则MF ⊥NF.

高中数学双曲线抛物线知识点总结

双曲线 平面内到两个定点,的距离之差的绝对值是常数2a(2a< )的点的轨迹。 方程 22 22 1(0,0)x y a b a b -=>> 22 22 1(0,0)y x a b a b -=>> 简图 范围 ,x a x a y R ≥≤-∈或 ,y a y a x R ≥≤-∈或 顶点 (,0)a ± (0,)a ± 焦点 (,0)c ± (0,)c ± 渐近线 b y x a =± a y x b =± 离心率 (1)c e e a = > (1)c e e a = > 对称轴 关于x 轴、y 轴及原点对称 关于x轴、y 轴及原点对称 准线方程 2 a x c =± 2 a y c =± a 、 b 、 c 的关 系 222c a b =+ 考点 题型一 求双曲线的标准方程 1、给出渐近线方程n y x m =±的双曲线方程可设为2222(0)x y m n λλ-=≠,与双曲线 22221x y a b -=共渐近线的方程可设为22 22(0)x y a b λλ-=≠。 2、注意:定义法、待定系数法、方程与数形结合。 【例1】求适合下列条件的双曲线标准方程。 (1) 虚轴长为12,离心率为 54 ; (2) 焦距为26,且经过点M(0,12); (3) 与双曲线 22 1916 x y -=有公共渐进线,且经过点(3,23A -。 _x _ O _y _x _ O _y

解:(1)设双曲线的标准方程为22221x y a b -=或22 221y x a b -=(0,0)a b >>。 由题意知,2b=12,c e a ==54 。 ∴b=6,c=10,a=8。 ∴标准方程为236164x -=或22 16436 y x -=。 (2)∵双曲线经过点M(0,12), ∴M (0,12)为双曲线的一个顶点,故焦点在y 轴上,且a=12。 又2c =26,∴c =13。∴2 2 2 144b c a =-=。 ∴标准方程为 22 114425y x -=。 (3)设双曲线的方程为22 22x y a b λ -= (3,23A -在双曲线上 ∴(2 2 331916 -= 得1 4 λ= 所以双曲线方程为22 4194 x y -= 题型二 双曲线的几何性质 方法思路:解决双曲线的性质问题,关键是找好体重的等量关系,特别是e、a、b 、c四者的关系,构造出c e a = 和222 c a b =+的关系式。 【例2】双曲线22 221(0,0)x y a b a b -=>>的焦距为2c,直线l过点(a,0)和(0,b ),且点(1, 0)到直线l的距离与点(-1,0)到直线l 的距离之和s ≥4 5 c 。求双曲线的离心率e的取值范围。 解:直线l 的方程为 1x y a b -=,级bx +ay-ab=0。 由点到直线的距离公式,且a >1,得到点(1,0)到直线l的距离12 2 d a b = +, 同理得到点(-1,0)到直线l 的距离22 2 d a b = +,

数学分析教学与三种基本数学能力的培养

第26卷第6期大 学 数 学V ol.26, .6 2010年12月COLLEGE M AT H EM AT ICS Dec.2010数学分析教学与三种基本数学能力的培养 钱晓元 (大连理工大学数学科学学院,大连116024) [摘 要]基本的专业数学能力可分为三个方面:数学发现能力,数学论证能力和数学表达能力.本文结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. [关键词]教学;数学分析;数学能力 [中图分类号]G642.0 [文献标识码]C [文章编号]1672 1454(2010)06 0203 04 1 引 言 数学类专业教育主要有两大目标,一是掌握数学知识,二是培养数学能力.由于当今知识内容的爆炸性增长,知识更新周期的加快,以及现代社会的学习型特点和创新性要求,对数学能力的重视程度则日益提高,成为数学专业教育的主导价值. 数学能力是一个笼统的概念,目前还没有公认的严格定义.就教育方面而言,数学能力,就是运用数学基本理论和方法解决数学及其应用中遇到的实际问题的能力.这种能力的培养,从初等教育甚至学前教育已经开始,但是作为大学数学类专业教育的目标,在质和量方面必然有更高的层次和追求.具体地说,就是在掌握数学科学遵循的游戏规则基础上,从事包括数学的研究、应用和教学在内的各种专业数学工作的能力. 我们认为,基本的专业数学能力可以分为以下三个方面:数学发现能力,数学论证能力和数学表达能力.数学发现能力,指的是发现未知数学事实和联系,包括理解和模仿前人发现的能力.数学论证能力,是运用逻辑演绎方法证明数学命题的能力.而数学表达能力,是用合乎数学通用规范的学术语言,准确、清晰、简洁地陈述有关数学发现和论证内容的能力.显然,要有效地解决数学及其应用问题,必须同时具备这三种能力并加以综合运用,缺一不可.从另一个角度来看,一个合格的数学类专业毕业生,其专业训练带来的技能优势,主要就体现在这三个方面. 数学分析是数学类专业最重要的一门基础课,数学类专业开设的多数专业课程都可以看成数学分析的后续课.在数学分析的教学中,系统地培养数学发现、论证和表达能力,是理所当然的.本文将就这一课题,结合数学分析课程的教学实践,阐述通过具体教学环节,贯彻培养三种能力的有效途径和方法. 2 数学分析教学与数学发现能力的培养 数学科学具备特有的思维模式,它以形式逻辑为基础,以演绎推理为手段,建立了坚固宏伟的知识体系.数学分析以实数理论奠基,首先建立严格的极限理论,次第展开微分、积分、无穷级数等内容.数学以逻辑演绎为基础的特性得到充分的体现,而数学定理基于直观、经验和数值实验的发现过程,反倒容易被忽略.数学学科的一些重大的发展,一些重要的数学思想、概念、方法及理论的提出和形成,却并 [收稿日期]2008 01 11 [基金项目]大连理工大学教改基金

高三数学一轮复习

高三数学一轮复习 1.已知数列{}n a 的前n 项和为n S ,已知21++=+n n n a S S , . ①283-=+a a ;②287-=S ;③2a ,4a ,5a 成等比数列; 请在①②③这三个条件中选择一个,填入题中的横线上,并解答下面的问题: (1)求数列{}n a 的通项公式;(2)求n S 的最小值并指明相应n 的值. 解:(1)21++=+n n n a S S ,21=-∴+n n a a ∴数列{}n a 是公差2=d 的等差数列。 选①2-922-183=+∴=+d a a a 解得10-1=a 122-=∴n a n 选②287-=S 解得10-1=a 122-=∴n a n 选③由2a ,4a ,5a 成等比数列得522 4a a a =即())4)((3112 1d a d a d a ++=+ 解得10-1=a 122-=∴n a n (2)解法一:令?? ?≥≤+001n n a a 即???≥-≤-0 1020 122n n 解得65≤≤n ∴当65==n n 或时,n s 取得最小值,且最小值为30- 解法二:)11(-=n n s n ∴当65==n n 或时,n s 取得最小值,且最小值为30- 2.在①231a b b =+,②44a b =,③255-=s 中选择一个作为条件,补充在下列题目中,使得正整数 k 的值存在,并求出正整数k 的值 设等差数列{}n a 的前n 项和为n s ,{}n b 是等比数列,★_______,51a b =,32=b ,81-5=b 是否存在正整数k ,1+k k s s ,21++k k s s 解:32=b ,81-5=b 3-=∴q 151-==∴a b 274=∴b 011 ++∴k k k a s s 0221 +++∴k k k a s s ,0-12 d a a k k =∴++ 若存在正整数k ,1+k k s s ,21++k k s s ,那么等差数列{}n a 的前n 项和为n s 必然为开口向上() 0 d 的函数模型,在条件选择的时候,选择条件②2744==a b ,由151-==a b 显然公差()0 d ,由

考研高数基础练习题及答案解析

考研高数基础练习题及答案解析 一、选择题: 1、首先讨论间断点: 1°当分母2?e?0时,x? 2x 2 ,且limf??,此为无穷间断点; 2ln2x? ln2x?0? 2°当x?0时,limf?0?1?1,limf?2?1?1,此为可去间断点。 x?0? 再讨论渐近线: 1°如上面所讨论的,limf??,则x? x? 2 ln2 2 为垂直渐近线; ln2 2°limf?limf?5,则y?5为水平渐近线。 x??? x???

当正负无穷大两端的水平渐近线重合时,计一条渐近线,切勿上当。 2、f?|x4?x|sgn?|x| sgn?|x|。可见x??1为可导点,x?0和x?3为不可导点。 2011智轩高等数学基础导学讲义——第2章第4页原文: f???|??|,当xi?yj时 为可导点,否则为不可导点。注意不可导点只与绝对值内的点有关。 ?x ,x?0? 设f??ln2|x|,使得f不存在的最小正整数n是 ? ,x?0?0 x?0 1 2 3 limf?f?0,故f在x?0处连续。 f’?lim x?0

f?f ?0,故f在x?0处一阶可导。 x?0 当x?0时,f’?? ? ?x12x’ ‘????223 ?ln?lnlnxsgnx ? 12 ,则limf’?f’?0,故f’在x?0处连续。?23x?0ln|x|ln|x|f’’?lim x?0 f’?f’ ??,故f在x?0处不二阶可导。 x?0 a b x?0 对?a,b?0,limxln|x|?0。这是我们反复强调的重要结论。 3、对,该函数连续,故既存在原函数,又在[?1,1]内

四川高三数学理大一轮复习练习9.6双曲线

9.6 双曲线 一、选择题 1.已知F 1,F 2是双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的两焦点,以线段F 1F 2为边作正 三角形MF 1F 2,若边MF 1的中点P 在双曲线上,则双曲线的离心率为( ) A .4+2 3 B.3-1 C.3+12 D.3+1 解析 (数形结合法)因为MF 1的中点P 在双曲线上, |PF 2|-|PF 1|=2a ,△MF 1F 2为正三角形,边长都是2c ,所以3c -c =2a , 所以e =c a =2 3-1=3+1,故选D. 答案 D 【点评】 本题利用双曲线的定义列出关于a 、c 的等式,从而迅速获解. 2. 已知双曲线C :22x a -2 2y b =1的焦距为10 ,点P (2,1)在C 的渐近线上, 则C 的方程为( ) A .220x -25y =1 B.25x -220y =1 C.280x -220 y =1 D.220x -2 80y =1 答案 A 3.设双曲线x 2a 2-y 2 9=1(a >0)的渐近线方程为3x ±2y =0,则a 的值为( ). A .4 B .3 C .2 D .1 解析 双曲线x 2a 2-y 2 9 =1的渐近线方程为3x ±ay =0与已知方程比较系数得a =2.

4.设直线l 过双曲线C 的一个焦点,且与C 的一条对称轴垂直,l 与C 交于A , B 两点,|AB |为 C 的实轴长的2倍,则C 的离心率为( ). A. 2 B. 3 C .2 D .3 解析 设双曲线C 的方程为x 2a 2-y 2b 2=1,焦点F (-c,0),将x =-c 代入x 2a 2-y 2 b 2=1 可得y 2=b 4a 2,所以|AB |=2×b 2 a =2×2a ,∴ b 2=2a 2, c 2=a 2+b 2=3a 2,∴e =c a = 3. 答案 B 5.设F 1、F 2是双曲线x 2 3 -y 2=1的两个焦点,P 在双曲线上,当△F 1PF 2的面积为 2时,1PF ·2PF 的值为( ) A .2 B .3 C .4 D .6 解析 设点P (x 0,y 0),依题意得,|F 1F 2|=23+1=4, S △PF 1F 2=12|F 1F 2|×|y 0|=2|y 0|=2,|y 0|=1,x 2 03 -y 20=1,x 20=3(y 2 0+1)=6, 1PF ·2PF =(-2-x 0,-y 0)·(2-x 0,-y 0)=x 20+y 2 0-4=3. 答案 B 6.已知双曲线x 2a 2-y 2 b 2=1(a >0,b >0)的左顶点与抛物线y 2=2px (p >0)的焦点的 距离为4,且双曲线的一条渐近线与抛物线的准线的交点坐标为(-2,-1),则双曲线的焦距为( ). A .2 3 B .2 5 C .4 3 D .4 5 解析 由题意得????? a +p 2=4, -p 2 =-2, -1= -2 ·b a ???? p =4,a =2,b =1 ? c =a 2+b 2= 5.∴双曲线的焦距2c =2 5.

关于数学分析的读书笔记

经过一个半学期的《数学分析》的学习,我基本上对其学习方法有了一定的掌握。了解到《数学分析》与高中的数学既有联系又有差别。一方面在许多思想与分析中运用了高中数学的基础知识;另一方面它将许多东西细微化,一步步探究深层次的东西。它使我们对许多东西有了进一步的了解而不是只停留在理解表面。 下面对我目前已学习的知识进行理解与分析: 一、实数集与函数。实数分有理数和无理数,有理数可用既约分数的形式表示,而无理数则不能用一个确定式表示。人们先发现有理数,再运用Dedek ind分割划分出一些不属于有理数的数。全部这些数的集合就是实数集。用同样的方法分割,却得不到非实数,这证明了实数具有完备性。关于实数完备性有一些基本定理,如:区间套定理、柯西收敛准则、聚点定理和有限覆盖定理。对于任何一个包含于实数集的集合,还有著名的确界原理。函数的定义是一个具有某种结构的集合到一个数集的对应关系。有基本函数和特殊的函数,如:符号函数、Heaviside函数、Riemann函数和Dirichelet函数。 二、极限分为数列极限和函数极限。对于极限,重在理解它的定义。函数极限是数列极限的推广,所以理解了数列极限,函数极限问题就不大了。收敛的数列有许多特殊性质,如:有界性、唯一性、保号保序性和迫敛性,且满足线性组合运算。既然有这么多很好的性质,我们就想弄清哪些数列收敛或收敛数列需满足的条件。人们发现,单调有界数列和满足柯西收敛准则的数列一定有极限。 三、函数的连续性。函数在某一点X。连续的定义是在X。的某邻域内有定义且满足当X趋于X。时,函数F(X)趋于F(X。).而在某区间上的连续可由在某点推广。对一闭区间上连续的函数有一些性质,如:有界性、最值、介值性和一致连续性。对于函数连续性,重在理解定义的内容。 四、导数与微分。导数在中学已学过,而微分是一个新概念。微分的核心思想是对一件事物,当对整体无法解决或难以解决时,可以将它分成许多细小的部分来解决。当每一部分都解决了时,整体也就解决了。对于微分的应用有罗尔中值定理、拉格朗日中值定理和柯西中值定理以及泰勒公式。运用这些定理,还可以分析函数性质,如:函数是否有凸性和拐点,这些对作图是有帮助的。 五、积分分为两种:不定积分和定积分。不定积分是微分的逆运算,它的核心思想是将许多无法解决或难以解决的事物积累成一个整体来解决。不定积分的运算有一些方法,如:换元法和分部积分法。与不定积分不同,定积分则是一个分割T的模趋于零的极限。对一个闭区间上的函数作划分,求出黎曼和,当分割的模趋于零时,黎曼和趋于一个常数,此时称这个常数为函数在闭区间上的定积分。定积分的运算可运用牛顿—莱布尼茨公式。哪些函数是可积的,可积函数有哪些性质。人们发现了可积函数需满足的条件和它的一些性质,如:积分中值定理。 整体内容连贯有序,学习者思路清晰,目的明确。 数学分析是精彩有趣的,但有时会让人学的很累。当一个概念或思想没有理解时,在很大层度上阻碍了后面内容的学习理解,让人有雾里探花的感觉。所以应脚踏实地的学好每一步,扎稳基础,相信未来的道路是光明的。

高三数学第一轮复习教案(1)

第1页 共64页 高考数学总复习教案 第一章-集合 考试内容:集合、子集、补集、交集、并集.逻辑联结词.四种命题.充分条件和必要条件. 考试要求: (1)理解集合、子集、补集、交集、并集的概念;了解空集和全集的意义;了解属于、包含、相等关系的意义;掌握有关的术语和符号,并会用它们正确表示一些简单的集合. (2)理解逻辑联结词“或”、“且”、“非”的含义理解四种命题及其相互关系;掌握充分条件、必要条件及充要条件的意义. §01. 集合与简易逻辑 知识要点 一、知识结构: 本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分: 二、知识回顾: (一) 集合 1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用. 2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质: ①任何一个集合是它本身的子集,记为A A ?; ②空集是任何集合的子集,记为A ?φ; ③空集是任何非空集合的真子集; 如果B A ?,同时A B ?,那么A = B. 如果C A C B B A ???,那么,. [注]:①Z = {整数}(√) Z ={全体整数} (×) ②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集. ④若集合A =集合B ,则C B A = ?, C A B = ? C S (C A B )= D ( 注 :C A B = ?). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R }二、四象限的点集. ③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集.

数学分析知识点总结

数学分析知识点总结 数学分析是数学中最重要的一门基础课,是几乎所有后继课程的基础,在培养具有良好素养的数学及其应用方面起着特别重要的作用。下面是小编整理的数学分析知识点总结,欢迎来参考! 从近代微积分思想的产生、发展到形成比较系统、成熟的“数学分析”课程大约用了300 年的时间,经过几代杰出数学家的不懈努力,已经形成了严格的理论基础和逻辑体系。回顾数学分析的历史,有以下几个过程。从资料上得知,过去该课程一般分两步:初等微积分与高等微积分。初等微积分主要讲授初等微积分的运算与应用,高等微积分才开始涉及到严格的数学理论,如实数理论、极限、连续等。上世纪50 年代以来学习苏联教材,从而出现了所谓的“大头分析”体系,即用较大的篇幅讲述极限理论,然后把微积分、级数等看成不同类型的极限。这说明了只要真正掌握了极限理论,整个数学分析学起来就快了,而且理论水平比较高。在我国,人们改造“大头分析”的试验不断,大体上都是把极限分成几步完成。我们的做法是:期望在“初高等微积分”和“大头分析”之间,走出一条循序渐进的道路,而整个体系在逻辑上又是完整的。这样我们既能掌握严格的分析理论,又能比较容易、快速的接受理论。 我们都知道,数学对于理学,工学研究是相当重要。在中国科技大学计算机应用硕士培养方案中,必修课:组合数学、算法

设计与分析,高级计算机网络、高级数据库系统,人工智能高级教程现代计算机控制理论与技术。山西大学通信与信息系统硕士培养方案中,专业基础课: (1)矩阵理论 (2)随机过程 (3)信息论与编码 (4)现代数字信号处理 (5)通信网络管理:其中有运筹学内容,属于数学。 (6)模糊逻辑与神经网络是研究非线性的数学。 大连理工大学微电子和固体电子硕士培养方案中,必修课:工程数学,专业基础课:物理、半导体发光材料、半导体激光器件物理西北大学经管学院金融硕士培养方案中,学位课:中级微观经济学(数学)中级宏观经济学中国市场经济研究经济分析方法(数学)经济理论与实践前沿金融理论与实践必须使用数学的研究专业有:理工科几乎所有专业,分子生物学,统计专业,(理论、微观)经济学,逻辑学而这些数学的基础课就有一门叫做数学分析的课程!数学是所有学科的基础,可以说自然学科中的所有的重大发现和成就都离不开数学的贡献,而数学分析是数学中的基础!基础中的基础! 正因为如此,我深刻地认识到基础的重要性。经过本学期,我已学习了极限理论,单变量微积分等知识,其中极限续论是理论要求最高的,积分学是计算要求最高的部分。两者均是我学习

全国卷一高三数学一轮复习讲义

集合 1、集合的含义 把研究对象统称为元素,把一些元素组成的总体叫做集合(简称为集). 2、集合中元素的三个特征 (1)确定性:给定集合A ,对于某个对象x ,“x ∈A ”或“x ?A ”这两者必居其一且仅居其一. (2)互异性:集合中的元素互不相同. (3)无序性:在一个给定的集合中,元素之间无先后次序之分. 3、集合的表示 (1)把集合中的元素一一列举出来,写在大括号内表示集合的方法称为列举法. (2)把集合中的元素的公共属性描述出来,写在大括号内表示集合的方法称为描述法.常 用形式是:{x |p },竖线前面的x 叫做集合的代表元素,p 表示元素x 所具有的公共属性. (3)用平面上一段封闭的曲线的内部表示集合,这种图形称为Venn 图.用Venn 图、数 轴上的区间及直角坐标平面中的图形等表示集合的方法称为图示法. 4、元素与集合的关系 如果x 是集合A 中的元素,则说x 属于集合A ,记作x ∈A ;若x 不是集合A 中的元素,就说x 不属于集合A ,记作x ?A . 5、常用数集的符号表示 6、有限集与无限集 含有有限个元素的集合叫有限集,含有无限个元素的集合叫无限集. 例1:若集合A ={x ∈R |ax 2-3x +2=0}中只有一个元素,则a =( ) A.92 B .98 C .0 D .0或 9 8 例2:说出下列三个集合的含义:①{x |y =x 2};②{y |y =x 2};③{(x ,y )|y =x 2}.

1.子集 例如:A={0,1,2},B={0,1,2,3},则A、B的关系是A?B或B?A. 2.真子集 A B(或 B A) 例如:A={1,2}, B={1,2,3},则A、B的关系是A B(或B A) 3.相等 若集合A中的元素与集合B中的元素完全相同,则称集合A与集合B相等,记作A=B. 例如:若A={0,1,2},B={x,1,2},且A=B,则x=0. 4.空集 没有任何元素的集合叫空集,记为?. 空集是任何集合的子集 空集是任何非空集合的真子集

高等数学基础例题讲解

第1章 函数的极限与连续 例1.求 lim x x x →. 解:当0>x 时,0 00lim lim lim 11x x x x x x x + ++ →→→===, 当0

高三数学一轮复习精品教案1:双曲线教学设计

8.6双_曲_线 1.双曲线的定义 满足以下三个条件的点的轨迹是双曲线 (1)在平面内; (2)动点到两定点的距离的差的绝对值为一定值; (3)这一定值一定要小于两定点的距离. 2.双曲线的标准方程和几何性质 标准方程 x 2a 2-y 2 b 2 =1(a >0,b >0) y 2a 2-x 2 b 2 =1(a >0,b >0) 图形 性 质 范围 x ≥a 或x ≤-a ,y ∈R x ∈R ,y ≤-a 或y ≥a 对称性 对称轴:坐标轴 对称中心:原点 顶点 A 1(-a,0),A 2(a,0) A 1(0,-a ),A 2(0,a ) 渐近线 y =±b a x y =±a b x 离心率 e =c a ,e ∈(1,+∞),其中c =a 2+b 2 实虚轴 线段A 1A 2叫作双曲线的实轴,它的长|A 1A 2|=2a ;线段B 1B 2 叫作双曲线的虚轴,它的长|B 1B 2|=2b ;a 叫作双曲线的实 半轴长,b 叫作双曲线的虚半轴长. a 、 b 、 c 的关系 c 2=a 2+b 2(c >a >0,c >b >0) 1.双曲线的定义中易忽视2a <|F 1F 2|这一条件.若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a >|F 1F 2|则轨迹不存在. 2.双曲线的标准方程中对a 、b 的要求只是a >0,b >0易误认为与椭圆标准方程中a ,

b 的要求相同. 若a >b >0,则双曲线的离心率e ∈(1,2); 若a =b >0,则双曲线的离心率e =2; 若0<a <b ,则双曲线的离心率e > 2. 3.注意区分双曲线中的a ,b ,c 大小关系与椭圆a 、b 、c 关系,在椭圆中a 2=b 2+c 2,而在双曲线中c 2=a 2+b 2. 4.易忽视渐近线的斜率与双曲线的焦点位置关系.当焦点在x 轴上,渐近线斜率为±b a , 当焦点在y 轴上,渐近线斜率为±a b . 『试一试』 1. 双曲线y 2-x 2=2的渐近线方程是________. 『解析』由题意知y 22-x 2 2=1,y =±x . 『答案』y =±x 2.已知双曲线C :x 2a 2-y 2 b 2=1的焦距为10,点P (2,1)在C 的渐近线上,则C 的方程为 ________. 『解析』由已知可得双曲线的焦距2c =10,a 2+b 2=52=25,排除C ,D ,又由渐近线方程为y =b a x =12x ,得12=b a ,解得a 2=20,b 2=5. 『答案』x 220-y 2 5 =1 1.待定系数法求双曲线方程的常用方法 (1)与双曲线x 2a 2-y 2b 2=1共渐近线的可设为x 2a 2-y 2 b 2=λ(λ≠0); (2)若渐近线方程为y =±b a x ,则可设为x 2a 2-y 2 b 2=λ(λ≠0); (3)若过两个已知点则设为x 2m +y 2 n =1(mn <0). 2.等轴双曲线的离心率与渐近线关系 双曲线为等轴双曲线?双曲线的离心率e =2?双曲线的两条渐近线互相垂直(位置关系). 3.双曲线的焦点到渐近线的距离等于虚半轴长b 4.渐近线与离心率 x 2a 2 -y 2b 2=1(a >0,b >0)的一条渐近线的斜率为b a = b 2 a 2= c 2-a 2 a 2=e 2-1.可以看出,

高二数学双曲线知识点及高考例题

高二数学双曲线知识点及高考例题 1. 双曲线第一定义: 平面内与两个定点F 1、F 2的距离差的绝对值是常数(小于|F 1F 2|)的点的轨迹叫双曲线。这两个定点叫双曲线的焦点,两焦点间的距离|F 1F 2|叫焦距。 2. 双曲线的第二定义: 平面内与一个定点的距离和到一条定直线的距离的比是常数e (e>1)的点的轨迹叫双曲线。定点叫双曲线的焦点,定直线叫双曲线的准线,常数e 叫双曲线的离心率。 3. 双曲线的标准方程: (1)焦点在x 轴上的: x a y b a b 222 2100-=>>(), (2)焦点在y 轴上的: y a x b a b 222 2100-=>>(), (3)当a =b 时,x 2-y 2=a 2或y 2-x 2=a 2叫等轴双曲线。 注:c 2=a 2+b 2 线段A 1A 2叫双曲线的实轴,且|A 1A 2|=2a ; 线段B 1B 2叫双曲线的虚轴,且|B 1B 2|=2b 。 <>=>41离心率:e c a e () e 越大,双曲线的开口就越开阔。

<>± 5渐近线:y b a x = <>=±62 准线方程:x a c 5.若双曲线的渐近线方程为:x a b y ± = 则以这两条直线为公共渐近线的双曲线系方程可以写成: )0(22 22≠=-λλb y a x 【典型例题】 例1. 选择题。 121 122 .若方程 表示双曲线,则的取值范围是()x m y m m +-+= A m B m m ..-<<-<->-2121或 C m m D m R ..≠-≠-∈21 且 2022.ab ax by c <+=时,方程表示双曲线的是() A. 必要但不充分条件 B. 充分但不必要条件 C. 充分必要条件 D. 既不充分也不必要条件 322.s i n s i n c o s 设是第二象限角,方程表示的曲线是()ααααx y -= A. 焦点在x 轴上的椭圆 B. 焦点在y 轴上的椭圆 C. 焦点在y 轴上的双曲线 D. 焦点在x 轴上的双曲线 416913 221212.双曲线 上有一点,、是双曲线的焦点,且,x y P F F F PF -=∠=π 则△F 1PF 2的面积为( ) A B C D (9) 633393 例2. () 已知:双曲线经过两点,,,,求双曲线的标准方程P P 12342945-?? ? ? ? 例3. 已知B (-5,0),C (5,0)是△ABC 的两个顶点,且 sin sin sin B C A -=3 5 ,求顶点A 的轨迹方程。

数学分析

数学分析 1.引言 数学分析是数学专业和部分工科专业的必修课程之一,基本内容是以实数理论为基础微积分,但是与微积分有很大的差别。微积分学是微分学和积分学的统称,英语简称Calculus,意为计算,这是因为早期微积分主要用于天文、力学、几何中的计算问题。后来人们也将微积分学称为分析学,或称无穷小分析,专指运用无穷小或无穷大等极限过程分析处理计算问题的学问[1]。 数学分析的主要内容是微积分学,微积分学的理论基础是极限理论,极限理论的理论基础是实数理论。实数系最重要的特征是连续性,有了实数的连续性,才能讨论极限,连续,微分和积分。正是在讨论函数的各种极限运算的合法性的过程中,人们逐渐建立起了严密的数学分析理论体系。 2.发展历史 阿基米德:在古希腊数学的早期,数学分析的结果是隐含给出的。比如,芝诺的两分法悖论就隐含了几何级数的和。再后来,古希腊数学家如欧多克索斯和阿基米德使数学分析变得更加明确,但还不是很正式。他们在使用穷揭法去计算区域和固体的面积和体积时,使用了极限和收敛的概念。在古印度数学的早期,12世纪的数学家婆什加洛第二给出了导数的例子。 数学分析的创立始于17世纪以牛顿(Newton,I.)和莱布尼兹(Leibnize,G.W)为代表的开创性工作,而完成于19世纪以柯西(Cauchy)和魏尔斯特拉斯(Weierstrass)为代表的奠基性工作。从牛顿开始就将微积分学及其有关内容称为分析。其后,微积分学领域不断扩大,但许多数学家还是沿用这一名称。时至今日,许多内容虽已从微积分学中分离出去,成了独立的学科,而人们仍以分析统称之。数学分析亦简称分析。 3.研究对象 牛顿:数学分析的研究对象是函数,它从局部和整体这两个方面研究函数的基本性态,从而形成微分学和积分学的基本内容。微分学研究变化率等函数的局部特征,导数和微分是它的主要概念,求导数的过程就是微分法。围绕着导数与微分的性质、计算和直接应用,形成微分学的主要内容。积分学则从总体上研究微小变化(尤其是非均匀变化)积累的总效果,其基本概念是原函数(反导数)和定积分,求积分的过程就是积分法。积分的性质、计算、推广与直接应用构成积分学的全部内容。牛顿和莱布尼茨对数学的杰出贡献就在于,他们在1670年左右,总结了求导数与求积分的一系列基本法则,发现了求导数与求积分是两种互逆的运算,并通过后来以他们的名字命名的著名公式—牛顿莱布尼兹公式—反映了这种互逆关系,从而使本来各自独立发展的微分学和积分学结合而成一门新的学科—微积分学。又由于他们及一些后继学者(特别是欧拉(Euler))的贡献,使得本来仅为少数数学家所了解,只能相当艰难地处理一些个别具体问题的微分与积分方法,成为一种常人稍加训练即可掌握的近于机械的方法,打开了把它广泛应用于

相关文档
相关文档 最新文档