文档库 最新最全的文档下载
当前位置:文档库 › 铝合金轮毂热处理相关知识

铝合金轮毂热处理相关知识

铝合金轮毂热处理相关知识
铝合金轮毂热处理相关知识

铝合金轮毂热处理相关知识

1、铝合金轮毂热处理过程及重要性

热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。

铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表:

表1 热处理状态代号、名称及特点

铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。在Al-Si-Mg 合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg2Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。温度愈高,愈接近固相线温度,则固溶处理的效果愈好。固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。固溶温度对Si 相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。当然,选择的是较高的固溶温度,对设备稳定性

的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。

铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处于流动状态,水温均匀,工件表面没有形成气囊的机会,保持一定的冷却速度,确保淬火效果。

控制淬火的转移时间对Mg2Si强化相的分布很重要,转移时间长会使强化元素扩散析出而降低合金的力学性能,所以转移时间越短越好,这也是生产实际中为什么要求转移时间控制在20s之内的原因。

淬火后人工时效温度的选择,对轮毂机械性能的影响非常明显,较高的时效温度下,屈服强度σ0.2随时效时间的增加而提高,延伸率δ则会降低,硬度升高。相反较低的时效温度和较短时效的时间,屈服强度σ0.2会偏低,而延伸率δ升高,硬度降低。目前时效温度通常选择130--160℃之间,时间为150分钟左右。

根据热处理工序特点及质量特性,热处理工序被定为T特性工序。铝合金轮毂热处理的重要性在于,产品能否满足安全使用要求。其质量特性不能用肉眼直观的进行判别,各项性能指标需要借助专门的检验仪器和设备,对轮毂进行各类检测而获得,由于受到检测频率和检测部位的限制,对于每一炉产品,甚至对每一个产品,检测都只是个别的、局部的,无论如何都不能达到对热处理质量100%的检测,检验也不能完全反映整批产品或整个产品的热处理质量;而且由于热处理过程特点是连续生产,批量投入,一旦出现热处理质量问题,对整个工序的影响面很大;另外热处理的产品是经过了熔炼、铸造、X光等工序的轮毂半成品,如果出现热处理质量问题,其损失也是不言而喻的;更主要的是轮毂热处理缺陷的漏检,很容易引发严重的质量事故,给企业带来无法估量的损失。

2、影响铝合金轮毂热处理性能的因素

首先是热处理工序对性能的影响(工艺参数是前提,工艺执行是过程);其次是化学成分的影响(合金元素的含量控制,尤其是有害元素Fe的控制);第三是熔炼过程中铝液的净化(除渣、除气)、晶粒细化(常用细化剂AL-TI-B)、变质效果(常用变质剂Sr);第四是铸造过程中的产生的疏松、夹杂、气孔、

偏析等缺陷,都会造成热处理机械性能不合格。

3、操作人员对热处理质量的影响

整个热处理过程实际上就是贯彻热处理工艺技术标准的过程。由于热处理生产过程的每一步骤都需要操作者操作完成,让每一个操作者掌握和了解各步骤的操作及工作原理,对稳定热处理产品质量至关重要,所以现场操作人员必须要经过各方面的培训,在达到一定素质和具备了相应的热处理实践经验后,才可安排在热处理生产线上从事相关工作。一个合格热处理操作者除了要熟知铝合金轮毂热处理工序质量控制要点,还要知晓影响控制要点的各类因素;不但能够熟练的操作和维护设备,而且还能够及时发现设备运转过程中的一些异常;不仅要掌握质量管理基本知识,也要明了产品工艺标准和相关技术指令。一个优秀的操作者应该不断的学习业务知识、汲取工作失误的教训,并学会总结经验,在自身素质不断提高的同时,还能够做好新员工的培训,起到传、帮、带的作用。人员稳定是工序质量稳定的前提。

操作人员对T特性的重要性,必须有清晰的认识,明白自己在生产中所承担的相关责任,这既是对自己负责,也是对企业负责、对国家负责。所以操作人员不能轻视热处理工作中的任何影响质量的细节。让质量第一的原则,始终贯穿热处理工作的全过程。所以经常的组织员工接受各类培训(工艺文件、质量意识、设备操作、安全生产、产品处置、各种事故总结分析等),对稳定工序质量有积极意义。

由于人员的疏忽,造成热处理产品异常的事件很多,带给企业的损失也是较大的,个别企业人员并没有意识到操作的随意性(淬火、出炉前开启炉门等)带来的质量隐患。另外,每个企业在生产中都会出现磕碰伤产品,细细想来大部分磕碰伤都是错误的操作造成的。

4、影响热处理工艺稳定的因素

铝合金轮毂的热处理质量在很大程度上,依赖于设备及仪表控制系统和合理的热处理工艺。直接体现设备稳定的标准就是热处理工艺稳定。要控制铝合金轮毂热处理质量,首先要消除影响工艺稳定的因素,这些影响因素主要有:仪表与热电偶的工作状态、加热系统工作效率、风机循环系统工作状况、炉体的密封与保温效果等等;

4.1、仪表与热电偶的工作状态直接反映温度波动情况,所以首先要确保补

偿导线与仪表、热电偶连接可靠。控温仪表参数设置要与工艺标准一致,而且具备相应的报警功能,并能实现加热过程中温度自动调节。固定在炉体上的热电偶不得松动,热电偶扣罩端密封要好,并且确保偶芯与保护管无有短路现象,同时要注意插入炉膛内部热电偶的深度,避免刮蹭工件或料架,造成热电偶弯曲受损,影响温度正常显示。

4.2、加热系统工作效率由于受仪表控温系统控制,所以热电偶位置及控温仪表参数设置,都会影响加热时间和炉膛温度稳定。对于燃气(油)热处理设备,燃气(油)的流量和压缩空气流量的调整,必须以炉温跟踪仪实际检测的炉膛温度曲线为依据,最终锁定满足工艺稳定的合理流量,这样既充分发挥了加热系统工作效率,又减少了不必要的能耗,最关键的是减小了连续生产时的温度波动。

4.3、风机循环系统工作状况关系到铝合金轮毂是否均匀受热,所以风机循环必须要实现时时监控,当转速低于设定的下限值时,要有报警提示,以便及时检查风机状况,调整或更换风机三角带,始终保持炉内风循环量,最大限度的保证铝合金轮毂热处理性能均匀一致。

4.4、炉体的密封与保温效果会影响炉膛温度均匀,不但会造成轮毂性能的不稳定,还会带来二次处理所造成各类损失,而且由于炉门密封不严或局部保温不好,还会带来较大动力消耗,增加生产成本。炉体的密封与保温效果良好,是稳定工艺和设备调整的基础。

5、异常情况下的处置措施

当产品出现质量异常时,必须执行相关的报废、返工、流转等处理流程;设备异常时,也要严格执行应急处理及重新启动的规定,并对受影响的产品采取一定的措施。

6、工艺过程控制

当设备处于良好的工作状态时,铝合金轮毂会在稳定的工艺条件下完成热处理过程。但是当设备出现异常情况,导致工艺波动时,仅仅要求操作者做到及时的发现,是远远不够的。为确保过程控制的稳定性,这就要求从设备控制方面完善各类报警,如超温(低温)报警、风机转速报警、加热系统(断电、断路、熄火)报警、驱动停止报警、淬火转移时间超时报警、水温水位报警等,这些报警通过声光的形式,能够直接被现场操作者接收到,以便及时采取应对措施,在最短的时间内恢复设备正常运行。为确保每一只铝合金轮毂正常完成热处理过程,

操作者要按照一定的时间间隔,进行工艺、设备巡检,在生产质量记录单上要记录详细的产品规格、生产批号、数量、工艺过程及操作者姓名,该记录作为热处理工艺过程控制的原始数据,必须要整理存档以备追溯。为更好的跟踪产品性能情况,工作现场要建立每台设备的产品性能波动图,通过统计过程控制,可及时的发现和消除性能异常波动的因素。

为了确保工艺过程的稳定,每2个月一次的炉温检测是十分必要的,对于连续式生产作业炉,要使用炉温跟踪仪全程检测工艺情况。当实际测温曲线与工艺曲线有差异时,必须对设备进行相应的调整,最终达到测温曲线波动范围在工艺设定的范围之内。

质量检验

铝合金轮毂在热处理工序的质量检验有:产品的专检和自检两大类,此外还应包括检验设备的校准与检定,热处理生产设备上的控温仪表、热电偶、记录仪、压力表等的检定。

产品专检是由质检部门借助专门的实验设备对铝合金轮毂的热处理质量进行验证,如机械性能检验、金相分析等。铝合金轮毂在热处理完成之后,必须要按照送检频次进行机械性能检验,检验部门根据相关的产品标准,对指定部位进行检测,主要项目有:屈服强度、抗拉强度、延伸率和硬度,并通过产品过程控制标准与实际检测值的对比,出具相应的性能检验报告单。当产品质量出现异常时,检验部门必须对异常产品做化学成分分析,以判定合金成分是否符合产品标准的要求,并且通过金相分析,确认热处理后铝合金轮毂的内部显微组织形态及分布状况,依据金相图谱判定级别,出具金相分析报告单,为消除异常、改进工艺、稳定质量指明方向。

工序的自检是由现场操作者完成的,自检的项目有:每个热处理批次的表面硬度检查、产品变形的检查、外观检查等。表面硬度检查是使用便携式硬度检测仪,在工作现场对每个批次的产品随机抽取一只进行检验,发现硬度异常时可增加专门的性能检验,表面硬度检查是性能专检的延伸与补充。产品变形检查主要是轮毂的圆度检查,并对存在变形的产品进行校正复圆。热处理产品下线后,操作者要对产品外观进行检查,在确认没有磕碰伤、裂纹、表皮起泡、颜色发暗等缺陷异常后,在产品指定的位置打上热处理批号,流转下道工序。

试验设备必须是经过相关检验部门检定合格,并在检定有效使用期内,按照标准

进行校准后,满足使用,检测数据能够真实反映产品状态。热处理设备上所有的控温仪表、记录仪、热电偶、压力表等同样是经过检验部门检定合格的,并确保在有效期内。

※该资料为简单热处理知识,相关工艺参数不能作为指导生产的依据,热处理的生产应以各投资企业设备状况和实际工艺卡片要求为准。

热处理缺陷简介

本文内容纯属个人认识,水平有限,如有不当之处请阅读者谅解!

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 ②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性, 消除材料内

部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。 自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。 人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个阶段进行。 可分为二阶段、三阶段时效

铸造铝合金轮毂T6热处理工艺的优化研究

铸造铝合金轮毂T6热处理工艺的优化研究 陈旷1,关绍康1,胡保健2,梁允勇3 (1.郑州大学材料科学与工程学院,河南郑州450002;2.三门峡戴卡轮毂制造有限公司,河南三门峡472000;3.奇瑞汽车有限公司,安徽芜湖241009) 摘要:研究了固溶时间、淬火停留时间及涂装烘烤工艺对A356合金铸造轮毂性能的影响规律并优化了T6热处理工艺,将淬火停留时间缩短到2h。研究表明:未涂装时优化工艺使合金抗拉强度达到240MPa,屈服强度达到181MPa。伸长率达到8%;涂装后抗拉强度达到262MPa,屈服强度达到179MPa,伸长率达到9%,接近并达到目前国内T6工艺的强度性能,超过了国内轮毂行业的强度性能标准,具有一定的生产实际意义。 关键词:T6;涂装烘烤;A356;淬火停留时间 中图分类号:TG142.4文献标识码:A文章编号: 1001—3814(2006)06-0030-03 铝合金轮毂具有节油、真圆度好、散热性好、坚固耐用、外观美观和操作轻快等优点,作为钢制轮毂的良好替代品。已广泛应用于轿车和客车上。但由于铝合金热处理后需要经历一次涂装烘烤工序,相当于对合金进行一个后续热处理,以往的研究仅局限于合金T6工艺的研究,因此作者研究了固溶时间、淬火停留时间及涂装烘烤工艺对合金力学性能和组织的影响,并在研究基础上优化了T6工艺。研究表明,合金经优化工艺处理后其力学性能超过了目前国内A356合金低压铸造轮毂的标准,但比传统T6工艺的处理周期缩短了约8h,大大节约了生产成本。 1试验材料和试验方法 1.1原材料和试验设备 原材料为A356合金锭,99.7%以上的工业纯铝、纯镁锭、1#结晶硅,变质剂采用A1-10%Sr,细化剂选用A1.5Ti-1C,配制成符合要求的合金成分;试验设备及测试仪器:5t燃气炉,德国GIMA低压铸造机,SX-4-10箱式电阻炉,WDW-50微机控制电子万能试验机。

铝合金及热处理

铝合金的热处理 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件 铸造铝合金的金相组织比变形铝合金的金相组织粗大,因而在热处理时也有所不同。前者保温时间长,一般都在2h以上,而后者保温时间短,只要几十分钟。因为金属型铸件、低压铸造件、差压铸造件是在比较大的冷却速度和压力下结晶凝固的,其结晶组织比石膏型、砂型铸造的铸件细很多,故其在热处理时的保温也短很多。铸造铝合金与变形铝合金的另一不同点是壁厚不均匀,有异形面或内通道等复杂结构外形,为保证热处理时不变形或开裂,有时还要设计专用夹具予以保护,并且淬火介质的温度也比变形铝合金高,故一般多采用人工时效来缩短热处理周期和提高铸件的性能。 一、热处理的目的 铝合金铸件热处理的目的是提高力学性能和耐腐蚀性能,稳定尺寸,改善切削加工和焊接等加工性能。因为许多铸态铝合金的机械性能不能满足使用要求,除Al-Si系的ZL102,Al-Mg系的ZL302和Al-Zn系的ZL401合金外,其余的铸造铝合金都要通过热处理来进一步提高铸件的机械性能和其它使用性能,具体有以下几个方面:1)消除由于铸件结构(如璧厚不均匀、转接处厚大)等原因使铸件在结晶凝固时因冷却速度不均匀所造成的内应力;2)提高合金的机械强度和硬度,改善金相组织,保证合金有一定的塑性和切削加工性能、焊接性能;3)稳定铸件的组织和尺寸,防止和消除高温相变而使体积发生变化;4)消除晶间和成分偏析,使组织均匀化。

二、热处理方法1、退火处理 退火处理的作用是消除铸件的铸造应力和机械加工引起的内应力,稳定加工件的外形和尺寸,并使Al-Si系合金的部分Si结晶球状化,改善合金的塑性。其工艺是:将铝合金铸件加热到280-300℃,保温2-3h,随炉冷却到室温,使固溶体慢慢发生分解,析出的第二质点聚集,从而消除铸件的内应力,达到稳定尺寸、提高塑性、减少变形、翘曲的目的。 2、淬火 淬火是把铝合金铸件加热到较高的温度(一般在接近于共晶体的熔点,多在500℃以上),保温2h以上,使合金内的可溶相充分溶解。然后,急速淬入60-100℃的水中,使铸件急冷,使强化组元在合金中得到最大限度的溶解并固定保存到室温。这种过程叫做淬火,也叫固溶处理或冷处理。 3、时效处理 时效处理,又称低温回火,是把经过淬火的铝合金铸件加热到某个温度,保温一定时间出炉空冷直至室温,使过饱和的固溶体分解,让合金基体组织稳定的工艺过程。 合金在时效处理过程中,随温度的上升和时间的延长,约经过过饱和固溶体点阵内原子的重新组合,生成溶质原子富集区(称为G-PⅠ区)和G-PⅠ区消失,第二相原子按一定规律偏聚并生成G-PⅡ区,之后生成亚稳定的第二相(过渡相),大量的G-PⅡ区和少量的亚稳定相结合以及亚稳定相转变为稳定相、第二相质点聚集几个阶段。 时效处理又分为自然时效和人工时效两大类。自然时效是指时效强化在室温下进行的时效。人工时效又分为不完全人工时效、完全人工时效、过时效3

铝合金轮毂的生产和市场现状

铝合金轮毂的生产和市场现状 摘要:对国内汽车铝轮毂市场的需求及生产现状进行综述,根据国内外发展状况对铝轮毂的市场形势进行了分析。 国外汽车(主要是轿车和轻型车)、摩托车均已广泛使用铝合金整体轮毂。国产轿车、轻型车和摩托车以铝合金整体轮毂替代辐条(板)式钢轮毂也是必然趋势。铝合金整体轮毂如图1所示。 图1 铝合金轮毂 1 铝合金轮毂的主要特点 铝轮毂有一件式、两件式和三件式的。两件式的铝轮毂是由一件内件和一件外件焊上的或钉上的。焊接时要小心,因为焊接两件东西不一定能保证圆度。两件式铝合金轮毂如图2所示。 图2 两件式铝合金轮毂 三件式的铝轮毂由一件中心部件和两个外圆件组成,并用航空级的螺钉拧在一起。为了减轻质量,很多三件式铝轮毂使用锻造件。三件式结构为厂家小批量制造提供了较大的灵活性。 铝合金轮毂的特点可归纳为以下三方面。

(1)安全:对于高速行驶的汽车来说,因轮毂变形、制动等产生的高温爆胎、制动效能降低等现象已屡见不鲜。而铝合金的热传导系数比钢、铁的大3倍,散热效果自然要好得多,从而增强了制动效能,提高了轮胎和制动盘的使用寿命,有效地保障了汽车的安全行驶。 (2)舒适:装有铝合金轮毂的汽车一般都采用扁平轮胎。扁平轮胎的缓冲和吸振性能优于普通轮胎。这样,汽车在不平的道路上或高速行驶时,舒适性会大大提高。 (3)节能:铝合金轮毂质量轻(同样规格的铝轮毂比钢轮毂要轻约2 kg)、制造精度高,所以在高速转动时变形小、惯性阻力也小。这有利于提高汽车的直线行驶性能、减轻轮胎滚动阻力,从而减少油耗。 2 生产技术 2.1 铸造 低压铸造是生产铝轮毂的最基本方法,也比较经济。低压铸造就是把熔化的金属浇铸在模子里成型并硬化。反压铸造是较为先进的铸造方法,用很强的真空把金属吸进模具,有利于保持恒温和排除杂质,铸件内没有气孔而且密度均匀,强度很高。高反压模铸(HCM)工艺生产的铝轮毂几乎与锻造的一样,德国名厂BBS 的RX/RY(15-20英寸)系列铝轮毂就是用HCM法铸造的。 2.2 锻造 锻造是制造铝轮毂的最先进的方法,以62.3MN的压力把一块铝锭在热状态下,压成一个车轮毂。这种铝轮毂的强度是一般铝轮毂的3倍,而且前者比后者还轻20%。有些造型美观且结构相对复杂的轮毂,往往不可能一次锻压成型。滚锻(也叫模锻)是锻造的一种,把一支轮毂的毛坯在滚动中锻造成型。滚锻出的轮毂在保持足够强度的同时,能大大减少厚度。用这种工艺制造的铝合金轮毂不仅密度均匀、表面平滑、圈壁薄、质量轻,而且可承受较大的压力。不过,由于这种产品需要较精良的生产设备,且成品率只有50%-60%,故制造成本稍高,价格自然也不低。 3 市场需求形势和生产状况 汽车工业是我国经济与社会发展的支柱产业。据国家汽车工业“十五”发展规划及中长期发展目标,预计到2010年,中国家用轿车保有总量将达到1466万辆,其中,城镇居民家用轿车保有量约1400万辆。到2020年,中国家用轿车保有量将达到7200万辆。权威人士预测,在未来10年内,我国轿车轮市场方面,根据美国凯撒工程公司的资料,2000年世界铝合金轿车轮毂需求量已达1.1亿只。 锻造铝合金轮毂在北美的主要竞争者只有少数几家,这就给新手提供了进入这个市场的契机。另一方面,在锻造铝合金轮毂的使用上,重型卡车的市场会远远超过轿车与轻型卡车的市场。在中国国内的重型卡车的铝轮毂市场还在起步阶段,这应该是锻造铝合金轮毂在国内拓宽市场的好机会。 在国外,锻造铝合金轮毂凭借其密度均匀、表面平滑、圈壁薄、质量轻,而且可承受较大的压力等优点被高档轿车所采用。在国内目前只有上海金合利铝轮毂制造有限公司、红原航空锻铸工业公司等为数不多的几家公司生产锻造铝合金轮毂。

铝合金热处理工艺

铝合金热处理工艺 铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定的速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G?P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(Ⅰ)区。G?P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化-形成G?P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G?P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G?P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时

铝合金轮毂热处理

铝合金轮毂热处理

————————————————————————————————作者: ————————————————————————————————日期: ?

铝合金轮毂热处理 1、铝合金轮毂热处理过程及重要性 热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。 铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表: 表1 热处理状态代号、名称及特点 代号热处理状态名称目的 T1人工时效提高硬度,改善加工性能,提高合金的强度。 T2 退火消除内应力,消除机加工引起的加工硬化,提高尺寸稳定性及增加合金的塑性。 T4 固溶处理提高强度和硬度,获得最高的塑性及良好的抗蚀性能。 T5 固溶处理+不完全人工时 效 用以获得足够高的强度,并保持有高的塑性,但抗蚀性 下降。 T6 固溶处理+完全人工时效用以获得最高的强度,但塑性及抗蚀性降低。 T7 固溶处理+稳定化回火提高尺寸稳定性和抗蚀性,保持较高的力学性能。 T8固溶处理和软化回火获得尺寸的稳定性,提高塑性,但强度降低。 铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。在Al-Si-Mg合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg 2 Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。温度愈高,愈接近固相线温度,则固溶处理的效果愈好。固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。固溶温度对Si相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。当然,选择的是较高的固溶温度,对设备稳定性的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。 铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处

铝及铝合金热处理工艺

铝及铝合金热处理工艺

1. 铝及铝合金热处理工艺 1.1 铝及铝合金热处理的作用 将铝及铝合金材料加热到一定的温度并保温一定时间以获得预期的产品组织和性能。 1.2 铝及铝合金热处理的主要方法及其基本作用原理 1.2.1 铝及铝合金热处理的分类(见图1) 图1 铝及铝合金热处理分类 1.2.2 铝及铝合金热处理基本作用原理 (1) 退火:产品加热到一定温度并保温到一定时间后以一定的冷却速度冷却到室温。通过原子扩散、迁移,使之组织更加均匀、稳定、,内应力消除,可大大提高材料的塑性,但强度会降低。 ①铸锭均匀化退火:在高温下长期保温,然后以一定速度(高、中、低、慢)冷却,使铸锭化学成分、组织与性能均匀化,可提高材料塑性20%左右,降低挤压力20%左右,提高挤压速度15%左右,同时使材料表面处理质量提高。 铝及铝合金热处理 回归 均匀化退火 退火 成品退火 中间退火 过时效 欠时效 自然时效 人工时效 多级时效 时效 固溶淬火 离线淬火 在线淬火 一次淬火 阶段淬火 立式淬火 卧式淬火

②中间退火:又称局部退火或工序间退火,是为了提高材料的塑性,消除材料 内部加工应力,在较低的温度下保温较短的时间,以利于续继加工或获得某种性能的组合。 ③完全退火:又称成品退火,是在较高温度下,保温一定时间,以获得完全再 结晶状态下的软化组织,具有最好的塑性和较低的强度。 (2)固溶淬火处理:将可热处理强化的铝合金材料加热到较高的温度并保持一定 的时间,使材料中的第二相或其它可溶成分充分溶解到铝基体中,形成过饱和固溶体,然后以快冷的方法将这种过饱和固溶体保持到室温,它是一种不稳定的状态,因处于高能位状态,溶质原子随时有析出的可能。但此时材料塑性较高,可进行冷加工或矫直工序。 ①在线淬火:对于一些淬火敏感性不高的合金材料,可利用挤压时高温进行固 溶,然后用空冷(T5)或用水雾冷却(T6)进行淬火以获得一定的组织和性能。 ②离线淬火:对于一些淬火敏感性高的合金材料必须在专门的热处理炉中重新 加热到较高的温度并保温一定时间,然后以不大于15秒的转移时间淬入水中或油中,以获得一定的组织和性能,根据设备不同可分为盐浴淬火、空气淬火、立式淬火、卧式淬火。 (3)时效:经固溶淬火后的材料,在室温或较高温度下保持一段时间,不稳定的 过饱和固溶体会进行分解,第二相粒子会从过饱和固溶体中析出(或沉淀),分布在α(AL)铝晶粒周边,从而产生强化作用称之为析出(沉淀)强化。自然时效:有的合金(如2024等)可在室温下产生析出强化作用,叫做自然时效。人工时效:有些合金(如7075等)在室温下析出了强化不明显,而在较高温度下的析出强化效果明显,称为人工时效。 人工时效可分为欠时效和过时效。 ①欠时效:为了获得某种性能,控制较低的时效温度和保持较短的时效时间。 ②过时效:为了获得某些特殊性能和较好的综合性能,在较高的温度下或保温 较长的时间状态下进行的时效。 ③多级时效:为了获得某些特殊性能和良好的综合性能,将时效过程分为几个 阶段进行。

铝合金轮毂基础知识

铝合金轮毂基础知识 一、轮毂的概念及工作状况 ●轮毂的概念: 轮毂又叫轮圈,在行业外也有一些不同的叫法:车轮、轮辋等。它作为整车行驶部分的主要承载件,是左右整车性能最重要的安全部件,在OE主机厂被定为A级安全件。 ●轮毂的受力状况: 轮毂通常会受到两个力的作用:一是要承受静态时车辆本身垂直方向的自重载荷;二是要经受车辆行驶中来自各个方向因起动、制动、转弯、石块冲击、路面凹凸不平等各种动态载荷所产生的不规则应力。 轮毂的静态应力分布 轮毂被安装到车上后,车轮便承受着整车垂直方向的自重力。其中轮辋部分是通过轮胎的充气压力传递而来的,轮辐部分的力是通过轮辋传递来的车辆自重力,这些力都属于静态应力。 二、轮毂的工艺介绍及材质优缺点 ●轮毂的材质分类及应用车型: 轮毂通常使用的材料有钢材和铝合金材料两大类,即钢圈和铝轮。钢圈多应用于卡车、货车和大客车等;铝轮已普通应用于轿车、SUV/MPV等(不过有的汽车厂为降低成本给轿车配的备胎还有使用钢圈)。 ●“钢圈”的工艺介绍及材质优缺点: 生产工艺:是用合金钢板材通过轧辊和冲压制成轮辋、轮辐(或钢丝)的坯料,再经铆接、点焊、二氧化碳电弧焊、挤压等工序装配组合而成。 材质优缺点: 优点:制造工艺简单,生产成本低、价格便宜,抗金属疲劳能力强不易变形等。 缺点:外形不美观造型单一,重量大耗油,惯性阻力大,散热性较差,易生锈等。 ●“铝轮”的工艺介绍及材质优缺点: 生产工艺:是将铝合金锭熔化成铝液后进行精炼变质、除气扒渣处理形成较纯净的铝液,铝液再进行铸造浇铸(重力或低压)成白毛坯之后去除浇口、帽口再进行热处理(固熔→淬火→时效),再通过数控车床和加工中心做机械加工形成半成品,再进行粗打磨、前处理清洗、吹水烘干、喷粉+烘烤固化形成粉坯,再进行精打磨、喷色漆、喷透明漆(或透明粉)+烘烤固化后形成最终成品。 ●“铝轮”的工艺介绍及材质优缺点: 材质优缺点: 优点:外观美观造型丰富,重量轻省油,惯性阻力小增加改动机寿命,散热性较好提高轮胎寿命,制造精度高平衡性佳/舒适度好等,漆层附着不易生锈。 缺点:制造工艺复杂,生产成本高,价格较贵,材质较脆抗金属疲劳能力一般容易变形开裂(受严重撞击时易断裂)等。 三、铝合金轮毂的材料介绍 ●铝合金轮毂所应用的材料型号: 轮毂在铸造铝合金方面,目前行业里广泛使用的材料是A356.2铝合金(是属于美国ASTM标准里的

宁波卓锋汽车科技有限公司汽车铝合金轮毂生产项目

宁波卓锋汽车科技有限公司汽车铝合金轮毂生产项目 环境影响评价审批前公示 一、建设项目概况及污染源分析 项目名称:汽车铝合金轮毂生产项目 项目性质:新建 建设单位:宁波卓锋汽车科技有限公司 建设地点:宁波市北仑区春晓庆河路176号6幢 项目概况:本投资4000万元,租用深圳市凯瑞梅特科有限公司位于北仑区春晓庆河路176号所属厂房两幢,总建筑面积6700m2,从事铝合金轮毂的生产和加工,建成后预计可年产汽车铝合金轮毂30万件。 二、项目建设可能对环境造成的影响 1、施工期 无 2、营运期 营运期本项目主要污染物与排放量汇总见下表。

1、施工期 本项目租用已建厂房,无施工期污染。 2、营运期 1)废气排放影响分析结论 (1)熔化炉烟气、保温炉烟气(铝屑处理线干燥炉烟气) 项目熔化炉、保温炉、固熔热处理线均采用天然气为燃料供热,其中熔化炉烟气与保温炉烟气经收集后供热于铝屑处理线干燥炉,然后通过一套碱液喷淋塔净化处理后15m高的排气筒排放。根据工程分析结果,其主要污染物SO2排放浓度为0.069mg/m3,烟尘排放浓度为2.083mg/m3,NO X排放浓度为6.31mg/m3,能达到《工业炉窑大气污染物排放标准》(GB9078-1996)中的二级标准和《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特别排放限值,对周边环境空气影响较小。 (2)固熔/时效热处理烟气 项目固熔热处理炉采用天然气为燃料,产生高温烟气经收集后输送至时效热处理炉供热,然后通过1根15m高的排气筒排放。根据工程分析结果,其主要污染物SO2排放浓度为1.667mg/m3,烟尘排放浓度为4.167mg/m3,NO X排放浓度为33.61mg/m3,能达到《工业炉窑大气污染物排放标准》(GB9078-1996)中的二级标准和《锅炉大气污染物排放标准》(GB13271-2014)中大气污染物特

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4,6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100,200?)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的

数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度,温度关系,可用铝铜系的Al,4Cu合金说明合金时效的组成和结构的变化。图3,1铝铜系富铝部分的二元相图,在548?进行共晶转变L?α,θ(Al2Cu)。铜在α相中的极限溶解度5.65,(548?),随着温度的下降,固溶度急剧减小,室温下约为0.05,。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区,G?P(?)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G?P(?)区。G?P(?)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G?P区有序化,形成G?P(?)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G?P(?)区。它与基体α仍保持共格关系,但尺寸较G?P(?)区大。它可视为中间过渡相,常用θ”表示。它比G?P(?)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G?P(?)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基

铝合金轮毂热处理相关知识

铝合金轮毂热处理相关知识 1、铝合金轮毂热处理过程及重要性 热处理就是以一定的加热速度,升到某一温度下保温一定时间并以一定的速度冷却,得到某种合金组织和性能要求的一种加工方法。其主要目的是:提高力学性能,增强耐腐性能,改善加工性能,获得尺寸的稳定性。 铸造铝合金轮毂选用的材料是A356铝合金(美国牌号),对应的国内合金牌号为ZL101,属铝-硅系铸造合金,通常采用T6热处理工艺,含义如下表: 表1 热处理状态代号、名称及特点 铝合金轮毂的热处理强化的主要方法是固溶淬火加人工时效。在Al-Si-Mg 合金中,固溶处理的实质在于:将合金加热到尽可能高的温度,并在该温度下保持足够长的时间,使强化相Mg2Si充分溶入α-Al固溶体,随后快速冷却,使高温时的固溶体呈过饱和状态保留到室温。温度愈高,愈接近固相线温度,则固溶处理的效果愈好。固溶处理也会改变共晶Si的形态,随着固溶保持时间的延长,Si相有一个缓慢球化和不断粗化的过程,这种过程随固溶温度的提高而增强。一般铝合金轮毂的固溶温度选择在535--545℃之间,时间为6小时。固溶温度对Si 相形态的影响要比保温时间的影响大得多,通过参照相关理论和试验发现,550℃保温100分钟后的Si相形态等同于540℃保温300分钟后的形态,目前中信戴卡公司热处理工序步进式连续炉,除特殊产品有明确要求外,均采用固溶550℃保温140分钟左右的热处理工艺。当然,选择的是较高的固溶温度,对设备稳定性

的要求也很高,炉膛内各部温度要均匀,否则局部温度过高,会导致部分产品过热、过烧。 铝合金轮毂淬火时的水温一般选择在60--80℃之间,而且水的状态对机械性能也有一定影响,这是因为轮毂淬火时水温升高,工件表面局部水气化的可能性增大,一旦气囊形成,冷速就明显降低,这会使机械性能降低,因而在工件淬火的情况下,必须要开启水循环装置(搅拌器、循环泵等),使水箱内的水处于流动状态,水温均匀,工件表面没有形成气囊的机会,保持一定的冷却速度,确保淬火效果。 控制淬火的转移时间对Mg2Si强化相的分布很重要,转移时间长会使强化元素扩散析出而降低合金的力学性能,所以转移时间越短越好,这也是生产实际中为什么要求转移时间控制在20s之内的原因。 淬火后人工时效温度的选择,对轮毂机械性能的影响非常明显,较高的时效温度下,屈服强度σ0.2随时效时间的增加而提高,延伸率δ则会降低,硬度升高。相反较低的时效温度和较短时效的时间,屈服强度σ0.2会偏低,而延伸率δ升高,硬度降低。目前时效温度通常选择130--160℃之间,时间为150分钟左右。 根据热处理工序特点及质量特性,热处理工序被定为T特性工序。铝合金轮毂热处理的重要性在于,产品能否满足安全使用要求。其质量特性不能用肉眼直观的进行判别,各项性能指标需要借助专门的检验仪器和设备,对轮毂进行各类检测而获得,由于受到检测频率和检测部位的限制,对于每一炉产品,甚至对每一个产品,检测都只是个别的、局部的,无论如何都不能达到对热处理质量100%的检测,检验也不能完全反映整批产品或整个产品的热处理质量;而且由于热处理过程特点是连续生产,批量投入,一旦出现热处理质量问题,对整个工序的影响面很大;另外热处理的产品是经过了熔炼、铸造、X光等工序的轮毂半成品,如果出现热处理质量问题,其损失也是不言而喻的;更主要的是轮毂热处理缺陷的漏检,很容易引发严重的质量事故,给企业带来无法估量的损失。 2、影响铝合金轮毂热处理性能的因素 首先是热处理工序对性能的影响(工艺参数是前提,工艺执行是过程);其次是化学成分的影响(合金元素的含量控制,尤其是有害元素Fe的控制);第三是熔炼过程中铝液的净化(除渣、除气)、晶粒细化(常用细化剂AL-TI-B)、变质效果(常用变质剂Sr);第四是铸造过程中的产生的疏松、夹杂、气孔、

常用变形铝合金退火热处理工艺规范标准

常用变形铝合金退火热处理工艺规 1 主题容与适用围 本规规定了公司变形铝合金零件退火热处理的设备、种类、准备工作、工艺控制、技术要求、质量检验、技术安全。 2 引用文件 GJB1694变形铝合金热处理规 YST 591-2006变形铝及铝合金热处理规 《热处理手册》91版 3 概念、种类 3.1 概念:将变形铝合金材料放在一定的介质加热、保温、冷却,通过改变材料表面或部晶相组织结构,来改变其性能的一种金属热加工工艺。 3.2 种类 车间铝合金零件热处理种类:去应力退火、不完全退火、完全退火、时效处理。 4 准备工作 4.1 检查设备、仪表是否正常,接地是否良好,并应事先将炉膛清理干净; 4.2 抽检零件的加工余量,其数值应大于允许的变形量; 4.3工艺文件及工装夹具齐全,选择好合适的工夹具,并考虑好装炉、出炉的方法; 4.4 核对材料与图样是否相符,了解零件的技术要求和工艺规定; 4.5在零件的尖角、锐边、孔眼等易开裂的部位,应采用防护措施,如包扎铁皮、石棉绳、堵塞螺钉等; 5 一般要求 5.1 人员: 热处理操作工及相关检验人员必须经过专业知识考核和操作培训,成绩合格后持证上岗5.2 设备 5.2.1 设备应按标准规要求进行检查和鉴定,并挂有合格标记,各类加热炉的指示记录的仪表刻度应能正确的反映出温度波动围; 5.2.2 热电温度测定仪表的读数总偏差不应超过如下指标: 当给定温度t≤400℃时,温度总偏差为±5℃; 当给定温度t>400℃时,温度总偏差为±(t/10)℃。 5.2.3 加热炉的热电偶和仪表选配、温度测量、检测周期及炉温均匀性均应符合QJ 1428的Ⅲ类及Ⅲ类以上炉的规定。 5.3 装炉 5.3.1 装炉量一般以装炉零件体积计算,每炉零件装炉的有效体积不超过炉体积一半为准。 5.3.2 零件装炉时,必须轻拿轻放,防止零件划伤及变形。 5.3.3堆放要求: a.厚板零件允许结合零件结构特点,允许装箱入炉进行热处理,叠放时允许点及较少的线接触,避免面接触,叠放间隙不小于10mm. b.厚度t≤3mm的板料以夹板装夹,叠放厚度≤25mm,零件及夹板面无污垢、凸点,零件间、零件与夹板间应垫一层雪花纸,以防止零件夹伤。 5.3.4 装炉后需检查零件与电热原件,确定无接触时,方可送电升温,在操作过程中,不得随意打开炉门; 5.3.5 加热速度:变形铝合金退火的加热速度约13℃~15℃/秒,例如加热到410℃设定时间为0.5小时。

铝合金热处理工艺

铝合金热处理工艺 作者:中国铝板带箔信息中心日期:2006-12-16 点击数:284 3.1铝合金热处理原理 铝合金铸件的热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间并以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G·P(Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G·P(Ⅰ)区。G·P(Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形的共格应变区,故使合金的强度、硬度升高。3.1.2.2 G·P区有序化-形成G·P(Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G·P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G·P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G·P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。

铝合金轮毂项目可行研究报告

铝合金轮毂项目可行研究报告

铝合金轮毂项目 可 行 性 研 究 报 告2012年6月

一、项目产品市场分析 1 .国际市场分析 作为汽车零部件行业的一部分,汽车轮毂行业的发展与汽车行业发展紧密相关。汽车轮毂需求主要来自OEM市场,零售市场相对较少,约占OEM市场的1/5。从全球看,汽车行业是个成熟的市场,过去7年(1999-2005)全球汽车产量的复合增长率(CAGR)只有3.6%,2006年全年汽车产量6800万辆。从汽车保有量看,2005年全球汽车保有量约为92130 万辆。 上世纪80年代初期,全球90%的汽车轮毂以钢材作为原料,随后的二十年铝轮毂得到快速发展,到2006年,铝轮毂的份额超过60%。按照世界汽车总产量及钢轮毂和铝轮毂的配置情况估算,全球汽车轮毂OEM市场约为3.4亿只(其中:美洲1.2亿只,欧洲1.1亿只,亚太地区1亿只左右),市场价值约80亿美元(其中:铝轮毂约45亿美元,钢制轮毂约35亿美元)。 参照全世界汽车产量年均3%增长率,铝轮毂年6%的增长率,预计2010年世界铝轮毂需求量可达2.38亿只,2020年世界铝轮毂需求量达到3.21亿只。随着西方国家经济复苏和发展中国家轿车工业的加速发展以及汽车铝化率不断提 高的趋势,铝轮毂国际市场前景广阔,目前的生产能力远不能满足需求。

2. 国内市场分析 我国近几年汽车产量和保有量增长较快,1999-2005年汽车产量的复合增长率(CAGR)高达19.6%。2006年全国汽车拥有量达3270万辆,当年汽车产量728万辆,其中乘用车523.3万辆(轿车386.9万辆,微型客车136.4万辆),商用车204.66万辆(货车175.30万辆,客车29.36万辆)。我国汽车产量在世界排行榜上几年来迅速攀升,2000年汽车产量排名第11位,2006年汽车产量728万辆,仅次于美、日。预计2010年我国汽车产量将超过1000万辆,到2020年汽车产量将超过美国和日本,达1700万辆。 我国的铝轮毂工业起步较晚,但发展极为迅速,到2005年,我国汽车铝轮毂装车率已超过55%。国内铝轮毂市场主要集中在上海大众、一汽大众、东风汽车、广州本田和长安汽车等,以OEM市场为主。我国汽车安装铝轮毂的车型主要有轿车(70%装车率)、微型客车(小面包车)(60%装车率)、轻型客车(大面包车及越野车)(40%装车率)、小货车(20%装车率)。从车型看,高中级轿车以及微面、皮卡、中面、吉普,都广泛采用了铝轮毂。2006年我国汽车产销量分别为728万辆及722万辆,轮毂需求量为3640万件,其中,铝轮毂需求量2200万件。 在我国已投产的铝轮毂加工企业主要分布在河北、山东、河南、江苏、浙江、福建、广东、辽宁、湖北等地,主要生产

铝合金轮毂制造工艺及特点分析

铝合金轮毂制造工艺及特点分析 【摘要】铝合金轮毂以其质量轻、减震性优良、散热快、寿命长等特点,在现代汽车制造中得到了广泛的应用。本文概述了铝合金轮毂的一些常见的制造工艺,并对其特点进行了简要分析。 【关键词】铝合金;轮毂;制造工艺;特点 长期以来,钢制轮毂占据着汽车轮毂生产的主导地位。随着人们对汽车的舒适度、节能环保等方面要求的提高,钢制轮毂已不再适应现代汽车的需求。铝合金轮毂的出现,以优异的性能和迅猛的技术发展取代了钢制轮毂的主导地位,在现代汽车中得到了广泛的应用。 1.铝合金轮毂的优点及性能要求 铝合金轮毂与钢制轮毂相比,具有质量轻、节省能源的优点。由于材质的差异,铝合金轮毂的质量可比钢制轮毂减轻三到四成,可以有效提高轮毂的转动惯性,使汽车易于加速,并减少了制动所需的能耗,从而降低了油耗。此外,由于铝合金的振动性能比钢强,可以减少震动,改善车辆的重心,平衡性能优于钢制轮毂,尤其在高速行驶时可以得到明显的体现。在散热方面,铝合金轮毂的散热系数是钢制轮毂的两到三倍,在高速行驶时仍然可以保持合适的温度,减少爆胎的危险,提高了行车安全。 鉴于铝合金轮毂的优点,在制造铝合金轮毂的时候,就必须将这些优点全部发挥出来,才能使得铝合金轮毂充分体现其优良的性能。一般来说,一个合格的铝合金轮毂必须具备以下几个特点:(1)材质、尺寸、形状准确合理,这样才能充分发挥轮毂的作用,具有通用性;(2)汽车在行驶时,轮毂的横、纵向振摆小,失衡量与惯性矩小;(3)在保证轻便的同时,还要具有足够的强度、韧性和稳定性;(4)可分离性好;(5)性能具有持久性。 2.铝合金轮毂制造工艺及特点分析 2.1铸造法 铝合金轮毂的铸造法成形具有适应性强、品种多样、生产成本较低的优点,已经成为生产铝合金轮毂最普遍的方法,在全世界的铝合金轮毂中,采用铸造法生产的占80%以上。其工艺方法主要有重力铸造、低压铸造、压力铸造以及挤压铸造等。 2.1.1重力铸造法 重力铸造法是指金属在熔融的状态下依靠自身重力的作用注入模具中而获得铸件的一种工艺方法。重力铸造法大致可分为制芯、浇铸、整理三个步骤,每

铝合金轮毂的生产和市场现状

铝合金轮毂的生产和市场现状摘要:对国内汽车铝轮毂市场的需求及生产现状进行综述,根据国内外发展状况对铝轮毂的市场形势进行了分析。 国外汽车(主要是轿车和轻型车)、摩托车均已广泛使用铝合金整体轮毂。国产轿车、轻型车和摩托车以铝合金整体轮毂替代辐条(板)式钢轮毂也是必然趋势。铝合金整体轮毂如图1所示。 图1 铝合金轮毂 1 铝合金轮毂的主要特点 铝轮毂有一件式、两件式和三件式的。两件式的铝轮毂是由一件内件和一件外件焊上的或钉上的。焊接时要小心,因为焊接两件东西不一定能保证圆度。两件式铝合金轮毂如图2所示。 图2 两件式铝合金轮毂 三件式的铝轮毂由一件中心部件和两个外圆件组成,并用航空级的螺钉拧在一起。为了减轻质量,很多三件式铝轮毂使用锻造件。三件式结构为厂家小批量制造提供了较大的灵活性。 铝合金轮毂的特点可归纳为以下三方面。 (1)安全:对于高速行驶的汽车来说,因轮毂变形、制动等产生的高温爆胎、制动效能降低等现象已屡见不鲜。而铝合金的热传导系数比钢、铁的大3倍,散热效果自然要好得多,从而增强了制动效能,提高了轮胎和制动盘的使用寿命,有效地保障了汽车的安全行驶。 (2)舒适:装有铝合金轮毂的汽车一般都采用扁平轮胎。扁平轮胎的缓冲和吸振性能优于普通轮胎。这样,汽车在不平的道路上或高速行驶时,舒适性会大大提高。 (3)节能:铝合金轮毂质量轻(同样规格的铝轮毂比钢轮毂要轻约2 kg)、制造精度高,所以在高速转动时变形小、惯性阻力也小。这有利于提高汽车的直线行驶性能、减轻轮胎滚动阻力,从而减少油耗。 2 生产技术 2.1 铸造 低压铸造是生产铝轮毂的最基本方法,也比较经济。低压铸造就是把熔化的金属浇铸在模子里成型并硬化。反压铸造是较为先进的铸造方法,用很强的真空把金属吸进模具,有利于保持恒温和排除杂质,铸件内没有气孔而且密度均匀,强度很高。高反压模铸(HCM)工艺生产的铝轮毂几乎与锻造的一样,德国名厂BBS的RX/RY(15-20英寸)系列铝轮毂就是用HCM法铸造的。 2.2 锻造 锻造是制造铝轮毂的最先进的方法,以62.3MN的压力把一块铝锭在热状态下,压成一个车轮毂。这种铝轮毂的强度是一般铝轮毂的3倍,而且前者比后者还轻20%。有些造型美观且结构相对复杂的轮毂,往往不可能一次锻压成型。滚锻(也叫模锻)是锻造的一种,把一支轮毂的毛坯在滚动中锻造成型。滚锻出的轮毂在保持足够强度的同时,能大大减少厚度。用这种工艺制造的铝合金轮毂不仅密度均匀、表面平滑、圈壁薄、质量轻,而且可承受较大的压力。不过,由于这种产品需要较精良的生产设备,且成品率只有50%-60%,故制造成本稍高,价格自然也不低。 3 市场需求形势和生产状况 汽车工业是我国经济与社会发展的支柱产业。据国家汽车工业“十五”发展规划及中长期发展目标,预计到2010年,中国家用轿车保有总量将达到1466万辆,其中,城镇居民家用轿车保有

相关文档